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Preface

The aim of this book is to give a self-contained account of the statistical
basis of epidemiology. The book is intended primarily for students enrolled
for a masters degree in epidemiology, clinical epidemiology, or biostatistics,
and should be suitable both as the basis for a taught course and for private
study. '

Although we anticipate that most readers will have taken a first course
in statistics, no previous knowledge is assumed, and the mathematical level
of the book has been chosen to suit readers whose basic training is in biol-
ogy. Some of the material in the book could be omitted at first reading, ei-
ther because it is rather more demanding of mathematical skills or because
it deals with rather specialized points. We have been careful to gather such
material either into complete chapters or complete sections and to indicate
these with a marginal symbol, as here.

Epidemiologists today have ready access to computer programs of great
generality, but to use these sensibly and productively it is necessary to
understand the ideas which lie behind them. The most important of these
is the idea of a probability model. All statistical analysis of data is based
on probability models, even though the models may not be explicit. Only
by fully understanding the model can one fully understand the analysis.

Models depend on parameters, and values must be chosen for these
parameters in order to match the model to the data. In showing how this
is done we have chosen to emphasize the role of likelihood because this offers
an approach to statistics which is both simple and intuitively satisfying.
An additional advantage of this approach is that it requires the model and
its parameters to be made explicit, even in the simplest situations. More
complex problems can then be tackled by natural extensions of simple
methods and do not require a whole new way of looking at things.

Most of the material in this book was developed during successive res-
idential summer courses.in epidemiology and statistics, held in Florence
under the auspices of the European Educational Programme in Epidemiol-
ogy. We are grateful to the International Agency for Cancer Research, the
Regional Office for Europe of the World Health Organization, the Commis-
sion of the European Communities, and the Tuscany Regional Government,
for sponsoring the program, and to Walter Davies, Organizing Secretary,
and Rodolfo Saracci, Course Director, whose respective skills ensured that
the course took place each year. We also acknowledge with thanks helpful
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comments on earlier drafts from Damien Jolley, Bendix Carstensen, Dave
Leon, and Nick Hills.

David Clayton

Cambridge
& g Michael Hills

London
February 1993

Dedication

To the students of the Florence course, 1988 — 92, without whose help and
encouragement this book would never have appeared.
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1
Probability models

1.1 Observation, experiments and models

Science proceeds by endless repetition of a three-stage process,

1. observation;

2. building a model to describe (or ‘explain’) the observations; and

3. using the model to predict future observations. If future observations
are not in accord with the predictions, the model must be replaced
or refined.

In quantitative science, the models used are mathematical models. They
fall into two main groups, deterministic models and probability (or stochas-
tic) models. It is the latter which are appropriate in epidemiology, but the
former are more familiar to most scientists and serve to introduce some
important ideas.

DETERMINISTIC MODELS

The most familiar examples of deterministic models are the laws of classical
physics. We choose as a familiar example Ohm’s law, which applies to the
relationship between electrical potential (or voltage), V', applied across a
conductor and the current flowing, I. The law holds that there is a strict
proportionality between the two — if the potential is doubled then the
current will double. This relationship is represented graphically in Fig. 1.1.

Ohm’s law holds for a wide range of conductors, and simply states that
the line in Fig. 1.1 is straight; it says nothing about the gradient of the
line. This will differ from one conductor to another and depends on the
resistance of the conductor. Without knowing the resistance it will not be
possible to predict the current which will flow in any particuler conductor.
Physicists normally denote the resistance by R and write the relationship
as

However, R is a different sort of quantity from V or I. It is a parameter —
a number which we must fix in order to apply the general law to a specific
case. Statisticians are careful to differentiate between observable variables
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14
Fig. 1.1. A deterministic model: Ohm’s law.

(such as V' and I) and parameters (such as R) and use Greek letters for
the latter. Thus, if Ohm were a modern statistician he would write his law
as

I=—

p

In this form it is now clear that p, the resistance, is a parameter of a simple
mathematical model which relates current to potential. Alternatively, he
could write the law as

I =~V

where 7 is the conductance (the inverse of the resistance). This is a simple
example of a process called reparametrization — writing the model differ-
ently so that the parameters take on different meanings.

STOCHASTIC MODELS

Unfortunately the phenomena studied by scientists are rarely as predictable
as is implied by Fig. 1.1. In the presence of measurement errors and un-
controlled variability of experimental conditions it might be that real data
look more like Fig. 1.2. In these circumstances we would not be in a po-
sition to predict a future observation with certainty, nor would we be able
to give a definitive estimate of the resistance parameter. It is necessary
to extend the deterministic model so that we can predict a range of more
probable future observations, and indicate the uncertainty in the estimate
of the resistance.

Problems such as this prompted the mathematician Gauss to develop
his theory of errors, based on the Gaussian distribution (often also called
the Normal distribution), which is the most important probability model
for these problems. A very large part of statistical theory is concerned with
this model and most elementary statistical texts reflect this. Epidemiology,

BINARY DATA 5

v
Fig. 1.2. Experimental/observational errors.

however, is more concerned with the occurrence (or not) of certain events in
the natural history of disease. Since these occurrences cannot be described
purely deterministically, probability models are also necessary here, but
it is the models of Bernoulli and Poisson which are more relevant. The
remainder of this chapter discusses a particularly important type of data
generated by epidemiological studies, and the nature of the models we use
in its analysis.

1.2 Binary data

Many epidemiological studies generate data in which the response mea-
surement for each subject may -take one of only two possible values. Such
a response is called a binary response. Two rather different types of study
generate such data.

COHORT STUDIES WITH FIXED FOLLOW-UP TIME

In a cohort study a group of people are followed through some period of
time in order to study the occurrence (or not) of a certain event of interest.
The simplest case is a study of mortality (from any cause). Clearly, there
are only two possible outcomes for a subject followed, say, for five years —
death or survival. »

More usually, it is only death from a specified cause or causes which
is of interest. Although there are now three possible outcomes for any
subject — death from the cause of interest, death from another cause, or
survival — such data are usually dealt with as binary data. The response is
taken as death from cause of interest as against survival, death from other
causes being treated as premature termination of follow-up. Premature
termination of follow-up is a common feature of epidemiological and clinical
follow-up studies and may occur for many reasons. It is called censoring, a
word which reflects the fact that it is the underlying binary response which
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we would have liked to observe, were it not for the removal of the subject
from observation. _

In incidence studies the event of interest is new occurrence of a spec-
ified disease. Again our interest is in the binary response (whether the
disease occurred or not) although other events may intervene to censor our
observation of it.

For greater generality, we shall use the word failure as a generic term
for the event of interest, whether incidence, mortality, or some other (unde-
sirable) outcome. We shall refer to non-failure as survival. In the simplest
case, we study N subjects, each one being followed for a fixed time in-
terval, such as five years. Over this time we observe D failures, so that
N — D survive. We shall develop methods for dealing with censoring in
later chapters.

CROSS-SECTIONAL PREVALENCE DATA

Prevalence studies have considerable importance in assessing needs for
health services, and may also provide indirect evidence for differences in-in-
cidence. They have the considerable merit of being relatively cheap to carry
out since there is no follow-up of the study group over time. Subjects are
simply categorized as affected or not affected, according to agreed clinical
criteria, at some fixed point in time. In a simple study, we might observe
N subjects and classify D of them as affected. An important example is
serological studies in infectious-disease epidemiology, in which subjects are
classified as being seropositive or seronegative for a specified infection.

1.3 The binary probability model

The obvious analysis of our simple binary data consisting of D failures
out of N subjects observed is to compute the proportion failing, D/N.

However, knowing the proportion of a cohort which develops a disease, or .

dies from a given cause, is of little use unless it can be assumed to have a
wider applicability beyond the cohort. It is in making this passage from
the particular to the general that statistical models come in. One way
of looking at the problem is as an attempt to predict the outcome for a
new subject, similar to the subjects in the cohort, but whose outcome is
unknown. - Since the outcome for this new subject cannot be predicted
with certainty the prediction must take the form of probabilities attached
to the two possible outcomes. This is the binary probability model It
is the simplest of all probability models and, for the present, we need
to know nothing of the properties of probability save that probabilities
are numbers lying in the range 0 to 1, with 0 representing an impossible
outcome and 1 representing a certain outcome, and that the probability
of occurrence of either one of two distinct outcomes is the sum of their
individual probabilities (the additive rule of probability).

THE BINARY PROBABILITY MODEL 7

F (Failure)

S (Survival)

_Fig. 1.8. The binary probability model.

THE RISK PARAMETER

The'binary probability model is illustrated in Figure 1.3. The two outcomes
are labelled F (failure) and S (survival). The model has one parameter, 7,
the probability of failure. Because the subject must either fail or survive,
the sum of the probabilities of these two outcomes must be 1, so the proba-
bility of survival is 1 — 7. In the context where 7 represents the probability
of occurrence of an event in a specified time period, it is usually called the
risk.

THE ODDS PARAMETER

An important alternative way of parametrizing the binary probability model
is in terms of the odds of failure versus survival. These are

m:(l—n),

which may also be written as

1—-m

It is convenient to omit the : 1 in the above expression and to measure the

odds by the fraction
T

1—7m"

This explains why, although the word odds is plural, there is often only
one number which measures the odds.

Exercise 1.1. Calculate the odds of F to S when the probability of failure is (a)
0.75, (b) 0.50, () 0.25.

In general the relationship between a probability = and the corresponding
odds Q is

gt
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This can be inverted to give

= L 1 =
Tire T T T ire

Exercise 1.2. Calculate the probability of failure when Q, the odds of F to S is
(a) 0.3, (b) 3.0.

RARE EVENTS

In this book we shall be particularly concerned with rare events, that is,
events with a small probability, =, of occurrence in the time period of
interest. In this case (1 — ) is very close to 1 and the odds parameter and
the risk parameter are nearly equal:

Q=T

This approximation is often called the rare disease assumption, but this is
a misleading term, since even the common cold has a small probability of
occurrence within, say, a one-week time interval.

1.4 Parameter estimation

Without giving a value to the parameter 7, this model is of no use for
prediction. Our next problem is to use our observed data to estimate its
value. It might seem obvious to the reader that we should estimate 7 by
the proportion of failures, D/N. This corresponds to estimating the odds
parameter {2 by D/(N — D), the ratio of failures to survivors.

It might also seem obvious that we should place more reliance on our
estimate (and upon any predictions bw.sed on it) if N is 1000 than if N is
10. The formal statistical theory which provides a quantitative justification
for these intuitions will be discussed in later chapters.

1.5 1Is the model true?

A model which states that every one of a group of patients has the same
probability of surviving five years will seem implausible to most clinicians.
Indeed, the use of such models by statisticians is a major reason why some
practitioners, brought up to think of each patient as unique, part company
with the subject!

The question of whether scientific models are true is not however, a
sensible one. Instead, we should ask ourselves whether our model is useful
in describing past observations and predicting future ones. Where there re-
mains a choice of models, we must be guided by the criterion of simplicity.
In epidemiology probability models are used to describe past observations
of disease events in study cohorts and to make predictions for future indi-
viduals. If we have no further data which allows us to differentiate subjects

SOLUTIONS 9

in the cohort from one another or from a future individual, we have no op-
tion save to assign the same probability of failure to each subject. Further
data allows elaboration of the model. For example, if we can identify sub-
jects as exposed or unexposed to some environmental influence, the model
can be extended to assign different probabilities to exposed and unexposed
subjects. If additionally we know the level of exposure we can extend the
model by letting the probability of failure be some increasing function of
exposure.

In this book we shall demonstrate the manner in which more compli-
cated models may be developed to deal with more detailed data. The
binary model has been.our starting point since it is the basic building brick
from which more elaborate models are constructed.

Solutions to the exercises

1.1 (a) Odds = 0.75/0.25 = 3.
(b) Odds = 0.50/0.50 = 1.
(c) Odds = 0.25/0.75 = 0.3333.

1.2 (a) Probability = 0.3/1.3 = 0.2308.
(b) Probability = 3/4 = 0.75.
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Likelihood

The purpose of models is to allow us to use past observations (data) to
make predictions. In order to do this, however, we need a way of choos-
ing a value of the parameter (or parameters) of the model. This process
is called parameter estimation and this chapter discusses the most impor-
tant general approach to it. In simple statistical analyses, these stages of
model building and estimation may seem to be absent, the analysis just
being an intuitively sensible way of summarizing the data. However, the
analysis is only scientifically useful if we can generalize the findings, and
such generalization must imply a model. Although the formal machinery
" of modelling and estimation may seem heavy handed for simple analyses,
an understanding of it is essential to the development of methods for more
difficult problems.

In modern statistics the concept which is central to the process of pa-
rameter estimation is likelihood. Likelihood is a measure of the support
provided by a body of data for a particular value of the parameter of a
probability model. It is calculated by working out how probable our ob-
servations would be if the parameter were to have the assumed value. The
main idea is simply that parameter values which make the data more prob-
able are better supported than values which make the data less probable.
In this chapter we develop this idea within the framework of the binary
model.

3.1 Likelihood in the binary model ,

Fig. 3.1 illustrates the outcomes observed in a small study in.which 10
subjects are followed up for a fixed time period. There are two possible
outcomes for each subject: failure, such as the development of the disease of
interest, or survival. We adopt a binary probability model for the outcome
for each subject in which failure has probability = and survival has proba-
bility 1 — w. The complete tree would have many branches but only those
corresponding to the observed study result is shown in full. To calculate
the probability of occurrence of this result we simply multiply probabilities
along the branches of the tree in the usual way:

axTx(1=7) % x(1-7)=(x)*1-7)°.

LS

LIKELTHOOD IN THE BINARY MODEL 19

Subject
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Fig. 3.1. Study outcomes for 10 subjects.

This expression can be used to calculate the probability of the observed
study result for any specified value of w. For example, when 7 = 0.1 the
probability is

(0.1)* x (0.9)% = 5.31 x 107°

and when 7 = 0.5 it is
(0.5)* x (0.5)% = 9.77 x 10™%.

The results of these calculations show that the probability of the observed
data is greater for m = 0.5 than for # = 0.1. In statistics this is often
expressed by saying that # = 0.5 is more likely than 7 = 0.1, meaning
that the former value is better supported by the data. In everyday use the
words probable and likely mean the same thing, but in statistics the word
likely is used in this more specialized sense. .

Exercise 3.1. Is # = 0.4 more likely than 7 = 0.57

The result of the expression

(m)*a -,

is a probability, but when we use it to assess the amount of support for
different values of = it is called a likelihood. More generally, if we observed
D failures in N subjects, the likelihood for = would be

(W)D(l - ﬂ-)N_‘D>

and we shall call this expression the Bernoulli likelihood, after the Swiss
mathematician. Because there are so many possible outcomes to the study,
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Likelihood (times 10000)
[
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0.0 0.2 0.4 0.6 0.8 1.0
Risk parameter,n

Fig. 3.2. The likelihood for .

the likelihood (which is the probability of just one of these) is a small
number. However, it is not the absolute value of the likelihood which should
concern us, but its relative value for different choices of 7.

Returning to our numerical example, Fig. 3.2 shows how the likelihood
varies as a function of 7. The value 7 = 0.4 gives a likelihood of 11.9 x 1074,
which is the largest which can be achieved. This value of 7 is called the
most likely value or, more formally, the mazimum likelihood estimate of .
It coincides with the observed proportion of failures in the study, 4/10.

3.2 The supported range for =

The most likely value for 7 is 0.4, with likelihood 11.9x10~%. The likelihood
for any other value of 7 will be less than this. How much less is measured
by the likelihood ratio, which takes the value 1 when 7 = 0.4 and values less
than 1 for any other values of 7. This provides a more convenient measure
of the degree of support than the likelihood itself. It can be used to classify
values of 7 as either supported or not according to some critical value of
the likelihood ratio. Values of n with likelihood ratios above the critical
value are reported as ‘supported’, and values with likelihood ratios below
this critical value as ‘not supported’. The supported range for 7 is the set
of values of 7 with likelihood ratios above the critical value. The choice of
the critical value is a matter of convention.

For our observation of 4 failures and 6 survivors, the likelihood ratio

as a function of 7 is shown in Figure 3.3. We have used the number 0.258
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Fig. 3.3. The likelihood ratio for .

for the critical value of the likelihood ratio and indicated the limits of the
supported range with the two arrows. The range of supported values for 7 is
rather wide in this case: from 0.17 to 0.65.* For any choice of critical value
the width of the supported range reflects the uncertainty in our knowledge
about 7. The main thing which determines this is the quantity of data
used in calculating the likelihood. For example, if we were to observe 20
failures in 50 subjects, the most likely value of 7 would still be 0.4, but the
supported range would be narrower (see Figure 3.4).

Although the concept of a supported range based on likelihood ratios
is intuitively simple, it requires some consensus about the choiceé of critical
value. The achievement of this has not proved easy, since many scientists
lack an intuitive feel for the amount of uncertainty corresponding to a stated
numerical value for the likelihood ratio. As a result, statistical theorists have
tried to find ways to measure the uncertainty about the value of a parameter
in terms of probability which, it is argued, is more easily interpreted. The
way o+ doing this which is most widely accepted in the scientific community
is by imagining a large number of repetitions of the study. This approach
is known as the frequentist theory of statistics and leads to a confidence
interval for m rather than a supported range. Another approach, often
favoured by mathematicians, is based on a probability measure for the
subjective ‘degree of belief’ that the parameter value lies in a stated credible

*These values were obtained from the graph, as illustrated. We shall be describing
more convenient approximate methods for their computation in Chapter 9.
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Fig. 3.4. The likelihood ratio based on 20 failures in 50 subjects.

interval. This is the Bayesian theory of statistics.

Luckily for applied scientists, these philosophical dlﬁ'erences can be re-
solved, at least for the analysis of moderately large studies. In this case,
we will show in Chapter 10 that the supported range based on a likelihood
ratio criterion of 0.258 coincides approximately with a 90% confidence in-
terval in the frequentist theory of statistics and a 90% credible interval in
the Bayesian theory. We shall, therefore, set aside these difficulties for the
present and continue to develop the idea of likelihood, which holds a central
place in both theories of statistics and from which most of the statistical
methods of modern epidemiology can be derived.

3.3 The log likelihood

The likelihood, when evaluated for a particular value of the parameter, can
turn out to be a very small number, and it is generally more convenient
to use the (natural) logarithm of the likelihood in place of the likelihood
itself.! When combining log likelihoods from independent sets of data the
separate log likelihoods are added to form the combined likelihood. This is
because the likelihoods themselves, being the probabilities of independent
sets of data, are combined by multiplication. The log likelihood for , in

tReaders not completely familiar with the logarithmic function, log(z) and its inverse,
the exponential function, exp(z), are referred to Appendix A.
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Fig. 3.5. The log likelihood ratio for .

this example, is
4log(r) + 6log(1 — 7).

Exercise 3.2. Calculate the log likelihood when n = 0.5 and when 7 = 0.1.

The log likelihood takes its maximum at the same value of 7 as the likeli-
hood, namely n = 0.4, so its maximum is

410g(0.4) + 610g(0.6) = —6.730.

To obtain the log likelihood ratio, this maximum must be subtracted from
the log likelihood. A graph of the log likelihood ratio is shown in Fig. 3.5.
The supported range for w can be found from this graph in the same way
as from the likelihood ratio graph, by finding those values of 7 for which
the log likelihood ratio is greater than

log(0.258) = —1.353.

Exercise 3.3. Calculate the log likelihood ratios fof 7 =0.1 and m = 0.5. Are
these values of 7 in the supported range?

In general, the log hkellhood for w, when D subjects fail and N — D

survive, is
Dlog(n} + (N — D)log(1 — ).
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‘We shall show in Chapter 9 that this expression takes its maximum value
when 7 = D/N, the observed proportion of subjects who failed.

If the binary model is parametrized in terms of the odds parameter, €,
by substituting /(1 + ) for 7 and 1/(1 + £2) for (1 — 7), we obtain the
log likelihood

Dlog(£2) — Nlog(l + Q).

This takes its maximum value when Q@ = D/(N — D), the ratio of the
number or failures to the number of survivors. The maximum value of the
log likelihood is the same whether the log likelihood is expressed in terms
of mor 2.

3.4 Censoring in follow-up studies

In our discussion of follow-up studies of the occurrence of disease events, or
failures, we have assumed that all subjects are potentially observed for the
same fixed period. In most practical studies there will be some subjects
whose follow-up is incomplete. This will occur

e when they die from other causes before the end of the follow-up in-
terval;

e when they migrate and are no longer covered by the record system
which registers failures;

e when they join the cohort too late to complete the follow-up period.

In all three cases the observation time for the subject is said to be censored.
In fact, the first type of loss to follow-up, failure due to a competing cause,
is rather different from the remaining two, but they are usually grouped
together and dealt with in the same way. In Chapter 7 we shall discuss
the justification for this practice. For the moment, we assume it to be
reasonable.

Censoring puts our argument in some difficulty. The model allows for
only two outcomes, failure and survival, while our data contains three,
failure, survival, and censoring. For the present we shall avoid this difficulty
with a simple pretence. As an illustration, suppose we have followed 1000
men for five years, during which 28 suffered myocardial infarction and 972
did not, but observation of 15 men was censored before completion of five
years follow-up. If all 15 men were withdrawn from study on the first day of
the follow up period, the size of the cohort would be 985 rather than 1000.
Conversely, if they were all withdrawn on the last day, censoring could
be ignored and the cohort size treated as a full 1000. When censoring is
evenly spread over the study interval, we would expect an answer which
lies somewhere in between these two extreme assumptions. This suggests
treating the effective cohort size as 992.5 — mid-way between 985 and
1000. This convention is equivalent to the assumption that 7.5 subjects
are censored on the first day of follow up and 7.5 on the last day.
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Table 3.1. Genotypes of 7 probands and their parents
Proband’s Parents’ genotypes
genotype Mother  Father  Number
(a,c) (8,b) (c,d) 4
(b,d) (a,b) (c,d) 1
(a,c) (a,b) (c,c) 2

With only 15.subjects lost to follow up through censoring, this crude
strategy for dealing with censoring is quite satisfactory, but if 150 were
censored it could be seriously misleading. In Chapter 4 we shall see how
this problem can be dealt with by extending the model.

3.5 Applications in genetics

The use of the log likelihood as a measure of support is of considerable
importance in genetics. However, in that field it.is conventional to use
logarithms to the base 10 rather than natural logarithms. Since the two
systems of logarithms differ only by a constant multiple (see Appendix A),
this is only a trivial modification of the idea.

As an illustration of the use of log likelihood in genetics, we continue
the example introduced in Exercises 2.4 and 2.5. Table 3.1 shows some
hypothetical data which might have formed part of that collected in a
study of an association between disease risk and presence of a certain HLA
haplotype. If we were to observe a set of families over time, in order
to relate the genotype to the eventual occurrence or non-occurrence of
disease, then we could calculate a likelihood based on the probability of
disease conditional upon genotype. However, such studies are logistically
very difficult and are rarely done. Instead it is more usual to obtain, usually
from clinicians, a collection of known cases of disease (probands) and their
relatives, and to compare the genotypes of probands with the predictions
from the model.

As in Exercise 2.5, we shall consider the model in which presence of a
given haplotype, (a) say, leads to a risk of disease @ times as high as in its
absence. Table 3.1 shows data concerning 7 probands and their parents.
For each of the genetic configurations shown in the table, we derived the
conditional probability of the genotype of a proband conditional on the
genotypes of parents in Exercise 2.5 and we showed that these probablhtles
depend only on the risk ratio parameter 6.

Exercise 3.4. Write down the expression for the log likelihood as a function
of the unknown risk ratio, 8, associated with presence of haplotype (a). What
is the log likelihood ratio for the value § = 1 (corresponding to there being no
increase in risk) as compared with § = 6.0 (which is the most likely value of § in
this case). Is the value # = 1 supported?
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Solutions to the exercises

3.1  The probability of the observed data when 7 = 0.4 is

0.4* x 0.6° = 1.19 x 1073,

which is more than the probability when 7 = 0.5. It follows that 7 = 0.4.

is more likely than 7 = 0.5.

3.2 The log likelihood when 7=0.5 is

410g(0.5) + 61og(0.5) = —6.93.

The log likelihood when 7 = 0.1 is

410g(0.1) + 61og(0.9) = —9.84.

0

3. The maximum log likelihood, occurring at 7 = 0.4, is
41log(0.4) + 6log(0.6) = —6.73

so that the log likelihood ratio for 7 = 0.5 is —6.93 — (—6.73) = —0.20. For

m=0.1it is —9.84 — (—6.73) = —3.11. Thus 0.5 lies ‘within the supported
range and 0.1 does not.

3.4  From the solution to Exercise 2.5, the conditional probabilities for
each of the three genetic configurations are 6/(26 + 2), 1/(20 + 2), and
6/(8 + 1). Thus, the log likelihood is

0 1 0
dlog [ —2— ) + 1log [ —— 7
& (29+2) +1log (29+2) +2log <9+1)'

. At 6 = 1.0 this takes the value

1 1 1
41 — ]+ -]+ -] =-
og (4) llog (4) 2log (2) = —8.318,

and at 6 = 6.0 (the most likely value) it is

6\ 1 6
4] — — =) ==
og<14)+110g<14)+210g (7)-— 6.337.

The log likelihood ratio for # = 1 is the difference between these, —1.981.
Thus the parameter value # = 1 lies outside the limits of support we have
suggested in this chapter.

4
Consecutive follow-up intervals

In the last chapter we touched on the difficulty of estimating the probability
of failure during a fixed follow-up period when the observation times for
some subjects are censored. A second problem with fixed follow-up periods
is that it may be difficult to compare the results from different studies; a
five-year probability of failure can only be compared with other five-year
probabilities of failure, and so on. Finally, by ignoring when the failures
took place, all information about possible changes in the probability of
failure during follow-up is lost.

The way round these difficulties is to break down the total follow-up
period into a number of shorter consecutive intervals of time. We shall refer
to these intervals of time as bands. The experience of the cohort during
each of these bands can then be used to build up the experience over any
desired period of time. This is known as the life table or actuarial method.
Instead of a single binary probability model there is now a sequence of
binary models, one for each band. This sequence can be represented by a
conditional probability tree. '

4.1 A sequence of binary models

Consider an example in which a three-year follow-up interval has been
divided into three one-year bands. The experience of a subject during
the three years may now be described by a sequence of binary probability
models, one for each year, as shown by the probability tree in Fig.4.1. The
four possible outcomes for this subject, corresponding to the tips of the
tree, are

1. failure during the first year;

2. failure during the second year;

3. failure during the third year;

4. survival for the full three-year period.
The parameter of the first binary model in the sequence is w1, the prob-
ability of failure during the first year; the parameter of the second binary
model is 72, the probability of failure during the second year, given the
subject has not failed before the start of this year, and so on. These are



70 COMPETING RISKS AND SELECTION

analysis. If survival is analyzed by time in study there are no late entries,
but in an analysis of the same study by age, or by time since entering an
occupation, there will be late entries.

Solutions to the exercises ~— N

7.1  The estimated 5-year risk of myocardial infarction is 27/1000 while
that for stroke is 8/1000. The risk of a cardiovascular event is 35/1000.

7.2  The outcomes and their probabilities are listed below.

Outcome Probability
Band 1
F1 0.1
EF2 0.2
Band 2
F1 ' 0.7 x 0.1 = 0.07
F2 i 0.7x02=0.14
Band 3

F1 0.7 x 0.7 x 0.1 = 0.049
F2 0.7 x 0.7 x 0.2 = 0.098
S 0.7x0.7x0.7=0.343

8
The Gaussian probability model

Until now we have been concerned only with the binary probability model.
In this model there are two possible outcomes and the total probability of
1 is shared -between them. It is an appropriate model when studying the
occurrence of events, but not when studying a response for which there are
many possible outcomes, such as blood pressure. For this the Gaussian or
normal probability mode] is most commonly used.

In the Gaussian model the total probability of 1 is shared between many
values. This is illustrated in the left panel of Fig. 8.1. When measurements
are recorded to a fixed number of decimal places, there is a finite number
of possible outcomes but, in principle, such measurements have infinitely
many possible outcomes, so the probability attached to any one is effec-
tively zero. For this reason it is the probability density per unit value which
is specified by the model, not the probability of a given value. This is illus-
trated in the right panel of the figure. If 7 is the probability shared between
values in a very narrow range, width h units, the probability density is 7 /h.

8.1 The standard Gaussian distribution

The standard Gaussian distribution has probability density centred at 0.
The probability density at any value z (positive or negative) is given by

0.3989 exp [—%(z)z] .

A graph of this probability density for different values of z is shown in
Fig. 8.2. There is very little probability outside the range £3.

Tables of the standard Gaussian distribution are widely available, and
these readily allow calculation of the probability associated with specified
ranges of z. For our purposes it is necessary only to record that the proba-
bility corresponding to the range (—1.645,+1.645) is 0.90 and that for the
range (—1.960, +1.960) is 0.95.

If the probability model for z is a standard Gaussian distribution then
the probability model for (2)? is called the chi-squared distribution on one
degree of freedom. Tables of chi-squared distributions can be used to find
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the probabilities of exceeding specified values of (2)? in the same way as
t tables of the standard Gaussian distribution are used to find probabilities

Blood pressure of exceeding specified values of z.

200 Exercise 8.1. Use the tables in Appendix D to find the probability of exceeding

L the value 2.706 in a chi-squared distribution on one degree of freedom.

L 180 i ' : Note that, for (2)? to exceed 2.706, z must lie outside the range +1.645 of
h the standard normal distribution.

L 160 8.2 The general Gaussian model

It would be remarkable if the data we are analysing fell into the range
—3 to +3, so for modelling the variability of real data, it is necessary to
140 generalize the model to incorporate two parameters, one for the central
value or location, and one for the spread or scale of the distribution. These
: are called the mean parameter and standard deviation parameter and are
120 usually denoted by 1 and o respectively. A variable with such a distribution
is derived by multiplying z by the scale factor and adding the location
parameter. Thus

-100 ’ z=p+oz.

Fig. 8.1. Probability shared between many outcomes. » has a distribution of the same general shape as the standard Gaussian
distribution but centred around p with most of its probability between
#— 30 and p + 30.

Exercise 8.2. If the mean and standard deviation of a general Gaussian distribu-
tion are 100 and 20 respectively, what ranges of values correspond to probabilities
) of 0.90 and 0.95 respectively?

Similarly, when z has a Gaussian distribution with mean p and standard

deviation ¢ then
zZ =
ol

will have a standard Gaussian distribution. This fact can be used get the
probability for a range of values of z using tables of 2.

{ The probability density per unit of z when z has a Gaussian distribution
with mean p and standard deviation o is

' 03989 | 1(z—p 2
4 ; o P 2 4 ’

This expression is obtained by substituting (z — p)/o for z in the proba-
bility density of a standard Gaussian distribution to obtain the probability
- density per ¢ units of z, and then dividing by ¢ to obtain the probability
Fig. 8.2. The standard Gaussian distribution. : density per unit of z. Sometimes the distribution is described in terms of

the square of o, which is called the variance.
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Fig. 8.3. The log likelihood ratio for the Gaussian mean, u.

8.3 The Gaussian likelihood

Suppose a single value of z, say £ = 125 is observed. Using the probability
mode] that this is an observation from a Gaussian distribution with pa-
rameters p and o, the log likelihood for i and o is given by the log of the
corresponding Gaussian probability density:

2

1 /125 —
log(0.3989) — log(o) — = ( #> .

2 g
This log likelihood depends on two unknown paralneteré, but to keep things
simple we shall assume that one of them, ¢, is known from past experience
to have the value 10. Omitting constant terms, the log likelihood for p is

then ,

1125 -p\?
2\ 10 ‘

The most likely value of u is 125 and, since the above expression is zero at
this point, this expression also gives the log likelihood ratio for g. This is
plotted in Fig. 8.3; curves with this shape are called quadratic.

We saw in Chapter 3 that we take the extremes of the supported range
for a parameter to correspond to the value—1.353 for the log likelihood
ratio. To find the limits of the supported range for i we must therefore
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solve the simple equation

2
1 (125 - ”) — _1.353.

2 10

This takes only a few lines:

125 — p\?
( - ) = 2.706,

125 —p
10

L

+1.645,

125 + 1.645 x 10,

so that supported values of y are those between 108.6 and 141.5. In general,
the log likelihood ratio for y is

RYCLTAY
2 o ’
the most likely value of p is the observation z, and the supported range for
L is

z + 1.6450,

where ¢ is the standard deviation (which we assume to be known).

We saw in Exercise 8.1 that the probability of exceeding 2.706 in a
chi-squared distribution is-0.10, and the probability corresponding to the
range +1.645 in the standard Gaussian distribution is 0.90. The fact that
these numbers turn up in the above calculation is no accident and suggests
that the log likelihood ratio criterion of —1.353 leads to supported ranges
which have something to do with a probability of 0.90. This is indeed the
case, but the relationship is not altogether straightforward and we shall
defer this discussion to Chapter 10.

8.4 The likelihood with N observations

When there are N observations
Z1,Z2,..-,TN,

the log likelihood for p is obtained by adding the separate log likelihoods
for each observation giving

Z‘% (mi;uy
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Let M refer to the mean of the observations,

T+ 22+ TN
< .

It can be shown that the log likelihood can be rearranged as
1/ M—pu 2 1 (x;— M 2
3 (52) 2 (53
where § = 0/v/N, sometimes called the standard error of the mean. This
rearrangement involves only elementary algebra and the details are omitted.

The second part of this new expression for the log likelihood does not
depend on g and cancels in the log likelihood ratio for p which is

L (Mo’
2 S !
The most likely value of u is M, and setting the log likélihood ratio equal
to —1.353 to obtain a supported range for u gives

M =

=M £ 1.6458S.
As we would expect, with larger N, the value of S becomes smaller and
the supported range narrower.
Exercise 8.3. The following measurements of systolic blood pressure were ob-

tained from a sample of 20 men.

98 160 136 128 130 114 123 134 128 107
123 125 129 132 154 115 126 132 136 130

What is the most likely value for 4? Assuming that o = 14, calculate the range
of supported values for u.

This exercise continues to make the unrealistic assumption, made through-
out this chapter, that ¢ is known. In practice it must almost invariably be
estimated from the data. We shall defer discussion of this until Chapter 34.

Solutions to the exercises

8.1 The probability of exceeding 2.706 in the chi-squared distribution
with one degree of freedom is 0.10.

8.2 The range corresponding to a probability of 0.9 is

100 + 1.645 x 20 = (67.1,132.9)
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and, for a probability of 0.95,

100 £ 1.96 x 20 = (60.8,139.2).

8.3 The mean of the 20 measurements is 128.00 and this is the most
likely value of p. To calculate the supported range for p, we first calculate

14

S = =3.13

g
8]

so that the range lies between
= 128.00 + 1.645 x 3.13

that is from 122.9 to 133.1 .
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Approximate likelihoods

Because the Gaussian log likelihood for the mean parameter, y, takes the
simple form
_L(M-py
2 S

the supported range for y also takes a simple form, namely

M +1.6458.

For log likelihoods_such as the Bernouilli and Poisson there is no simple
algebraic expression for the supported range, and the values of the pa-
rameters at which the log likelihood is exactly —1.353 must be found by
systematic trial and error. However, the shapes of these log likelihoods
are approzximately quadratic, and this fact can be used to derive simple
formulae for approximate supported ranges. Methods based on quadratic
approximation of the log likelihood are particularly important because the
quadratic approximation becomes closer to the true log likelihood as the
amount of data increases.

9.1 Approximating the log likelihood

Consider a general likelihood for the parameter, 8, of a probability model
and let M be the most likely value of 6. Since the quadratic expression

1/ M—-06\°

(%57
has a maximum value of zero when § = M it can be used to to approximate
the true log likelihood ratio, after an appropriate value of S has been
chosen. Small values of S give quadratic curves with sharp peaks and
large values of S give quadratic curves with broad peaks. We shall refer

to S as the standard deviation of the estimate of §. Alternatively, it is
sometimes called the standard error of the estimate.

A
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Once M has been found and S chosen, an approximate supported range
for 6 is found by solving the equation

1/M-6\2
-3 (T) = —1.353,

to give
0 =M £+1.64585.

Full details of how S is chosen are given later in the chapter, but for the
moment we shall give formulae for S, without justification, and concentrate
on how to use these in practice.

THE RISK PARAMETER

The log likelihood for 7, the probability of failure, based on D failures and
N — D survivors is

Dlog(r) + (N — D) log(1 — 7).

The most likely value of 7 is D/N. To link with tradition we shall also
refer to the most likely value of 7 as P (for proportion). The value of S
which gives the best approximation to the log likelihood ratio is

5=y 2020

For the example we worked through in Chapter 3, D =4 and N = 10 so
that the value of P is 0.4 and

10.4x0.6
S = 0 - 0.1549.

An approximate supported range for 7 is given by
0.4+ 1.645 x 0.1549

which is from 0.15 to 0.65, while the supported range obtained from the
true curve lies from 0.17 to 0.65. The true and approximate log likelihood
curves are shown in Fig. 9.1. The curve shown as a solid line is the true
log likelihood ratio curve, while the broken line indicates the Gaussian
approximation.

THE RATE PARAMETER
The log likelihood for a rate A based on D cases and Y pérson years is

Dlog()) — \Y.
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The most likely value of A is D/Y and the value of S which gives the best
approximation to the log likelihood ratio is

For the example in Chapter 5, D =7 and Y = 500. The most likely value
of A is 0.014 and .
8 = +/7/500 = 0.00529.

An approximate supported range for A is therefore
0.014 + 1.645 x 0.00529

which is from 5.3/1000 to 22.7/1000. The true (solid line) and approximate
(broken line) log likelihood ratio curves are shown in Fig. 9.2. The range
of support obtained from the true curve spans from 7.0 to 24.6 per 1000.

Exercise 9.1. Find the approximate supported range for w, the probability of
failure, based 7 failures and 93 survivors. Find also the approximate supported
range for A, the rate of failure, based on 30 failures over 1018 person-years.

9.2 Transforming the parameter

The Gaussian log likelihood curve for p is symmetric about M and extends
indefinitely to either side. However, the parameters of some probability

~—
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Fig. 9.2. True and approximate Poisson log likelihoods.

models are not free to vary in this manner. For example, the rate parameter
A can take only positive values, and the risk parameter must lie between 0
and 1. Approximate supported ranges for such parameters calculated from
the Gaussian approximation can, therefore, include impossible values.
The solution to this problem is to find some function (or transformation)
of the parameter which is unrestricted and to first find an approximate
supported range for the transformed parameter. '

THE LOG RATE PARAMETER

The rate parameter A can take only positive values, but its logarithm is
unrestricted. To calculate an approximate supported range for A it is bet-
ter, therefore, to first calculate a range for log(\), and then to convert this
back to a range for A. Note that the range for log(\) will always convert
back to positive values for A. To find the approximate range for log(A) we
need a new value of S — that which gives the best Gaussian approximation
to the log likelihood ratio curve when plotted against log(A). When a rate
A is estimated from D failures over Y person-years, this value of S is given

by

S =+/1/D.
Fig. 9.3 illustrates this new approximation for our example in which D =7
and Y = 500 person-years. Here,

S =+/1/7 = 0.3780,
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and an approximate supported range for log()) is

log(7/500) & 1.645 x /1/7,

which is from —4.890 to —8.647. The range for ) is therefore from exp(—4.890)

to exp(—3.647) which spans from 7.5/1000 to 26.1/1000.
A more convenient way of carrying out this calculation is suggested by
noting that the limits of the range for A are given by

7 x 1 x
Lz 1.6454/= ) = 0.014 = 1.862.
500 ~ P < \/;>

The range is then from 0.014/1.862 = 7.5/1000 to 0.014 x1.862 = 26.1/1000,
as before. We shall refer to the quantity

exp (1.6455)

as an error factor.

'THE LOG ODDS PARAMETER

The same thing can be done when calculating a supported range for the risk
parameter 7 based on D failures in N subjects. The value of 7 is restricted
on both sides, by 0 on the left and by 1 on the right. The value of log(~) is
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still restricted on the right by zero because log(1) = 0, but log(f2), where
(1 is the odds corresponding to , is not restricted at all. Hence we first
find a range for log(Q2) and then convert this back to a range for 7. The
most likely value of log(Q) is

M=log(Nl_)D)

and the value of S for approximating the log likelihood for log(f) is

1 1
§= 5+'N—D'

For the example where D =4 and N -D =6

S = + % = 0.6455,

PN

and an approximate supported range for log({2) is given by
4
log g +1.645 x 0.6455,

that is, from —1.4673 to 0.6564. This is a range for log((?) and it is equiv-
alent to a range for  from exp(—1.4673) = 0.231 to exp(0.6564) = 1.928.
This can be calculated more easily by first calculating the error factor

exp (1.645 x 0.6455) = 2.892.
The most likely value of 2 is 4/6 = 0.667, so that the supported range for
Qis
X
0.667 + 2.892

that is, from 0.231 to 1.928 as before. Finally, remembering that = =
Q/(1 + ), the range for 7 is given by

0.231 1.928

— o ——

1.231 2.928

which is from 0.19 to 0.66.
Some of the more commonly used values of S obtained by approximating
the log likelihood are gathered together in Table 9.1.

Exercise 9.2. Repeat Exercise 9.1 by first finding 90% intervals for log(Q2) and
log()) respectively, and then converting these to intervals for 7 and A.

Exercise 9.3. Repeat the above exercise using error factors.
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Table 9.1. Some important Gaussian approximations

Parameter M S

T D/N=P v/ P(1-P)/N

A D/Y vD/Y
log(2) loglD/(N - D)] +/1/D+1/(N-D)
log()\) log(D/Y) £/1/D

9.3 Finding the best quadratic approximation

We now return to the problem of how to determine the values for M and
S. To do this we need some elementary ideas of calculus summarized
in Appendix B. In particular, we need to be able to find the gradient
(or slope) of the log-likelihood curve together with its curvature, which is
defined as the rate of change of the gradient. The mathematical terms for
these quantities are the first and second derivatives of the log likelihood
function. '

The value of M can be found by a direct search for that value of of 6
which maximizes the log likelihood, but it is often easier to find the value
of 8 for which the gradient of the log likelihood is zero; this occurs when
f=M. '

The value of S is chosen to make the curvature of the quadratic approx-
imation equal to that of the true log likelihood curve at M, thus ensuring
that the true and approximate log likelihoods are very close to each other
near § = M. The quadratic approximation to the log likelihood ratio is

1(/M-6\°

2 S ’
and the rules summarized in Appendix B show that the curvature of this
is constant and takes the value

[GR

We therefore choose the value of S to make —1/ (5)? equal to the curvature
of the true log likelihood curve at its peak.

THE RATE PARAMETER
The log likelihood for a rate A is

Dlog()) — AY.
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Using the rules of calculus given in Appendix B the gradient of log(}) is
1/X and the gradient of X is 1. Hence the gradient of the log likelihood is

D
X_Y'

The maximum value of the log likelihood occurs when the gradient is zero,
that is, when A = D/Y’, so the most likely value of A\ is D/Y. The curvature
of a graph at a point is defined as the rate of change of the gradient of the
curve at that point. The rules of calculus show this to be '

D
—W'

The peak of the log likelihood occurs at A = D/Y so the curvature at the
peak is found by replacing A by D/Y in this expression to obtain

)
D

Setting this equal to —1/(5)? gives
s =+D/Y,
which is the formula quoted earlier.

THE RISK PARAMETER

The log likelihood for the probability 7= based on D positive subjects out
of a total of N is

Dlog(r) + (N — D) log(1 — ).
The gradient of the log likelihood is

B_N—D
T l—nm

which is zero at # = D/N, also referred to as P. The gradient of the
gradient is

_D _N-D
(m? (1-m*
so the curvature at # = P is
D —D
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Replacing D by NP and N — D by N(1 — P), this reduces to

N
" P(1-P)

5=y 2B

9.4 Approximate likelihoods for transformed parameters

SO

When the log likelihood for a parameter is plotted against the log of the
parameter rather than the parameter itself, the curvature at the peak will
be different. For example, the log likelihood for a rate parameter A is

Dlog()) — \Y.

Plotting this against log()) is the same as expressing the log likelihood as
a function of log(A). To do this we introduce a new symbol 3 to stand for
log(A), so

B=log(}), A=exp(f).

In terms of § the log likelihood is
D3 — Y exp(0).
The gradient of this with respect to 3 is

D —Y exp(B)

and the curvature is
—Y exp(f).

The most likely value of exp(8) (which equals A) is D/Y’, so the curvature

at the peak is
-Y x (D/Y) = -D.

It follows that

S =+/1/D.

In general, derivations such as that above can be simplified considerably
by using some further elementary calculus which provides a general rule for

" the relationship between the values of S on the two scales. In the case of

the log transformation, this rule states that multiplying the value of S on
the scale of A by the gradient of log(\) at A = M gives the value of S on the
scale of log(A). The rules of calculus tell us that, at A = M, the gradient

SOLUTIONS o

of the graph of log()\) against ) is 1/M. Since, on the X scale, M = D)y
and S =+/D/Y, the rule tells us that the value of S for log()) is

VD ¥ _ [T
vy "D VD
This agrees with the expression obtained by the longer method.

. A similar calculation shows that the curvature of the Bernouilli log
likelihood, when plotted against log(©2), the log odds, is given by

Solutions to the exercises

9.1  An approximate supported range for 7 is given by

\

0.07 + 1.6458

where S = 1/0.07 x 0.93/100. This-gives a range from 0.028 to 0.112.
An approximate supported range for ) is given by

30/1018 +1.64585

where § = +/30/1018. This gives a range from 21/1000 to 38/1000.

9.2 The approximate supported range for log(f?) is given by

log(7/93) + 1.6455

S—,/5+ 1 =0.3919
V7 Tog T T

This gives a range from —3.231 to —1.942. The range for Q is from 0.040
to 0.143, and the range for = is from 0.038 to 0.125.
The approximate supported range for log()) is given by

where

log(30/1018) + 1.6455

where :
S =+/1/30 = 0.1826.

This gives a range from —3.825 to —3.224. The range for A is from 22/1000
to 40/1000.
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9.3  The error factor for Q is

exp(1.645 x 0.3919) = 1.905.

The most likely value for Q is 7/93 = 0.075 and the range for Q is from . .

0.075/1.905 = 0.040 to 0.075 x 1.905 = 0.143. The range for 7 is from
0.038 to 0.125.
The error factor for the rate is

exp(1.645 x 0.1826) = 1.350.

The most likely value of the rate is 29/1000 with range from 29/1.350 = 22
per 1000 to 29 x 1.350 = 40 per 1000.

10

Likelihood, probability, and
confidence

The supported range for a parameter has so far been defined in terms of
the cut-point —1.353 for the log likelihood ratio. Some have argued that
the scientific community should accept the use of the log likelihood ratio
to measure support as aziomatic, and that supported ranges should be re-
ported as 1.353 unit supported ranges, or 2 unit supported ranges, with the
choice of how many units of support left to the investigator. This notion
has not met with widespread acceptance because of the lack of any intu-
itive feeling for the log likelihood ratio scale — it seems hard to justify the
suggestion that a log likelihood ratio of —1 indicates that a value is sup-
ported while a log likelihood ratio of —2 indicates lack of support. Instead
it is more generally felt that the reported plausible range of parameter val-
ues should be associated in some way with a probability. In this chapter
we shall attempt to do this, and in the process we shall finally show why
—1.353 was chosen as the cut-point in terms of the log likelihood ratio.

There are two radically different approaches to associating a probability
with a range of parameter values, reflecting a deep philosophical division
amongst mathematicians and scientists about the nature of probability. We
shall start with the more orthodox view within biomedical science.

10.1 Coverage probability and confidence intervals

Our first argument is based on the frequentist interpretation of probability
in terms of relative frequency of different outcomes in a very large number
of repeated “experiments”. With this viewpoint the statement that there
is a probability of 0.9 that the parameter lies in a stated range does not
make sense; there can only be one correct value of the parameter and
it will either lie within the stated range or not, as the case my be. To
associate a probability with the supported range we must imagine a very
large number of repetitions of the study, and assume that the scientist
would calculate the supported range in exactly the same way each time.
Some of these ranges will include the true parameter value and some will
not. The relative frequency with which the ranges include the true value
is called the coverage probability for the range, although strictly speaking
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Introduction to regression models

One of the main problems discussed in Part I was how to compare two
rate parameters, Ag and A1, using their ratio A;/Ag. To do this the log
likelihood for the parameters Ao and A; was re-expressed in terms of Ag
and 0, where 0 = X\;/)\g. This technique was then extended to deal with
comparisons stratified by a confounding variable by making the assumption
that the parameter # was constant over strata. In this second part of the
book, the technique will be further extended to deal with the joint effects
of several exposures and to take account of several confounding variables.

A common theme in all these situations is a change from the original
parameters to new parameters which are more relevant to the comparisons
of interest. This change can be described by the equations which express
the old parameters in terms of the new parameters. These equations are
referred to as regression equations, and the statistical model is called a
regression model. 'To introduce regression models we shall first express
some of the comparisons discussed in Part I in these terms. We use models
for the rate parameter for illustration, but everything applies equally to
models for the odds parameter.

22.1 The comparison of two or more exposure groups

When comparing two rate parameters, Ag and A;, the regression equations
which relate the original parameters to the new ones are

Ao = Ao, A1 = Aob,

where the first of these simply states that the parameter )¢ is unchanged.

When there are three groups defined by an exposure variable with three
levels, corresponding (for example) to no exposure, moderate exposure, and
heavy exposure, the original parameters are Ag, A1, and A2, and there are
now more ways of choosing new parameters. The most common choice is
to change to

Ao, 61 = X1/Xo, B2 = A2/ Ao.

With this choice of parameters the moderate and heavy exposure groups
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Table 22.1. A regression model to compare rates by exposure levels

Exposure
Age O 1
RSV
1 PYIDYY
2 Y RrC

are compared to the unexposed group. The regression equations are now
Ao = Ag, AL = Aob, A2 = Aob2.

22.2 Stratified comparisons A

‘When the comparison between exposure groups is stratified by a confound-
ing variable such as age the change to new parameters is first made sepa-
rately for sach age band; for two exposure groups the regression equations
for age band ¢ are ™

NN A=

The parameter #* is age-specific and to impose the constraint that it is
constant over age bands it is set equal to the constant value 8, in each age
band. The regression equations are now

M=2b L=

This choice of parameters is the same as for the proportional hazards model,
introduced in Chapter 15. The model is written out in full in Table 22.1
for the case of three age bands.

Although our main interest is whether the rate parameter varies with
exposure, within age bands, we might also be interested in investigating
whether it varies with age, within exposure groups. The parameter # does
not belp with this second comparison because it has been chosen to compare
the exposure groups. When making the comparison the other way round
the age bands are the groups to be compared and the exposure groups
are the strata. To combine the comparison across these strata requires
the assumption that the rate ratios which compare levels 1 and 2 of age
with level 0 are the same in both exposure groups. This way of choosing
parameters is shown in Table 22.2, where the parameters ¢! and ¢? are the
rate ratios for age, assumed constant within each exposure group. Note
that there are two parameters for age because there are three age bands
being compared.

Putting these two ways of choosing parameters together gives the regres-
sion model shown in Table 22.3. The parameter AJ has now been written
as Ag, for simplicity and to emphasize that it refers to the (top left-hand)

-

e
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Table 22.2. A regression model to compare rates by age bands

Exposure
Age O 1
Ay N

0
R
R A L

Table 22.3. A regression model for exposure‘é,nd age

Exposure
Age O 1
0 Ac Acl
1 Acd!  Acfo?
2 Acd® AcBe?

_corner of the table. Both sorts of comparison can now be made in the same
ana.lys1s Tt is no longer necessary to regard one variable as the exposure,
and the other as a confounder used to define strata; the model treats both
types of variable symmetrically. To emphasize this symmetry the term ez-
planatory variable is often used to describe both exposures and confounders
in regression models. Although this is useful in complex situations where
there are many variables, there are also dangers. Although it makes no
difference to a computer program whether an explanatory variable is an
exposure or confounder it makes a great deal of difference to the person
trying to interpret the results. Perhaps the single most important rea-
son for misinterpreting the results of regression analyses is that regression
models can be used without the user thinking carefully about the status of
different explanatory variables. This will be discussed at greater length in
Chapter 27. ‘

1

Exercise 22.1. Table 22.4 shows a set.of values for the rate parameters (per
1000 person-years) which satisfy exactly the model shown in Table 22.3. What
are the corresponding values of Ac, 8, ¢, ¢° 7

Exercise 22.2. When the model in Table 22.3 is fitted to data it imposes the

*constraint that the rate ratio for exposure is the same in all age bands, and

equally, that each of the two rate ratios for age is constant over both levels of -
exposure. Is the constraint on the rate ratios for age a new constraint, 2};&% it
automatically follow whenever the rate ratio for exposure is the same jzrall age
bands?
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Table 22.4. Parameter values (per 1000) which obey the consttaints

Exposure
Age 0 1
0 50 15.0
1 12.0 36.0
2 30.0 90.0

Table 22.5. A regression model using names for parameters

Exposure
Age 0 1
0 Corner Corner x Exposure(1)
1 Corner x Age(l) Corner x Age(1) x Exposure(1)
2 Corner x Age(2) Corner x Age(2) x Exposure(1)

22.3 Naming conventions

Using Greek letters for parameters is convenient when developing the the-
ory but less so when applying the methods in practice. With many ex-
planatory variables there will be many parameters and it is easy to forget
which letter refers to which parameter. For this reason we shall now move
to using names for parameters instead of Greek letters.

The first of the parameters in Table 22.3, A, is called the Corner. The
0 parameter, which is the effect of exposure controlled for age, is referred
to as Exposure(1); when the exposure variable has three levels there are
two effects and these are referred to as Exposure(1) and Exposure(2), and
so on. When the exposure variable is given a more specific name such
as Alcohol then the effects are referred to as Alcohol(1) and Alcohol(2).
The ¢ parameters, which are the effects of age controlled for exposure, are
referred to as Age(1) and Age(2). The model in Table 22.3 is written using
names in Table 22.5.

Because writing out models in full is rather cumbersome, particularly
when using names for parameters, we shall use a simple abbreviated form
instead. The entries in Tables 22.3 and 22.5 refer to the right-hand sides of
the regression equations; the left-hand sides are the original rate parameters
which are omitted. Such a set of regression equations is abbreviated to

Rate = Corner x Exposure x Age.
It is important to remember that this abbreviation is not itself an equation

(even though it looks like onel); it represents a set of equations and is
shorthand for tables like Table 22.5. The regression model is sometimes
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* Table 22.6. Energy intake and IHD incidence rates per 1000 person-

years
Unexposed Exposed
(= 2750 keals) (< 2750 keals) Rate
Age Cases P-yrs Rate Cases P-yrs Rate ratio-
40-49 4 607.9  6.58 2 311.9 6.41 097
50-59 5 1272.1  3.93 12 878.1 13.67 3.48
60-69 8 888.9 9.00 14 667.5 20.97 2.33

Table 22.7. , Estimated values of the parameters for the IHD data

Parameter Estimate
-Corner 0.00444
Exposure(1) x2.39
Age(1) . x1.14
Age(2) %x2.00

abbreviated even further and referred to simply as a multiplicative model
for exposure and age.

22.4 Estimating the parameters in a regression model

Table 22.6 shows the data from the study of ischaemic heart disease and
energy intake. There are two explanatory variables, age with three levels
and exposure with two. The two levels of exposure refer to energy intakes
above and below 2750 kcals per day.

Although the rate ratio for exposure is rather lower in the first age band

| than in the other two age bands, it is based on only 6 cases, and a summary

based on the assumption of a common rate ratio seems reasonable. In the
new terminology this means fitting the regression model

Rate = Corner x Exposure x Age.
The most likely values of the parameters in this model, obtained from a

computer program, are shown in Table 22.7. Note that the most likely value
of the Exposure(1) parameter is the same, to two decimal places, as the

Mantel-Haenszel estimate of the common rate ratio, given in Chapter 15.

Exercise 22.3. Use the most likely values of the parameters in the regression

model, shown in Table 22.7, to predict the rates for the six cells in Table 22.6.

Computer programs differ in the precise details of how the output is
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Table 22.8. Estimated parameters and SDs on a log scale
Parameter  Estimate (M) SD (S)

Corner —5.4180 0.4420
Exposure(1) 0.8697 0.3080
Age(1) 0.1290 0.4753
Age(2) 0.6920 0.4614

labelled. In particular you may see the word wvariable where we have used
. parameter, and the word coefficient where we have used estimate. We have
used the term corner for the parameter which measures the level of response
in the first age band of the unexposed group but several other terms are
in widespread use, for example constant, intercept, grand mean, and (most
cryptically of all) the number 1. We have numbered strata and exposure
categories starting from zero, but some programs start numbering from
one.

22.5 Gaussian approximations on the log scale

Gaussian approximations to the likelihood are used to obtain approximate
confidence intervals for the parameter values. For the simple multiplicative
models discussed so far the approximation is always made on the log scale,
and in many programs the output is also in terms of logarithms. Table 22.8
shows the output on a log scale for the ischaemic heart data; the second
column shows the most likely values (M) of the logarithms of the param-
eters and exponentials of these give the values on the original scale. For
example,

exp(0.8697) = 2.39,

which is the rate ratio for exposure. The third column shows the standard
deviations (S) of the estimates, obtained from Gaussian approximations to
the profile log likelihoods for each parameter. The standard deviation of
the effect of exposure, on the log scale, is 0.3080, so the error factor for a
90% confidence interval for this parameter is exp(1.645 x 0.3080) = 1.66,
and the limits are from 2.39/1.66 = 1.44 to 2.39 x 1.66 = 3.96.

Exercise 22.4. Use Table 22.8 to calculate the 90% confidence limits for the
first effect of age.

When the regression model is fitted on a log scale it is written in the
form

log(Rate) = Corner + Exposure + Age.
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Table 22.9. A more complete description of the age effects

Parameter Estimate SD
Age(1) 0.1290 0.4753
Age(2) 0.6920  0.4614

Age(2) — Age(1) 0.5630  0.3229

Table 22.10. An abbreviated table for the age effects

Parameter Estimate SD
- Age(1) 0.1290 0.4753
Age(2) 0.6920 0.4614 0.3229

Strictly speaking, the parameters on the right-hand side of this expression
should be written as log(Corner) etc., but in practice the log on the left-
hand side is enough to signal the fact that the parameter estimates will be
on a log scale.

For variables with more than two categories, comparisons other than
those with the first category are sometimes of interest. Taking the variable
age in the ischaemic heart disease data as an example, the effect of changing
from level 1 to level 2 of age is the difference between the two age effects,
namely 0.6920 — 0.1290 = 0.5630. Because the two age effects are based
on some common data the standard deviation of their difference cannot be
obtained from the simple formula

1/0.47532 4 0.46142 = 0.6624,

which was used in Chapter 13. To obtain the correct standard deviation
we usually need to resort to a trick, such as recoding age so that the corner
parameter refers to the second age band rather than the first. Table 22.9
shows how a fuller analysis of age effects could be reported; an option to
obtain output in this form would be a useful feature not currently available
in most computer programs.

An abbreviated way of conveying the same information is shown in Ta-
ble 22.10. This provides the standard deviations for all three comparisons
but leaves the user to do the subtraction to find the effect of changing from
level 1 to level 2. The method extends naturally for factors with more than
three levels; for example, a four-level factor would need a triangular array
of 6 standard deviations for the six possible pairwise comparisons.
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22.6 Additive models

When comparing two groups, in the first section of this chapter, the two
parameters Ap and A; were replaced by Ag and § = A;/)g. This change
of parameters made it possible to estimate the rate ratio § along with its
standard deviation. The parameters could equally well have been changed
to Mg and 6 = A;— g, thus making it possible to estimate the rate difference
instead of the rate ratio.

The choice between the rate ratio and the rate difference is usually an
empirical one, depending on which of the two is more closely constant over
strata. In the early years of epidemiology, when age was often the only
;. explanatory variable apart from exposure, methods of analysis were all
based (implicitly) on multiplicative models. This is because most rates vary
so much with age that the rate ratio is almost always more closely constant
over age bands than the rate difference. More recently, particularly when
investigating the joint effects of several exposures, epidemiologists have
shown a greater interest in rate differences.

To impose the constraint that the rate difference is constant over age
strata, the regression model

Rate = Corner + Exposure + Age

is fitted. This is called an additive model for exposure and age. Note that
it is the rate and not the log rate which now appears on the left-hand
side. The same likelihood techniques are used as with the additive model
as with the multiplicative model, but because the estimated values of the
parameters in the additive model must be restricted so that they predict
positive rates, it is much harder to write foolproof programs to fit these
models. We shall return to additive models in Chapter 28.

22.7 Using computer programs

There is a certain amount of specialized terminology connected with com-
puter programs which we shall introduce briefly in this section.

VARIABLES AND RECORDS

The information collected in a study is best viewed as a rectangular table
in which the columns refer to the different kinds of information collected for
each subject, and the rows to the different subjects. In computer language
the columns are called variables and the rows are called records. Variables
such as age and observation time are called quantitative because they mea-
sure some quantity. Variables such as exposure group are called categorical
because they record the category into which a subject falls. The different
categories are called the levels of the variable. Another name for a categor-
ical variable is factor. Categorical variables with only two categories (or
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levels) are also known as binary variables.

DERIVED VARIABLES

The raw data which is collected in a study may not be in exactly the right
form for analysis. For example, in a follow-up study the observation time
will usually be recorded as date of entry to the study and date of exit. The
computer can be instructed to derive the observation time from these two
dates by subtraction. Another example is where the grouped values of a
quantitative variable are required in an analysis; it is then convenient to
derive a new categorical variable which records the group into which each
subject falls.

VARIABLE NAMES

In order to give instructions to a computer program each of the variables
needs a name. These can usually be at least eight characters long and it is
a good idea to make full use of this and to choose names which will mean
something to you (and someone else) in a year’s time.

SUMMARY TABLES

It is always important when using computer programs to keep in close touch
with the data you are analyzing. The simplest way of doing this is to start
by looking at tables which show the estimated rate or odds parameters for
different combinations of the values of the explanatory variables. When
there are two explanatory variables the table is called two-way, and so on.
Three-way tables are presented as a series of two-way tables. When an
explanatory variable is quantitative it will usually be necessary to group
the values of the variable before using it to define a table. Only after
inspecting various summary tables to get some feel for the main results
should you use regression models to explore the data more fully.

FREQUENCY OR INDIVIDUAL RECORDS

Computer programs are generally able to accept either individual records
or frequency records based on groups of subjects. For example, in the is-
chaemic heart disease.study, we could use the data records for each subject,
or frequency records showing the number of subjects in each combination of
age band and exposure group. Entering a frequency record for 25 subjects .
has exactly the same effect as entering 25 identical individual records.
When an explanatory variable is quantitative its values must be grouped
before frequency records can be formed, while the actual values can be used
with individual records. Frequency records can be stored more compactly
than individual records, and log likelihood calculations are correspondingly
faster, but using frequency records requires two computer programs — one
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to compute the frequency records and one to carry out the regression anal-
ysis — and communication between these programs may be inconvenient.
For case-control studies the number of subjects is usually relatively small
and the data are usually entered as individual records. For cohort studies
there may be tens of thousands of individual records, possibly further sub-
divided between time-bands, so the data are usually entered as frequency
records.

MISSING VALUES

Most studies contain records which have some missing values, and it is
.. essential to have some way of indicating this to the computer program.
~ The most convenient code for a missing value is the character *, but when
a prograni insists on a numeric code it is best to choose some large number
like 9999. When there are many variables in a study the analyses are usually
on some subset of the variables, and the program will automatically include
those records with complete data on the subset being used.

Solutions to the exercises

22.1 Ao = 5.0 per 1000, § = 3.0, ¢! = 2.4, ¢? = 6.0.

22.2 Tt is not a new constraint. Table 22.1 shows that when the rate
ratio for exposure is constant over age bands then the rate ratios for age
will automatically be constant over exposure groups.

22.3 The predicted rates for the six combinations of age and exposure
are

Age Unexposed Exposed
40 — 49 4.44 10.61
50 — 59 5.06 12.10
60 — 69 8.88 21.22

22.4 The effect of age level 1 is exp(0.1290) = 1.14. The 90% confidence
interval for this effect is

X
1.14 + exp(1.645 x 0.4753)

which is from 0.52 to 2.49.

23
Poisson and logistic regression

In principle the way a computer program goes about fitting a regression
model is simple. First the likelihood is specified in terms of the original
set of parameters. Then it is expressed in terms of the new parameters
using the regression equations, and finally most likely values of these new
parameters are found. In studies of event data the two most important
likelihoods are Poisson and Bernouilli, and the combinations of these with
regression models are called Poisson and logistic regression respectively.
Gaussian regression is the combination of the Gaussian likelihood with
regression models and will be discussed in Chapter 34.

23.1 Poisson regression

When a time scale, such as age, is divided into bands and included in
a regression model, the observation time for each subject must be split
between the bands as described in Chapter 6. This is illustrated in Fig. 23.1,
where a single observation time ending in failure (the top line) has been
split into three parts, the last of which ends in failure. These parts can then
be used to make up frequency records containing the number of failures and
the observation time, as was done for the ischaemic heart disease data in
Table 23.1, or they can be analysed as though they were individual records.

If they are to be analysed as though they were individual records then
each of these new records must contain variables which describe which time
band is being referred to, how much observation time is spent in the time
band, and whether or not a failure occurs in the time band. Values of

Table 23.1. The IHD data as frequency records

Cases Person-years Age Exposure

4 607.9 0 0
2 311.9 0 1
5 1272.1 1 0
12 878.1 1 1
8 888.9 2 0
14 667.5 2 1




