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1 Notes on van Belle Chapter

[ Other references: Armitage & Berry Ch 7.2; Colton Ch 4 ]

Main reference: van Belle Chapter 5.2, 5.6 and 5.8

• Although Note 5.2.1 asks you to distinguish two theoretical situations:
σ1 = σ2 = σ, versus σ 6= σ2,these two are unfortunately seldom clearly
distinguishable in practice. The test of equal variances (section 5.7)
is not very accurate, and can easily be distorted by non-normaility.
JH advises doing both the common-variance and separate-variance tests
and reporting the less extreme p-value.

• Think of s2
p, the “pooled” estimate of σ2 [van Belle, row 6 in Table 5.1]

as a weighted average of s2
1 and s2

2]?

• van Belle mentions one adjusted d.f. at the bottom of page 139. Software
packages use variants of the Welch-Satterthwaite1 approximation.

SAS PROC TTEST ”computes the group comparison t statistic based on
the assumption that the variances of the two groups are equal. It also
computes an approximate t based on the assumption that the variances
are unequal (the Behrens-Fisher problem). The degrees of freedom and
probability level are given for each;Satterthwaite’s (1946) approximation,

df = [((w1 + w2)2)/(([(w2
1)/(n1 − 1)] + [(w2

2)/(n2 − 1)]))]
1Satterthwaite, F. E. 1946. An approximate distribution of estimates of variance com-

ponents. Biometrics Bulletin 2: 110-114.
Welch, B. L. 1947. The generalization of student’s problem when several different popula-
tion variances are involved. Biometrika 34: 28-35.

where w1 = [(s2
1)/(n1 − 1)], and w2 = [(s2

2)/(n|2 − 1)]. is used to
compute the degrees of freedom associated with the approximate t. In
addition, you can request the Cochran and Cox (1950) approximation of
the probability level for the approximate t.”

R: if in t.test, one sets the logical variable var.equal to TRUE
then the pooled variance is used to estimate the variance; otherwise the
Welch (or Satterthwaite) approximation to the degrees of freedom is
used.

• Example 5.4 (heights of husband-wife pairs): Since his chapter
deals with differences of independent random variables, he apologizes for
being possibly slightly unrealistic when he supposes that husband-
wide pairs are formed independent of stature .

Francis Galton2 studied Marriage Selection and reported that “whatever
may be the sexual preferences for similarity or for contrast, I find little
indication in the average results obtained from a fairly large number of
cases of any single measurable personal peculiarity, whether it be stature,
temper, eye-colour, or artistic tastes, in influencing marriage selection
to a notable degree. Nor is this extraordinary, for though people may
fall in love for trifles, marriage is a serious act, usually determined by
the concurrence of numerous motives. Therefore we could hardly expect
either shortness or, tallness, darkness or lightness in complexion, or any
other single quality, to have in the long run a large separate influence.”

Galton found a correlation of only 0.10 or so between the heights of
fathers and mothers, and so “I am therefore content to ignore it,
and to regard the Statures of married folk just as if their choice
in marriage had been wholly independent of stature.”. However,
we discovered that the correlation of poorly measured variables (such as
self-reported heights in Galton’s study) is less than it should be.

Karl Pearson, who had his graduate students carefully mea-
sured the heights of over 1000 husband-wife pairs3, found a
correlation of approximately 0.30 and commented that “there
is a very sensible resemblance in size between hustand and wife,
which à priori I should have said was hardly conceivable.”

It is not clear how strong the correlation is in today’s societies. But it is a
pity that van Belle did not check it out: he did however concede that his
supposition (of independence) was “probably contrary to societal mores.”

2Natural Inheritance, 1889, chapter VII.
3Table II, page 373 in Pearson, K., and Lee, A. (1903), On the Laws of Inheritance in

Man: I. Inheritance of Physical Characters, Biometrika, 2, 357462.
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2 Unequal Sample Sizes (n1 6= n2)

2.1 Effect of unequal sample sizes on precision of esti-
mated differences

If we write the SE of an estimated difference in mean responses as σ×(1/n1 +
1/n2)1/2, where σ is the (average) per unit variability of the response, then
we can establish the following principles4:

1. If costs and other factors (including unit variability) are equal,
and if both types of units are equally scarce or equally plentiful,
then for a given total sample size of n = n1+n2, an equal division of n i.e.
n1 = n2 is preferable since it yields a smaller SE(estimated difference in
means) than any non-symmetric division. However, the SE is relatively
unaffected until the ratio exceeds 70:30. This is seen in the following
table which, assuming σ = 1 (arbitrary), gives the value of SE(difference
in means) = (1/n1 + 1/n2)1/2 for various combinations of n1 and n2

adding to 100 (the 100 is also arbitrary).

n1 n2 SE (diff. in means) % Increase in SE
[(1/n1 + 1/n2)1/2] over SE50:50

50 50 0.200 —
60 40 0.204 2.1%
65 35 0.210 4.8%
70 30 0.218 9.1%
75 25 0.231 15.5%
80 20 0.250 25.5%
85 15 0.280 40.0%

2. If one type of unit is much scarcer, and thus the limiting factor,
then it makes sense to choose all (say n1) of the available scarcer units,
and some n2 ≥ n1 of the other type. The greater is n2, the smaller the
SE of the estimated difference. However, there is a ‘law of diminishing
returns’ once n2 is more than a few multiples of n1. This is seen in the
following table which gives the value of (1/n1 + 1/n2)1/2 for n1 fixed
(arbitrarily) at 100, and n2 ranging from 1 × n1 to 100 × n1; again, we
assume σ = 1.

4Note: these principles apply to both measurement and count data

SEK:1 SEK:1

Ratio as % of as % of
n1 n2 (K) SE(µ̂1 − µ̂2) SE1:1 SE∞:1* IK : I∞
50 50 1.0 0.2000 — 1.414 0.50
50 75 1.5 0.1825 91.3% 1.290 0.60
50 100 2.0 0.1732 86.6% 1.225 0.67
50 150 3.0 0.1633 81.6% 1.155 0.75
50 200 4.0 0.1581 79.1% 1.118 0.80
50 250 5.0 0.1549 77.5% 1.095 0.83
50 300 6.0 0.1527 76.4% 1.080 0.86
50 400 8.0 0.1500 75.0% 1.061 0.89
50 500 10.0 0.1483 74.2% 1.049 0.91
50 1000 20.0 0.1449 72.4% 1.025 0.95
50 5000 100.0 0.1421 71.1% 1.005 0.99
50 ∞ ∞ 0.1414 70.7% 1.000 1.00

This table is the basis for the ‘epidemiologic rule of thumb’ that a n2 :
n1 ratio of more than 4 is wasteful. The 4 seems to have arisen by
focusing on 80% efficiency : if we use I = Information, i.e., Inverse
of Variance – as the criterion, one can see that, relative to the perfect
(100%) information with an infinite n2 : n1 ratio, the information with a
ratio of K is K/(K + 1), which indeed attains a value of 0.8 with K = 4.

2.2 Sample size calculations when using unequal sample
sizes to estimate / test difference in 2 means

For power (sensitivity) 1− β, and specificity 1−α (2-sided), the sample sizes
n1 and n2 have to be such that

Zα/2 × SE(ȳ1 − ȳ2)− Zβ × SE(ȳ1 − ȳ2) = ∆ = µ2 − µ1

(if β < 0.5, then Zβ will be negative). If we assume equal per unit variability,
σ, of the y’s in the 2 populations, we can write the requirement as

Zα/2 × σ × (1/n1 + 1/n2)1/2 − Zβ × σ × (1/n1 + 1/n2)1/2 = ∆

If we rewrite (1/n1 + 1/n2)1/2 as ([1/n1] × [1/n1 + 1/n2])1/2 and rearrange
the inequality, we get

n1 =
{

1 +
n1

n2

}
(Zα/2 − Zβ)2

{
σ

∆

}2

.
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or, denoting n2/n1 by K,

n1 =
{

1 +
1
K

}
(Zα/2 − Zβ)2

{
σ

∆

}2

.

i.e., with nsmaller denoting the smaller sample size, ...

nsmaller =
{

K + 1
K

}
(Zα/2 − Zβ)2

{
σ

∆

}2

.

If K = 1, so that n1 = n2, then we get the familiar “2” at the front of the
sample size formula for each group.

3 Power / Precision / Sample Size: Correlated
responses; cluster samples

Suppose that, instead of n independent responses (y’s) from population (con-
dition) 1, and a separate n independent responses from population (condition)
2, we have responses on n = m× k individuals from m clusters of size k each,
from population (condition) 1, and on a separate set of n individuals from
m clusters of size k each, from population (condition) 2. Examples might be
responses of persons in same family or school or medical practice—or even
several responses for each subject. Suppose the intra-class correlation is

icc = σ2
b/(σ2

b + σ2
w),

where σ2
b denotes the variance of the (true) cluster means [within the same

population], and σ2
w denotes the within-cluster variance. Assume that the icc

has the same value for each population.

Let ȳ1i be the mean of the k y’s measured on the ith sampled cluster from
population 1 (i = 1, . . . ,m), and let ȳ2 be the mean of the k values measured
for the ith cluster sampled from population 2.

Define ¯̄y1 = (1/m)
∑

i ȳ1i for the sample from population 1, and correspond-
ingly ¯̄y2 for the one from population 2.

Then V ar[¯̄y1] = (1/m)2 ×
∑m

1 V ar[ȳ1i].

Now, V ar[ȳ1i] = σ2
b + (1/k)σ2

w,

so V ar[¯̄y1] = (1/m)2 ×m× {σ2
b + (1/k)σ2

w} = (1/m)σ2
b + (1/{m× k})σ2

w.

Thus

V ar[¯̄y1] =
σ2

b

no. of clusters
+

σ2
w

no. of individuals
.

If we had responses from n unrelated individuals, i.e., if we had m = n and
k = 1, then

V ar[¯̄y1] =
σ2

b + σ2
w

no. of individuals
.

The ratio of the variance with n = m× k to that with n = n× 1 is therefore{
σ2

b

m
+

σ2
w

mk

}
÷

{
σ2

b + σ2
w

mk

}
=

kσ2
b + σ2

w

σ2
b + σ2

w

= 1+(k−1)
σ2

b

σ2
b + σ2

w

= 1+(k−1)icc.

i.e., the Variance (or Sample Size) Inflation Factor (VIF or SSIF) is

VIF = SSIV = 1 + (k − 1)× icc.

Thus, if the value of icc is positive, there is less information in a cluster sample
of a total of n individuals than there would be in a sample of n unrelated
individuals. However, the greater amount of information obtained from a
sample of n unrelated individuals might well cost a lot more to obtain, and
so the cluster sampling approach may be the more efficient option. In some
instances, it may be that the intervention is carried out at the level of the
cluster, and it would not make sense to study just one individual per cluster.

A positive correlation doesn’t always increase variance. It depends
on how you use it!

Paul Burton5 puts it nicely...

It is clear that if a standard statistical analysis which assumes all
observations to be independent is performed on repeated measures
(or other correlated) data when the intraclass correlation is positive,
results may be misleading. For example, estimated standard errors
are likely to be too small, the analysis will effectively assume that
there is more information in the data than there really is. Such an
analysis has been referred to as naive pooling.

Given that correlation can lead to a loss of information, it may seem
surprising that repeated measures designs are used so commonly.
However, when interest centres on a change in response un-
der different conditions or over time, the [longitudinal] cor-
relation between repeated observations means that within-
person changes can be highly informative because they min-
imize the “noise” arising from between-person variability.

5Statistics in Medicine 17, 1261-1291 (1998) Tutorial in Biostatistics: Extending the
simple linear regression model to account for correlated responses: an introduction to gen-
eralized estimating equations and multi-level modelling. Paul Burton, L Gurrin, & P Sly.
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Thus, if one wished to test a new drug purporting to increase height
in middle-aged adults, the fact that height is essentially constant in
this age group means that the change in height within subjects (be-
fore drug versus after) will provide a powerful test of efficacy. In such
circumstances, ignoring the correlation structure can waste impor-
tant information and can make standard errors too large, as when
an unpaired t-test is used on paired data with a positive intraclass
correlation.

E.S. Pearson, in his appreciation ”Student as a Statistician”6 gives us a good
example from Student’s writings:

One of the striking characteristics of these papers, also of course
evident in correspondence, was the simplicity of the statistical tech-
nique he used. The mean, the standard deviation and the correlation
coefficient were his chief tools; hardly adequate for treating special-
ized problems it might be thought; yet how extremely effective in
fact in his skilled hands! There is one very simple and illu-
minating theme which will be found to run as a keynote
through much of his work, and may be expressed in the
two formulae:

σ2
x+y = σ2

x + σ2
y + 2ρσxσy

σ2
x−y = σ2

x + σ2
y − 2ρσxσy

Perhaps we may count as one of his big achievements the demon-
stration in many fields of the meaning of the second of these short
equations; as he wrote in 1923 [p. 273, “On testing varieties of cere-
als.” Biometrika, Vol 15] but with modified notation:

“The art of designing all experiments lies even more in ar-
ranging matters so that ρ is as large as possible than in
reducing σ2

x and σ2
y.

It is a simple idea, certainly, but I cannot doubt that its emphasis
and amplification helped to open the way to all the modern devel-
opments of analysis of variance, and there may be some who have
felt that where this technique runs a risk of defeating its ends by
over-elaboration is just where that simple maxim has been set on
one side.

6Biometrika, Vol. 30, No. 3/4. (Jan., 1939), pp. 210-250.

4 “Eye test” using overlap of 2 indep’t CI’s

|----------x----------|
Overlapping CI’s

|----------x----------|

How far apart do two independent ȳ’s, say ȳ1 and ȳ2 to be for a formal
statistical test, using say an α = 0.05, two sided, of µ1 = µ2, to be to be sta-
tistically significant? If their associated CI’s overlap, does that mean
the difference between them is not statistically significant? 7

I using a z-test, they will be significantly different if

|ȳ1 − ȳ2| ≥ 1.96× {(SE[ȳ1])2 + (SE[ȳ1])2}1/2

If SE[ȳ1] and SE[ȳw] are about the same size (as they would be if the 2 n’s,
and the per-unit variability, were about the same), then, denoting each SEM
by SE[ȳeach], they are significant if...

|ȳ1 − ȳ2| ≥ 1.96× {2× (SE[ȳeach])2}1/2.

i.e.
|ȳ1 − ȳ2| ≥ 1.96× 21/2 × SE[ȳeach],

or...
|ȳ1 − ȳ2| ≥ 2.77× SE[ȳeach].

If using t rather than z, the multiple would be somewhat higher than 1.96, so
that when multiplied by 21/2, it would be higher than 2.77, closer to 3. Thus
a rough answer to the question could be taht they are significantly different if

|ȳ1 − ȳ2| ≥ 3× SE[ȳeach].

This means that even when two 100(1 − α)% CI’s overlap slightly, as
above, the difference between the two means could be statistically significant
at the α level. This is why Lincoln Moses, in his article on graphical displays
(see reserve material), advocates plotting the 2 CI’s formed by

ȳ1 ± 1.5× SE[ȳ1] and ȳ2 ± 1.5× SE[ȳ2]

7See Wolfe R, Hanley J. “If we’re so different, why do we keep overlapping? When 1
plus 1 doesn’t make 2.” Canadian Med Assoc. J. 2002 Jan 8;166(1):65-66.
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This way, we can be reasonably sure that if the CI’s do not overlap (i.e., if ȳ1

and ȳ2 are more than 3 SE[ȳeach]’s apart) then the difference between them
is statistically significant at the α = 0.05 level, and vice versa.

Notes:

• estimate± 1.5SE[estimate] corresponds to an 86% CI if using Z distri-
bution.

• The above logic applies for other symmetric CI’s too.

5 Permutation tests

From Section 21 ”Test of a Wider Hypothesis” beginning on page 44 of
Chapter III of Fisher’s Design of Experiments

It has been mentioned that “Student’s” t test, in conformity with the
classicaI theory of errors, is appropriate to the null hypothesis that
the two groups of measurements are samples drawn from the same
normally distributed population. This is the type of null hypothesis
which experimenters, rightly in the author’s opinion, usually consider
it appropriate to test, for reasons not only of practical convenience,
but because the unique properties of the normal distribution make
it alone suitable for general application.

There has, however, in recent years, been a tendency for theoretical
statisticians, not closely in touch with the requirements of experi-
mental data, to stress the element of normality, in the hypothesis
tested, as though it were a serious limitation to the test applied.
It is, indeed, demonstrable that, as a test of this hypothesis, the
exactitude of “Student’s” t test is absolute.

It may, nevertheless, be legitimately asked whether we should obtain
a materially different result were it possible to test the wider hy-
pothesis which merely asserts that the two series are drawn from
the same population, without specifying that this is normally
distributed.

In these discussions it seems to have escaped recognition that the
physical act of randomisation, which, as has been shown, is neces-
sary for the validity of any test of significance, affords the means,
in respect of any particular body of data, of examining the wider
hypothesis in which no normality of distribution is implied. The
arithmetical procedure of such an examination is tedious, and we

shall only give the results of its application in order to show the pos-
sibility of an independent check on the more expeditious methods in
common use.
On the hypothesis that the two series of seeds are random
samples from identical populations, and that their sites have
been assigned to members of each pair independently at
random, the 15 differences of Table 3 would each have oc-
curred with equal frequency with a positive or with a neg-
ative sign. Their sum, taking account of the two negative signs
which have actually occurred, is 314, and we may ask how many of
the 215 numbers, which may be formed by giving each component
alternatively a positive and a negative sign, exceed this value. Since
ex hypothesi each of these 215 combinations will occur by chance
with equal frequency, a knowledge of how many of them are equal
to or greater than the value actually observed affords a direct arith-
metical test of the significance of this value. It is easy to see [JH:
typical Fisher phrase!] that if there were no negative signs, or only
one, every possible combination would exceed 314, while if the neg-
ative signs are 7 or more, every possible combination will fall short
of this value. The distribution of the cases, when there are from 2
to 6 negative values, is shown in the following table :-
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a result very nearly equivalent to that obtained using the t test with
the hypothesis of a normally distributed population. Slight as it is,
indeed, the difference between the tests of these two hypotheses is
partly due to the continuity of the t distribution, which effectively
counts only half of the 28 cases which give a total of exactly 314, as
being as great as or greater than the observed value.
Both tests prove that, in about 5 per cent. of trials, samples from
the same batch of seed would show differences just as great, and
as regular, as those observed; so that the experimental evidence is
scarcely sufficient to stand alone. In conjunction with other exper-
iments, however, showing a consistent advantage of cross-fertilised
seed, the experiment has considerable weight ; since only once in 40
trials would a chance deviation have been observed both so large,
and in the right direction.
(omitted... a paragraph on a continuity correction)
21.1. “Non-parametric” Tests

In recent years tests using the physical act of randomisation to sup-
ply (on the Null Hypothesis) a frequency distribution, have been
largely advocated under the name of “Non-parametric” tests. Some-
what extravagant claims have often been made on their behalf. The
example of this Chapter, published in 1935, was by many years the
first of its class. The reader will realise that it was in no sense put
forward to supersede the common and expeditious tests based on the
Gaussian theory of errors. The utility of such non-parametric tests
consists in their being able to supply confirmation whenever, rightly
or, more often, wrongly, it is suspected that the simpler tests have
been appreciably injured by departures from normality.
They assume less knowledge, or more ignorance, of the experimental
material than do the standard tests, and this has been an attraction
to some mathematicians who often discuss experimentation without
personal knowledge of the material. In inductive logic, however, an
erroneous assumption of ignorance is not innocuous ; it often leads
to manifest absurdities. Experimenters should remember that they
and their colleagues usually know more about the kind of material
they are dealing with than do the authors of text-books written
without such personal experience, and that a more complex, or less
intelligible, test is not likely to serve their purpose better, in any
sense, than those of proved value in their own subject.

Note from JH: There is a corresponding permutation test for 2 independent
samples. Both permutation tests use the raw data, not the ranks.

.
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6 t-based CI/test re µ and µ2−µ1: by regression

6.1 Inference regarding a single µ: data from 1- (or
paired-) sample

4.5

5.0

5.5

6.0

52

54

56

58

60

62

Heights (inches) of 14 
11 year-old males from 
Alberta study

Cavendish's 29 
measurements of the 
earth's density

2

3

4

5

6

7

8

9

10

Half-life of Caffeine 
(hours) in n=13 
healthy non-smokers

Statistics
n ... 29 ................... 14 ................. 13
Min ..... 4.88 ................... 53.00 ................... 9.40
Max ..... 5.85 ................... 61.00 ................... 5.95
Mean (ȳ) ..... 5.45 ................... 57.21 ................... 5.95
Var (s2) ..... 0.0488 ..................... 4.9506 ................... 3.9460
SD (s) ..... 0.22 ..................... 2.22 ................... 1.99

Least Squares Estimate of µ:∑
(y − ȳ)2 is smaller than

∑
(y − any other central value)2.

That’s why we can call the statistic ȳ the Least Squares estimator of µ. (see
applet on best location to wait for elevator in Ch 1 Resources for 607, and
’elevator article’ in Ch 1 of Course 697; see also applets in Ch 10 for 607)

Statistical Model:

y = µ + ε
ε ∼ ?(0, σ)

“Minimum Requirements” for Least Squares Estimation per se:

There is no requirement that ε ∼ N(0, σ). Later, for statistical inferences
about the parameters being estimated, the inferences may be somewhat inac-
curate if n is small and the distribution of the ε’s is not N(0, σ) or if the ε’s
are not independent of each other.

Fitting (i.e. calculating parameter estimates of) model for height:

By calculator (or SAS PROC MEANS or mean and var functions in R):

ȳ =
∑

y

n
= 57.21; s2 =

∑
(y − ȳ)2

n− 1
= 64.357/13 = 4.95 → s = 2.22.

From R.. summary( lm(height ∼ 1) )

Residuals:
Min 1Q Median 3Q Max

-4.2143 -1.9643 0.2857 1.5357 3.7857

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 57.21 0.59 96.22 <2e-16 ***

Residual standard error: 2.22 on 13 degrees of freedom

Finding parameter estimates on output of statistical package

If you compare with the calculations above, you will readily identify the esti-
mate ȳ = 57.21 for the µ parameter.

But what is the estimate of the σ2 or σ parameter? We know from our
calculator that σ̂ = 2.22. In the R output (SAS output later!), this estimate is
given under the less familiar8 term Residual standard error. You can think of
each (y− ȳ) as the ‘residual’ variation from the mean ȳ, and you can therefore
call

∑
(y−ȳ)2 the Sum of Squares of the Residuals, or Residual Sum of Squares

for short.

8Residual standard deviation, or Root Mean Square Error, RMSE, would confuse less.
Systat uses the term Standard Error of Estimate; SPSS uses this ‘SEE’ terminology too.
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What of the other items on the output?

* What is Std. Error = 0.59465 ? It is the SE of Intercept i.e. of ȳ.

It is what we call the Standard Error of the Mean, or ‘SEM’ for short, given
by the formula

Standard Error of Mean = SEM = SE(ȳ) = s/n1/2 = 2.22/141/2 = 0.59.

* What is t value = 96?

It is the test statistic corresponding to the test of whether the underlying
parameter (µ in our case) is ZERO i.e. of the H0 : µ = 0. Of course, the
computer programmer doesn’t know what µ refers to, or that the mean height
of 11 year old boys in Alberta is, by definition, greater than zero. Since we
might have a case where there was genuine interest in the H0 that µ = 0 or
some other value9, we will show where t = 96 came from: remember from
earlier the 1-sample t-test and the formula

t = (ȳ − 0)/SE(ȳ) = 57.21/0.59 = 96.22.

* What is Pr(>|t|) <2e-16 ?

It is the P-value obtained by calculating the probability that an observation
from the t distribution with n − 1 = 13 df would exceed 96.22 in absolute
value.

Fitting “the beginning of all regression models” using SAS:

proc reg data=sasuser.alberta; model height = ;

JH discovered this way of calculating ȳ by accident – he forgot to put terms
on the right hand side of the model statement!

The model is simply
y = µ + ε

but it can be thought of as
y = µ× 1 + ε

or
y = µ× x0 + ε.

where x0 ≡ 1(a constant); it is as though we have set it up so that the
“predictor variable” x0 in the regression equation is always 1. Then µ is the
parameter to be estimated.

9e.g., We might ask if Cavendish’s measurements of the Earth’s density are compatible
with today’s accepted value of 5.518.

Some software programs insist that you specify the constant; others assume
it unless told otherwise.

* Output from SAS PROC REG Dependent Variable: height

Analysis of Variance*

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 0 0.000 . . .
Error 13 64.357 4.95
C Total 13 64.357

Root MSE 2.22 R-square 0.0000
Dep Mean 57.21 Adj R-sq 0.0000
C.V. 3.89

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEPT 1 57.21 0.59 96.2 0.0001

Note the name SAS gives to the square root of the average of the squared resid-
uals: Root Mean Square Error, shortened to ROOT MSE i.e., average squared
deviation = 64.357/13 = 4.95; 4.951/2 = 2.22.

Here they are less confusing than SPSS and SYSTAT (to be fair, SEE is used
a lot in measurement and psychophysics for variation of measurements on
individuals [i.e., no n1/2 involved], rather than of statistics)
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6.2 (via Regression) Inference regarding a difference,
µ2 − µ1, of 2 means

11 year olds adultsBoys

MALE FEMALE
50

55

60

65

70

11 12
50

55

60

65

70

AGE

0

2

4

6

8

10

NON 
SMOKERS

SMOKERS

n 14 16 | 14 33 | 13 13
ȳ − ȳ | ȳ − ȳ | ȳ − ȳ

ȳ 57.21 57.25 0.04 | 57.21 59.00 1.79 | 5.95 3.53 -2.42
s 2.22 3.41 | 2.22 3.05 | 1.99 1.43

Var* t df Prob | t df Prob | t df Prob
S 0.03 26.0 0.973 | 2.24 33.4 0.032 | -3.56 21.8 0.002
P 0.03 28 0.974 | 1.97 45 0.055 | -3.56 24 0.002

*Var: S = Separate variances t-test; P = Pooled variances* t-test

For later: male vs female heights: s2
pooled = 13×2.222+15×3.412

13+15 = 8.5 = 2.922.

Statistical Model for difference in mean height of males and females
(see M & M p 663)

Males: y ∼ µMALE + ε Females: y ∼ µFEMALE + ε
ε ∼ N(0, σ)

All: y ∼ µMALE + (µFEMALE − µMALE)× IFEMALE + ε

IFEMALE = “Indicator” of Female: so, 0 if Male; 1 if Female.

Or, in more conventional Greek letters... i.e. β1 = µF − µM

y = β0 + β1 × IFEMALE + ε.

Fitting (i.e. calculating the parameter estimates of) the model

By calculator: β̂0 = b1 = “slope” =
∑

(x− x̄)(y − ȳ)/
∑

(x− x̄)2 ;

β̂0 = b0 = “intercept” = ȳ − b1 × x̄ ;

σ̂2 = “MSE” = mean[residual2] =
∑

(y − ŷ)2/(n− 2).

By software: in R: summary( lm(height i.female) )

Residuals:
Min 1Q Median 3Q Max
-6.2500 -1.9732 -0.2143 1.7857 4.7500

Coefficients:
......... Estimate Std.Error t-value ..Pr(>|t|)

(Intercept) . 57.21 ... 0.78 . 73.22 . <2e-16
i.female ..... 0.04 ... 1.07 .. 0.03 .. 0.974

Residual standard error: 2.924* on 28 df
Mult. R-Sq: 3.979e-05, Adjusted R-sq: -0.03567
F-statistic: 0.0011 on 1 & 28 df, p-value: 0.97

“Translation”
β̂0 = estimate of µMALE = 0.04
β̂1 = estimate of µFEMALE − µMALE = 57.21
σ̂ = 2.92.
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*Residuals are calculated by squaring the deviation of each y from the esti-
mated (fitted) mean for persons with the same “x” value – in this case those
of the same sex – summing them to give 239.357, and dividing this sum by
28 to get 8.5485.

This is the same procedure used to calculate a pooled variance for
a 2-sample t-test! So the regression model ’recovers’ the original
means and pooled variance!

Regression approach also reproduces another familiar quantity:

SE[ȳFEMALE − ȳMALE ] = SE[β̂i.female]

SE[ȳF − ȳM ] = (s2
pooled)

1/2 × (1/nf + 1/nm)1/2

= 2.924× (1/nf + 1/nm)1/2

= 1.07.

SE[β̂i.f] = {MSE/
∑

(x− x̄)2}1/2

= {MSE/
∑

(i.female− i.female)2}1/2

= {MSE/[(nf + nm)× (nf/(nf + nm))× (nm/(nf + nm))]}1/2

= {MSE/[(nf × nf )/(nf + nm)]}1/2

= {MSE× (1/nf + 1/nf )}1/2

= RMSE× (1/nf + 1/nf )1/2

= 2.924× (1/nf + 1/nm)1/2

= 1.07. FISHER, Sir Ronald Aylmer 1890-1962

Photograph (supplied by Fisher Memorial Committee) by Antony Barrington-
Brown, as reproduced as frontispiece of R A Fisher, Collected Papers, Vol.5,
Adelaide: Department of Genetics of the University of Adelaide; and also as
frontispiece of J F Box, R.A. Fisher: The Life of a Scientist, New York: Wiley
1978.

http://www.york.ac.uk/depts/maths/histstat/people/sources.htm#f
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