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Experimental Survival Curves for 
Interval-censored Data 

By RICHARD PETO 

R.P.M. Radcliffe Infirmary, Oxford University 

SUMMARY 
A method is given for calculating from interval-censored data an estimate 
of the c.d.f. which is analogous to the estimate derivable from right-censored 
data by the life-table technique. A Fortran implementation has been con- 
structed by the author. 
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1. DEFINITIONS 

(i) LET z be a real-valued random variable with c.d.f. F(z). z is said to be censored 
into a non-zero interval I if the only information we have about z is that z lies in L 
If I is the interval [T, so], z is said to be right-censored. If z is not censored then z is 
exact. 

Example. Two examinations at particular times to see whether a certain event 
has yet occurred will produce a censored observation of that event: whether the 
observation is left-censored, right-censored or interval-censored depends on whether 
the event happened before the first examination, after the second examination or 
between the two examinations. 

(ii) Let G(z) = 1 - F(z). G(z) is the survival curve for z. 
(iii) Let z1 ... ZN be independent random variables with the common survival 

curve G(z). Suppose we have data consisting of an observation (exact or censored) of 
each zi. Let the interval into which zi is censored be written [Li, Ri] (where Li = Ri 
if zi was observed exactly). Our data are thus L = L1, * LN and R = R1, * RN. 
Under the survival curve G, the likelihood for the ith observation is 

{G(L -0) - G(Ri + 0)} 

and the likelihood for all the data is a product of N such terms. This overall likelihood 
depends not only on the data, L and R, but also on G. If we assumed a different 
(monotonic) function G* instead of G, the value of the overall likelihood might be 
changed. Since each separate likelihood must lie in [0, 1] so must the overall product 
of them, and so if G* is a monotonic function which decreases from 1 to 0 the overall 
likelihood for the data must lie in [0, 1]. Different forms for G* will give different 
values in [0, 1] for the overall likelihood, and the experimental survival curve (e.s.c.) 
for the data is defined as the monotonic function H(z) which maximizes the overall 
likelihood. With censored data, the experimental survival curve may not be unique 
since if a censored observation lies in an interval I then the likelihood for that 
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observation depends only on the difference between the experimental survival curve 
values at the end-points of that interval and not at all on the detailed behaviour 
within the interval. 

Example. For completely uncensored (exact) data, the e.s.c. is undefined at the 
actual observation values, and between them H(z) can be shown to equal the pro- 
portion of the observations that exceed z. H is discontinuous, so the likelihood for 
each observation is finite rather than infinitesimal. Fig. 1 gives an example of a more 
complex e.s.c. 

2. INTRODUCTION 

Kaplan and Meier (1958) have shown that for data subject only to right censoring 
the ordinary (product-limit) life-table is identical with the experimental survival 
curve. A special case of the life-table is for completely uncensored data, when every 
observation is known exactly: the experimental survival curve H(z) is then given by 
the proportion of the observations that exceed z. Kaplan and Meier's method can 
easily be reversed to get the experimental survival curve by a life-table technique for 
left-censored data and it can be adapted slightly to get the experimental survival curve 
in certain special cases of interval-censored data.t However, it cannot be adapted to 
deal with the completely general situation where each observation may be exact or 
censored into its own particular interval, and some other technique is then required. 
No algebraic solution with the simplicity of Kaplan and Meier's life-table technique 
has emerged in the general situation, and the most obvious technique is to write 
down the total log likelihood as a function of the end-points of each censoring interval 
(treating an exact observation of x as an observation censored into the closed interval 
[x, x], this equals the sum for all subjects of 

log {G(left end-point -0)- G(right end-point + 0)}), 

and to find the values that maximize this total log likelihood by a programmed search. 
This has proved practicable with quite large data sets: the work involved eventually 
increases as the square of the number of data points involved. 

3. EXAMPLE 
Annual surveys on 196 girls recorded whether or not, at the time of the survey, 

sexual maturity had developed. Development was complete in some girls before the 
first survey, some girls were lost before the last survey and before development was 
complete, and some girls had not completed development at the last survey. An 
estimate was required of the proportion who were not yet mature as a function of 
age without assuming a normal distribution for the time of development. (Data 
provided by Dr L. A. Malcolm, Regional Health Office, New Guinea, through 
courtesy of Professor J. M. Tanner, Institute of Child Health, London.) The experi- 
mental survival curve was calculated, and is shown in Fig. 1. 

4. THEORY UNDERLYING THE PROGRAMMED SEARCH 

We have N independent observations, Z1, ..., ZN. Our knowledge about zi is 
restricted to the fact that Li <- zi K Ri. If zi is exact, Li = Ri, and if zi is right- or left- 
censored, Ri = oo or Li = -oo. From the sets {Li} and {Ri} we can derive all the 

t For example, if an ordered set of disjoint intervals exists such that each censoring interval 
contains one interval I in this set, nothing of any of the intervals before I and either all or nothing 
of the intervals after I. 
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distinct closed intervals whose left and right end-points lie in the sets {Li} and {Ri} 
respectively and which contain no members of {Li} or {R.} other than at their left and 
right end-points respectively. Let these intervals be written in order as 

[ql,pl], [q2,P2], ... [q.,p.]. 

1^0 
o~~ 

08 
ESTIMATED 
PROPORTION 
NOT YET 06 
BEGUN 

0*4 

0'2 

0 
12 14 16 18 20 

AGE (YEARS) 
FIG. 1. Onset of puberty: New Guinea females. E.S.C. from interval-censored observations 

of 196 subjects. 

It is sufficient, in our search for the experimental survival curve (e.s.c.) to consider 
only survival curves which are horizontal everywhere except in these intervals and 
which decrease in some or all of these intervals. (This is proved in the Appendix.) 
Moreover, the total likelihood is a function only of the survival curve decreases in 
these intervals and is independent of how the decreases actually occur, so the e.s.c. 
is undefined in each [p,qi] and is well defined and flat between these intervals. If 
we write the sizes of the decreases of a survival curve in these intervals as sl, S2, ... * Sm 

(where Sm = I-- i=-j si), the total likelihood is a function of s , ..1, Smi and, within 
the indeterminacy implicit in the e.s.c. being undefined in the intervals in which it 
decreases, the problem of finding the e.s.c. has been reduced to the finite-dimensional 
problem of maximizing a function of si ... sm-1 subject to si > 0 and 1 _m1 si > ?. 
Except on those of the boundaries of this region on which the likelihood function is 
zero, the total log likelihood as a function of sl, ..., sm1 is strictly convex, so the 
values of sl, ..., sm-, that maximize it are unique and can be found by any efficient 
search algorithm that can be made to respect the m boundaries. Because of the easy 
availability of all the first and second derivatives, it is possible to use a suitably 
constrained Newton-Raphson search to locate the absolute maximum of the log 
likelihood function. (The search technique devised would, of course, be applicable 
in any other problem involving maximization of any other convex function of direction 
in the closed positive quadrant of m-space.) 
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5. PLOTTING THE E.S.C. 
The e.s.c. is defined only between the intervals in which it decreases, and so an 

e.s.c. plot consists of a decreasing sequence of horizontal lines. There may be small 
blank regions between the end of one line and the beginning of the next (e.g. around 
13-5 in Fig. 1) in which the e.s.c. is undefined. This plotted e.s.c. is the analogue for 
interval-censored data of the life-table for right-censored data, and has analogous 
advantages and disadvantages when compared with the c.d.f. of a fitted model from 
a parametric family of distributions such as the normal (Swan, 1969) or exponential. 
The inverse of the negative matrix of second derivatives of the log-likelihood function 
with respect to the non-zero elements of sl, ..., sm-, estimates their variance/covariance 
matrix. From this, the variance of the sum of any particular subset of the non-zero 
elements of sl, ..., sm-i can be estimated. The position of each line in an e.s.c. plot is 
unity minus such a sum, so standard errors can be estimated for the position of any 
line in an e.s.c. plot. These standard errors should, however, only be used descriptively 
and not in a statistical test, since asymptotically efficient rank invariant methods exist 
(Peto and Peto, 1972) for detecting differences between groups of independent 
interval-censored observations. 

6. REDUCING THE DIMENSION OF THE SEARCH 
If the data are very extensive, the dimension of the search for the e.s.c. may be 

excessive and it can then be reduced by coarsening the data somewhat by grouping. 
Search dimensions larger than a hundred or so will very rarely be needed. 

Example of dimension reduction 
If the development of radiologically visible metastases occurs within a year or so 

of first diagnosis of a particular cancer and X-ray photographs from several thousand 
patients are available at various times after diagnosis, then the dimension of the 
search for the e.s.c. of the distribution of the time to the first visible metastasis will 
be reduced from a few thousand to around fifty if the times at which the X-ray 
photographs were taken are recorded in weeks rather than hours from first diagnosis. 
The rounding can be made finer in regions of particular interest (e.g. immediately 
after diagnosis) if necessary. 

Strictly, left end-points of censoring intervals should be rounded downwards and 
right end-points upwards. However, if this is being done cross-overs must be avoided; 
thus, if left end-points are being rounded down to 000, right end-points should be 
rounded up to -999 rather than to 000. 

7. PRACTICAL DETAILS OF A SUITABLY CONSTRAINED NEWTON-RAPHSON 
SEARCH ALGORITHM 

7.1. General 
If m = 1 then the solution is s, = 1. Otherwise, we have a function of m (at least 

two) non-negative step sizes sl, ..., Sm to maximize. Each likelihood is a sum of 
certain of the si, and so the total likelihood may be zero only if one or more of the 
s* are zero, and maybe not even then. Write (s1, ..., Sm) = x and (s,, *., Sm-i) = y. 
Since Esi = 1, the value of y implies the value of x and the total log likelihood to be 
maximized can either be regarded as a function f(x) of x or as a function g(y) of y. 
Because g(y) is convex, the latter is more convenient. The possible values of y are 
restricted by the conditions si > 0 to that part of the positive quadrant y* > 0 in which 
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,yi < 1, and the possible values of y are still further restricted (by the total likelihood 
having to be positive rather than zero) to avoid any of the boundaries of this region 
where all of the values of si contributing to a particular likelihood vanish. (This 
incidentally implies Yi > 0 and Eyi < 1.) 

7.2. Newton-Raphson 
Consider movement away from y with certain components of y constrained to be 

unaltered in this movement. If the first and second derivatives of g(y) in the un- 
constrained dimensions of y are the vector D and the matrix-H, then the Newton- 
Raphson search for the suitably constrained value of y which maximizes g(y) involves 
going to y + D. H-1 (or, if that does not increase g, going a suitable fraction of the way 
towards y+ D. H-1), re-evaluating D and H at the new point and continuing until 
the elements of D are negligible. This is the basis of the present search algorithm. 
At the point y, the set B(y) = {ij yi = 0} of boundaries we are on can be divided into 
B+(y) = {i I yi = 0 and bgl/yi > 0} and B-(y) = {i I yi = 0 and bgl/yi < 0}. Movement 
off the boundaries i E B- initially decreases g, and so we derive the Newton-Raphson 
step with the elements yi I i E B- held constant at zero. If any of the changes suggested 
by this derived step to any of the elements yi i e B+ are negative, we modify the step 
by setting these changes to zero. If the step violates any distant boundaries (i.e. 
boundaries not in B(y)) we reduce the step length by a suitable factor so that the 
nearest of the distant violated boundaries is reached but is not crossed. We now 
evaluate the function at the new point. If it is worse than at the old point (either 
because the new point is on a boundary which gives a zero-likelihood function or 
because we have gone over the optimum and down on the other side), we successively 
halve the step length until, as must eventually occur, the function value at the new point 
is better than at the old point. This process is repeated indefinitely until we are at the 
unique absolute function maximum y (the necessary and sufficient condition for 
which is that agl/yi is small for all i not in B-(y)). 

7.3. Calculation of Derivatives and Step Lengths 
The partial derivatives of g with respect to y are easily derived from the partial 

derivatives of f with respect to x by 

ag/by. = f/laXi - f/laXm 

and 

a2 g/lay, yj = a2f/laX Xj - a2f/laX XbXm - a2fl/Xm aXj + 2fl/X2 . 

The constraints of the changes in yi i e B- to be zero can either be effected by 
reducing the vector D of first derivatives and the negative matrix H of second 
derivatives, inverting the matrix, multiplying them together and re-expanding the 
product vector with zeros or equivalently by overwriting the original vector and 
matrix with zeros in the elements to be reduced out (except for the diagonal elements, 
which become unity), inverting and multiplying. The latter is easier to program. 

The calculation of the partial derivatives of f with respect to x is straightforward. 
If the e.s.c. steps that contribute to the likelihood 4 for the ith individual are s 
F*<j Gi, then 

j=Gi 
Ei= xj. 

j=Fi 
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The first derivative of log 4i with respect to xj is thus either 1/1* or zero according to 
whether F* j1G? or not, and- b2 log l/bxj aXk is either I/lP or zero, depending on 
the values of j and k. The first and second derivatives of the total log-likelihood 
function I log 1i are therefore sums of such terms, and can conveniently be calculated 
by clearing D and H and then for each 1i calculating 1/1* and 1/12 and accumulating 
them into the appropriate elements of D and H. 

APPENDIX 
Proof that the e.s.c. is horizontal everywhere except in the intervals [qi,p*]: 

Define a set of points r1, ... rml where ri is some value greater than all the right 
and less than all the left end-points in [pi, q*+1]. Now if G(z) is a survival curve which 
is not flat outside the [qi,pi] then if G*(z) is a survival curve which is flat outside 
these intervals with G*(q) = 1, G*(pm) = 0 and G*(pj) = G*(qj+)= G(rj), then the 
total likelihood under G* is greater than that under G and G cannot therefore be the 
e.s.c. 
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