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W h a t  Pe t r i  d i s h e s  h a v e  t o  d o  w i t h 
y o u r  r e s e a r c h

Pop quiz 

Imagine yourself as an undergraduate sitting 
again in Microbiology 101 – as if the first 
time were not enough! (If you have never 
sat Microbiology 101, do not worry – this will 
become relevant to you later.) After another one 
of the professor’s jokes about how he is such a 
“fun guy”, he has you all take out a piece of 
paper for a pop quiz. Much of Microbiology 101 
seems to be about counting colonies of bacteria 
on Petri dishes, and his question, borrowed 
from a popular US university’s website1, goes as 
follows: 

You plate several dilutions from a bacterial 
suspension onto nutrient agar plates, and 
count the numbers of colonies that have 
formed after 24 hours of incubation. Here 
are the results: 

A. �100 µl of the 10–4
 

dilution, TNTC (too 
numerous to count) 

B. 100 µl of the 10–5
 

dilution, 685 
C. 100 µl of the 10–6

 

dilution, 52 
D. 100 µl of the 10–7

 

dilution, 4. 

What is the concentration of bacteria in 
the original suspension?

Dutiful student that you are, you think back to 
the previous week’s homework assignment. You 
remember something about a 30–300 rule. If the 
count on your Petri dish is below 30, it is plagued 
with “statistical inaccuracies”. If it is above 300, 
there may be overcrowding. So answers D and B 
have to be discarded. That leaves C, 52, as the 
value to work from. You still need to divide by 
the dilution factor and convert the answer into 
colony-forming units (CFUs) per millilitre. You 

scribble down 5.2 × 108 CFUs/ml, and hand in 
the slip of paper just as the bell rings. 

A similar scene can be found each semester 
at hundreds of universities across the globe. And 
hundreds of dutiful students each answer the 
same way. 

Unfortunately, they are all wrong. 

The 30–300 rule 

The 30–300 rule is standard practice in industry 
and university research, wherever colonies of 
bacteria are cultured and counted. Its origins 
trace at least as far back as a 1916 paper by Breed 
and Dotterrer2, in which they caution against 
using counts below 20 or greater than 400. 
When the count is less than 20, a few bacteria 

colonies from air contamination can drastically 
impact results; on the other hand, counts greater 
than 400 may be lower than expected due to 
overlapping colonies. Eventually these lower and 
upper bounds morphed to 30 and 300, probably 
because those are a little more user-friendly. 
(The change probably went something like this: 
“Was it 20-400? Or 40-200? Let’s just split the 

difference!”) The problem is not with the 30–300 
(or 20–400) rule itself, but rather that it is 
always taught without explaining the important 
exceptions to when it should be applied. The result 
is that thousands of microbiology undergraduates 
are armed with the same broken tool. Or at least 
the same tool which is completely inadequate a 
fair percentage of the time. 

So what are the exceptions? According to 
Breed and Dotterrer: “Plates having fewer than 
20 or more than 400 colonies … should never be 
trusted unless checked by comparison with plates 
from different dilutions having more than 30 or 
less than 400 colonies.” The implicit exception 
to the 30–300 rule, then, is that counts outside 
of this range may be used if they accord with 
counts inside the range from a different dilution. 

What’s the big deal? 

If the dutiful student in the above scenario were 
to compute a typical 95% confidence interval 
having followed the 30–300 rule, he or she 
would obtain 5.2 ± 1.96(√52/10) = (3.8, 6.6) × 
108

 
CFUs/ml (assuming Poisson-distributed 

counts). The fear with using 685 (answer B) is 
that with counts that high, overcrowding can 
occur, which would cause CFUs to overlap and be 
indistinguishable from one another, resulting in 
too low a count. However, we see absolutely no 
evidence of this here since 685 is greater than 
52 × 10 = 520, not less; our count is higher than 
the intermediate one, so clearly overcrowding in 
not an issue. By discarding the 685 CFUs and 
retaining only 52, you are effectively reducing 
your sample size by 90%. In fact, if the student 
had used 685 instead of 52, the resulting 
confidence interval would be (6.34, 7.36) × 108, 
which is 36% as wide as the “right” answer (see 
Figure 1, intervals B and C). 

This article, by Douglas VanDerwerken, was a runner-up in the Young Statisticians Group/Significance Writing 

competition. It nicely explains why throwing away data is not a good idea.

If there are fewer than 30 colonies 
on a Petri dish the count is 

vulnerable to statistical errors. 
But why throw away that data?
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The statistician’s cardinal rule is: “Never 
throw away relevant data!” If there is no strong 
evidence of overcrowding on high plate counts 
or of contamination from the air on low plate 
counts, then feel free to use all of these in your 
estimate of the original concentration. Along 
these same lines, the budding microbiologist 
would do well to recall G. William Claus’s3 advice 
that “TNTC (Too numerous to count) is not the 
same as TLTC (Too lazy to count)”! 

Once we have collected our data, the Poisson 
assumption implies that the maximum likelihood 
estimator is simply a weighted average of all 
valid observations, where the weights correspond 
to the inverse of the relative variances. For 
instance, in the pop quiz example, combining all 
the data gives us the weighted average (100 × 
6.85+10 × 5.2+1 × 4)/111 = 6.68 × 108, which is 
approximately normally distributed about the 
true concentration. By incorporating all the 
data, we have effectively increased our sample 
size from 10 to 111, yielding a 95% confidence 
interval of (6.20, 7.16). Note that this interval is 
slightly smaller than the interval obtained using 
only 685, and 34% as wide as the “right” answer. 
These intervals are summarised in Figure 1. Figure 1: Comparison of the point estimates and confidence intervals obtained using different amounts of data. 

© iStockphoto.com/Andreas Reh

Percentages indicate width of each interval 
compared with “correct” width
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How it relates to you 

The 30–300 rule, as currently employed, throws 
away useful data. This is especially true when 
higher counts are discarded which show no 
signs of overcrowding. Even in the best-case 
scenario, where the counts retained were the 
highest observed, incorporating lower plate 
counts still improves precision. But what does 
this have to do with your research? Well, if 
you are a microbiologist and you have been 
faithfully obeying the 30–300 rule, I hope I 
have convinced you to be at least a little more 
rebellious. For the rest of us, the connection 
is that statistics can and should be used to 
combine data from apparently incompatible 
(at least at first glance) sources. Just as 
microbiologist undergraduates have been using 
only a small portion of the available data, we 
as researchers do not always make the best 
use of prior literature. Meta-analysis seeks 
to combine data from disparate sources in an 
attempt to discern effects with more power or 
state hypotheses with more confidence than 
can any of the individual studies. But the exact 
same principles used in the Petri dishes can be 
applied in your discipline, whatever it is. 

 In the rest of this article I would like to 
convey the small epiphany I had while trying to 
combine data from different sources in a setting 
very different from Microbiology 101. 

I was confronted with a table of summary 
statistics as part of a homework assignment for a 
graduate class in statistical modelling. Although 
these studies were performed at various times 
by different teams, they were trying to measure 
the same thing – the odds ratio of cancer 
between two groups. As is common in this type 
of research, logistic regression had been used to 
obtain estimates and confidence intervals on the 
log scale (where things are normally distributed), 
and these were then exponentiated. The question 

of interest was what evidence there was that the 
log odds ratio exceeds 0. When the log odds ratio 
θ is greater than zero then the odds of cancer are 
higher in the first group. 

Suppose your summary data looked like the 
table below, in which “log(OR)” stands for the 
natural log of the odds ratio, and “log(LCL)” and 
“log(UCL)” represent the 95% lower and upper 
confidence limits.

Study log(LCL) log(OR) log(UCL)

1  –0.20 0.05 0.29
2 0.14 0.23 0.32
3 –0.73 –0.04 0.66
4 –0.06 0.13 0.33

First of all, notice that in one of the four 
studies, the estimated log odds ratio was below 
0; and in three studies, negative numbers 
were included in the confidence interval. On 
the surface it may appear that there is some 
evidence that θ is greater than zero, but it does 
not appear overwhelming. 

My epiphany came when I realised that these 
studies are just like the Petri dishes plated 
with bacteria from different dilutions. That is, 
the studies are all trying to measure the same 
thing (the log odds ratio), but some are more 
accurate than others. The optimal contribution 
of each study is determined by the accuracy 
of that study – the more accurate the study, 
the more say it has in the final answer, so it 
is weighted accordingly. In this example, when 
we have taken all four studies into account 
and weighted them, the one-sided p-value for 
testing H0 : θ = 0 against Ha : θ > 0 is 5.4 × 10–7 
(see box) That is, there is extremely decisive 
evidence that the log odds ratio of cancer is 
greater than 0, or equivalently, that the odds 

of cancer in group 1 are higher than the odds 
in group 2. The corresponding 95% confidence 
interval for the log odds ratio is (0.12, 0.27), 
which is smaller than that obtained by any of 
the individual studies. Using all four studies has 
clearly paid off. 

Going forward 

The moral here is not that a weighted average is 
the answer to every statistical question. Instead, 
I have shown that two seemingly unrelated 
problems deal with the same fundamental issue 
of combining information from disparate sources. 
As statisticians, we seek to answer questions 
about the world around us using all the relevant 
information we can get our hands on. Statistical 
methods are the tools we use to answer these 

questions. It is critical that we think about 
when the same tools should (and should not) 
be used to answer different questions. You may 
never find yourself in Microbiology 101 again, 
but you never know when tools picked up for 
one problem will lend themselves very nicely to 
solving another. That said, it is important that 
we not follow the status quo so blindly that we 
forget the limitations and assumptions of the 
status quo’s methods. Going forward, we should 
strive to use existing methods when they are 
applicable and to develop new ones when they 
are not. 
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Formally, for the cancer studies in the text, we say that ˆ ~ ,θ θ σi iN 2( ). It can be shown that the 
weighted average
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, is the best unbiased estimator for θ. A study’s accuracy is determined by 
its standard error, which we can approximate from the reported confidence limits: 
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Importantly, we know that θ is approximately normal about the true θ, which allows for straight-
forward inference. From this we get the result that the one-sided p-value for testing H0 : θ = 0 
against Ha : θ > 0 is 5.4 × 10−7. In other words, the odds of cancer in group 1 are higher than in 
group 2. Using the data from all four studies gives a decisive answer that was not obtainable from 
any of the studies individually.

A weighted average is not the 
answer to every question, but it 

can help us to use all the data we 
can get our hands on




