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 J. R. Statist. Soc. A, 370
 (1972), 135, Part 3, p. 370

 Generalized Linear Models

 By J. A. NELDER and R. W. M. WEDDERBURN

 Rothamsted Experimental Station, Harpenden, Herts

 SUMMARY

 The technique of iterative weighted linear regression can be used to obtain
 maximum likelihood estimates of the parameters with observations distri-
 buted according to some exponential family and systematic effects that can
 be made linear by a suitable transformation. A generalization of the analysis
 of variance is given for these models using log-likelihoods. These generalized
 linear models are illustrated by examples relating to four distributions; the
 Normal, Binomial (probit analysis, etc.), Poisson (contingency tables) and
 gamma (variance components).

 The implications of the approach in designing statistics courses are
 discussed.

 Keywords: ANALYSIS OF VARIANCE; CONTINGENCY TABLES; EXPONENTIAL FAMILIES;
 INVERSE POLYNOMIALS; LINEAR MODELS; MAXIMUM LIKELIHOOD:

 QUANTAL RESPONSE; REGRESSION; VARIANCE COMPONENTS; WEIGHTED

 LEAST SQUARES

 INTRODUCTION

 LINEAR models customarily embody both systematic and random (error) components,
 with the errors usually assumed to have normal distributions. The associated analytic
 technique is least-squares theory, which in its classical form assumed just one error
 component; extensions for multiple errors have been developed primarily for analysis
 of designed experiments and survey data. Techniques developed for non-normal
 data include probit analysis, where a binomial variate has a parameter related to an
 assumed underlying tolerance distribution, and contingency tables, where the distri-
 bution is multinomial and the systematic part of the model usually multiplicative.
 In both these examples there is a linear aspect to the model; thus in probit analysis
 the parameter p is a function of tolerance Y which is itself linear on the dose (or some
 function thereof), and in a contingency table with a multiplicative model the logarithm
 of the expected probability is assumed linear on classifying factors defining the table.
 Thus for both, the systematic part of the model has a linear basis. In another extension
 (Nelder, 1968) a certain transformation is used to produce normal errors, and a
 different transformation of the expected values is used to produce linearity.

 So far we have mentioned models associated with the normal, binomial and
 multinomial distributions (this last can be thought of as a set of Poisson distributions
 with constraints). A further class is based on the x2 or gamma distribution and
 arises in the estimation of variance components from independent quadratic forms
 derived from the original observations. Again the systematic component of the model
 has a linear structure.

 In this paper we develop a class of generalized linear models, which includes all
 the above examples, and we give a unified procedure for fitting them based on
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 1972] NELDER AND WEDDERBURN - Generalized Linear Models 371

 likelihood. This procedure is a generalization of the well-known one described by
 Finney (1952) for maximum likelihood estimation in probit analysis. Section 1
 defines the models, and Section 2 develops the fitting process and generalizes the
 analysis of variance. Section 3 gives examples with four special distributions for
 the random components. In Section 4 we consider the usefulness of the models for
 courses of instruction in statistics.

 1.1. The Random Component

 Suppose our observations z come from a distribution with density function

 -g(z; 6, b) = exp [x(o {z6-g(O) +h(z)}+13(#, z)],

 where ()(O >0 so that for fixed b we have an exponential family. The parameter
 b could stand for a certain type of nuisance parameter such as the variance a2 of a
 normal distribution or the parameter p of a gamma distribution (see Section 3.4).

 We denote the mean of z by ft.
 We require expressions for the first and second derivatives of the log-likelihood

 in terms of the mean and variance of z and the scale factor o6(4). We use the results
 (see, for example, Kendall and Stuart, 1967, p. 9)

 E(aL/a0) = 0 (1)

 and

 E?2la62) -EQ?L/a )2 (2)

 where the differentiation under the sign of integration used in their derivation can
 be justified by Theorem 9 of Lehmann (1959).

 We have

 AL/@ 0 = Z o - {zg (O)}.

 Then (1) implies that

 u= E(z) = g'(0);
 hence

 aLl a = 1o() (z- ). (3)

 From (2) we obtain a(O)g"(0) = [(O)]2 var (z), whence

 g"(0) = a(#)var(z) = V, say, (4)

 so that V is the variance of z when the scale factor is unity. Then

 a2 LI-a -24q V. (5)
 We note also that

 V = dp]/dO. (6)

 For a one-parameter exponential family c(A) = 1, we can write

 -(z; 0) = exp {z6-g(6) + h(z)},
 so that

 and

 _a2LIa-2 = V = var (z).
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 372 NELDER AND WEDDERBURN - Generalized Linear Models [Part 3,

 1.2. The Linear Model for Systematic Effects
 The term "linear model" usually encompasses both systematic and random

 components in a statistical model, but we shall restrict the term to include only the
 systematic components. We write

 m

 Y= E/3X2
 i=1

 when the xi are independent variates whose values are supposed known and Piq are
 parameters. The Piq may have fixed (known) values or be unknown and require
 estimation. An independent variate may be quantitative and produce a single x-variate
 in the model, or qualitative and produce a set of x-variates whose values are 0 and 1,
 or mixed. Consider the model

 Yjj=ajf+Pujj+jvq,j (i= 1,...,n,j=, 1...,p),

 where the data are indexed by factors whose levels are denoted by i and j. The term
 (x includes n parameters associated with a qualitative variate represented by n dummy

 x-variate components taking values 1 for one level and 0 for the rest; luij represents
 a quantitative variate, namely u with single parameter P,. and yj vi shows p parameters
 yj associated with a mixed independent variate whose p components take the values
 of vij for one level ofj and zero for the rest. A notation suitable for computer use has
 been developed by C. E. Rogers and G. N. Wilkinson and is to be published in
 Applied Statistics.

 1.3. The Generalized Linear Model

 We now combine the systematic and random components in our model to produce
 the generalized linear model. This is characterized by

 (i) A dependent variable z whose distribution with parameter 0 is one of the
 class in Section 1.1.

 (ii) A set of independent variables xl, ..., x. and predicted Y = ,/3 xi as in
 Section 1.2.

 (iii) A linking function 0 =f(Y) connecting the parameter 0 of the distribution
 of z with the Y's of the linear model.

 When z is normally distributed with mean 0 and variance u2 and when 0 = Y, we
 have ordinary linear models with Normal errors. Other examples of these models
 will be described in Section 3 under the various distributions of the exponential type.
 We now consider the solution of the maximum likelihood equations for the parameters
 of the generalized linear models and show its equivalence to a procedure of iterative
 weighted least squares.

 2. FITTING THE MODELS

 2.1. The Maximum Likelihood Equations

 The solution of the maximum likelihood equations is equivalent to an iterative
 weighted least-squares procedure with a weight function

 w = (d14dY)2/V

 and a modified dependendent variable (the working probit of probit analysis)

 y = y+ (Z-)/(d/dY),
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 1972] NELDER AND WEDDERBURN - Generalized Linear Models 373

 where ,u, Y and V are based on current estimates. This generalizes the results of
 Nelder (1968).

 Proof. Writing L for the log-likelihood from one observation we have, from (3)
 and (6),

 aL f (_ d 8 dlbyx

 =o0Z - V {t dZX. (7)

 VdYd

 and

 02L 02L

 O pj- ay2Xi Xi
 where

 a2Z b2L (dO\2 aL d2 O
 Oya= s dY_7+ To dy2

 =1 _f+ lV(-(dY + (z__) dY2

 i s?-d-yU /2 V+ (z o) d2 02 (8)
 (-d-) (y)

 The expected second derivative with negative sign is thus

 (0) {(d )2/ V}xi xj from (8).

 Writing w for the weight function (dp/dy)2/ V, (7) gives

 OL/Ij3, = o(k) wx,(z- )/(dl/d Y).

 Thus the Newton-Raphson process with expected second derivatives (equivalent to
 Fisher's scoring technique) for a sample of n gives

 ASP = C, (9)
 where A is a m x m matrix with

 n

 Ai= Wk Xik Xjk
 k=1

 and C is a m x 1 vector with

 Ci = IWkXik(ZIJu)/(dp4dY).
 Finally we have

 (AAi = 1A4jfPJ = Wk Xik Yk

 so that (9) may be written in the form

 AP* =r

 where rj= IWkXikYk, Yk= Yk+(Zk-,uk)/(dtkl/dYk) and * = +Sp
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 374 NELDER AND WEDDERBURN - Generalized Linear Models [Part 3,

 Starting method

 In practice we can obtain a good starting procedure for iteration as follows: take
 as a first approximation j = z and calculate Y from it; then calculate w as before
 and set y = Y. Then obtain the first approximation to the 3's by regression. The
 method may need slight modification to deal with extreme values of z. For instance,
 with the binomial distribution it will probably be adequate to replace instances of
 z =O0 or z = n with z = 2 and z = n - -, where, e.g. with the probit and logit trans-

 formations, tu = 0 or p = n would lead to infinite values for Y.

 2.2. Sufficient Statistics

 An important special case occurs when 0, the parameter of the distribution of
 the random element, and Y the predicted value of the linear model, coincide. Then

 L -zY-g(Y)+h(z),

 and, using (3),

 aL/ ai = CO) (z -) Xi.

 The maximum likelihood equations are then of the form k )(Z-) Xik = 0, the
 summation being over the observations. Hence we have

 E Zk Xik = E&k Xik. (10)

 For a qualitative independent variate, this implies that the fitted marginal totals with
 respect to that variate will be equal to the observed ones.

 From the expression for L we see that the quantities Ek Zk Xik are a set of sufficient
 statistics. Also, in (8) d2 O/dy2 = 0 and so

 _ 62p_ - Ex=(q) (dv / V) xi (11)

 When 0 is also the mean of the distribution, i.e. t = 0 = Y, we have the usual
 linear model with normal errors, for g'(0) = 0 gives

 g(O) = 1 02 +const

 which uniquely determines the distribution as Normal with variance 1/x(0b) (using
 Theorem 1 of Patil and Shorrock, 1965). The sub-class of models for which there
 are sufficient statistics was noted by Cox (1968), and Dempster (1971) has extended
 it to include many dependent variates.

 2.3. The Analysis of Deviance

 A linear model is said to be ordered if the fitting of the P's is to be done in the same
 sequence as their declaration in the model. Ordering (or partial ordering) may be
 implied by the structure of the model; for instance it makes no sense to fit an inter-

 action term (ab)ij before fitting the corresponding main effects a, and b3. It may also
 be implied by the objectives of the fitting, i.e. if a trend must be removed first before
 the fitting of further effects. More commonly, however, the ordering is to some
 extent arbitrary, and this gives rise to difficult problems of inference which we shall
 not try to tackle here. For ease of exposition of the basic ideas we shall assume that
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 1972] NELDER AND WEDDERBURN - Generalized Linear Models 375

 the model under consideration is ordered, and will be fitted sequentially a term at a
 time. The objectives of the fitting will be to assess how many terms are required
 for an adequate description of the data, and to derive the associated estimates of the
 parameters and their information matrix.

 Two extreme models are conceivable for any set of data, the minimal model
 which contains the smallest set of terms that the problem allows, and the complete
 model in which all the Ys are different and match the data completely so that {i = z.
 An extreme case of the minimal model is the null model, which is equivalent to
 fitting the grand mean only and effectively consigns all the variation in the data to the
 random component of the model, while the complete model fits exactly and so
 consigns all the variation in the data to the systematic part. The model-fitting process
 with an ordered model thus consists of proceeding a suitable distance from the minimal
 model towards the complete model. At each stage we trade increasing goodness-of-fit
 to the current set of data against increasing complexity of the model. The fitting of
 the parameters at each stage is done by maximizing the likelihood for the current
 model and the matching of the model to the data will be measured quantitatively by
 the quantity -2Lmax which we propose to call the deviance. For the four special
 distributions the deviance takes the form:

 Normal I(z - A)2/o2,

 Poisson 2{Ez In (z/j2) - (z - u},

 Binomial 2[Ez ln (z/4) + (n-z) ln {(n-z)/(n-A)}],

 Gamma 2p{-E ln (z/) + E(z-MI).

 Note that the deviance is measured from that of the complete model, so that terms
 involving constants, the data alone, or the scale factor alone are omitted. The second
 term in the expressions for the Poisson and gamma distribution is commonly
 identically zero (see Appendix for conditions and proof).

 Associated with each model is a quantity r termed the degrees of freedom which
 is given by the rank of the Xmatrix, or equivalently the number of linearly independent
 parameters to be estimated. For a sample of n independent observations, the deviance
 for the model has residual degrees of freedom (n-r). The degrees of freedom,
 multiplied where necessary by a scale factor, form a scale for a set of sequential models
 with which deviances can be compared; when (residual degrees of freedom x scale
 factor) is approximately equal to the deviance of the current model then it is unlikely
 that further fitting of systematic components is worth while. The scale factor may be
 known (e.g. unity for the Poisson distribution) or unknown (e.g. for the normal
 distribution with unknown variance) If unknown it may be estimable directly, e.g.
 by replicate observations, or indirectly from the deviance after an adequate model
 has been fitted. The adequacy of the model may be determined by plotting successive
 deviances against their degrees of freedom, and accepting as a measure of the scale
 factor the linear portion through the origin determined by those points with fewest
 degrees of freedom.

 2.4. The Generalization of Analysis of Variance

 The first differences of the deviances for the normal distribution are (apart from
 a scale factor) the sums of squares in the analysis of variance for a sequential fit as
 shown for a three-term model in Table 1.
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 376 NELDER AND WEDDERBURN - Generalized Linear Models [Part 3,

 TABLE 1

 Deviances and their differences

 Model term Deviance Difference Component

 Minimal dm dm-dA A

 B dA dA- dAB B eliminating A
 C dAB dAB-dABO C eliminating A and B
 Complete do dABC-do Residual

 The generalized analysis of variance for a sequential model is now defined to have
 components given by the first differences of the deviance, with degrees of freedom
 defined as above. These components have distributions proportional to X2, exactly
 for normal errors, approximately for others. Such a generalization of the analysis of
 variance was suggested by Good (1967).

 3. SPECIAL DISTRLJUTIONS

 3.1. The Normal Distribution

 Here, we have

 L = a -2(Zlk _ tj2 _-1Z2) -i ln 62 L =~~2
 and in the notation of Section 1.2

 p =G, V=1.

 Inverse polynomials provide an example where we assume that the observations
 u are normal on the log scale and the systematic effects additive on the inverse scale.
 Then

 z = ln u and Y = ell.

 Nelder (1966) gives examples of inverse polynomials calculated using the first
 approximation of the method in this paper.

 More generally, as shown in Nelder (1968), we can consider models in which
 there is a linearizing transformation f and a normalizing transformation g. This
 means that if the observations are denoted by u, then g(u) is normally distributed

 with mean ,u and constant variance u2 and f{g-1(Ik)} = ,S, xi.
 Then we have V = 1 and Y =f{g-'(Ik)} so that

 W = [(d/dY)g{f-1(y)}]2
 and

 y = Y+{g(u)-p}/[(d/dY)g{f-1(Y)}].

 Example: Fisher's tuberculin-test data

 Fisher (1949) published 16 measurements of tuberculin response which were
 classified by three four-level factors in a Latin-square type of arrangement as in
 Table 2.
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 1972] NELDER AND WEDDERBURN - Generalized Linear Models 377

 TABLE 2

 Cow class
 Sites Treatments

 I III II IV

 3+6 454 249 349 249 A B C D
 4+5 408 322 312 347 B A D C
 1+8 523 268 411 285 C D A B
 2+7 364 283 266 290 D C B A

 Fisher gave reasons for believing that the variances of the observations were
 proportional to their expectation, and that the systematic part of the model was
 linear on the log-scale. The treatments were:

 B Standard single

 A Standard double

 D Weybridge half

 C Weybridge single

 and these were treated as a 2 x 2 factorial arrangement, no interaction being fitted.
 If the data had been Poisson observations the maximum likelihood estimates

 would have had the property that the marginal totals of the fitted values (on the
 untransformed scale) would be equal to the marginal totals of the observations.
 Although the observations were not, in fact, counts but measurements in millimetres,
 Fisher decided to estimate the effects as if they were Poisson observations. He
 produced approximations to the effects by a method which made use of features
 of the particular Latin square, and then verified that these gave fitted values with
 margins approximately equal to the observed ones.

 Another approach would be to treat the square roots of the observations as
 normally distributed with variance a2/4. Then we have z = lu where u is an obser-
 vation and

 Y= 21n,u.

 Fisher gave estimates of effects on the log scale relative to B. We produced
 estimates by the square-root/logarithmic method just described, and the two sets of
 estimates are given in Table 3.

 TABLE 3

 Fisher's result Our result

 B 0.0000 0.0000
 A 0.2089 0.2092
 D 0.0019 0.0023
 C 0.2108 0.2115

 The method of this paper can also be used to analyse the data as if they were
 Poisson observations. The estimates of effects obtained by this method agree with
 our other estimates to about four decimal places.
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 378 NELDER AND WEDDERBURN - Generalized Linear Models [Part 3,

 3.2. The Poisson Distribution

 Here L = zln,u-,u so we have 0 = lnp. and V== pt.
 When Y= In,u there are sufficient statistics and a unique maximum likelihood

 estimate of /, provided it is finite. It will always be finite if there are no zero observations.
 If Y-=1p (O < A < 1), L -oo as IPIoo and hence L must have a maximum

 for finite p. Also

 a2L a2 L

 :api = E ay2a
 It is easily verified that a2L/ y2 < 0 and hence L is negative definite. It follows that

 P is uniquely determined. When Y = ,u the same result holds provided that the
 x's are linearly independent when units with z = 0 are excluded.

 The main application of generalized linear models with Poisson errors is to
 contingency tables. These arise from data on counts classified by two or more factors,
 and the literature on them is enormous (see, for example, Simpson, 1951; Ireland and
 Kullback, 1968; Chapter 8 of Kullback 1968; Ku et al., 1971).

 Probabilistic models for contingency tables are built on assumptions of a multi-
 nomial distribution or a set of multinomial distributions. As Birch (1963) has shown,
 the estimation of a set of independent multinomial distributions is equivalent to the
 estimation of a set of independent Poisson distributions, and in what follows we shall
 regard a contingency table as a set of independent Poisson distributions.

 The systematic part of models of contingency tables is usually multiplicative, and
 thus gives sufficient statistics with Poisson errors. The model terms usually correspond
 to qualitative x's, the equivalent of constant fitting, but quantitative terms occur
 naturally when the classifying factors have an underlying quantitative basis.

 Example: A contingency table

 Maxwell (1961, pp. 70-72) discusses the analysis of a 5 x 4 contingency table
 giving the number of boys with four different ratings for disturbed dreams in five
 different age groups. The data are given in Table 4. The higher the rating the
 more the boy suffers from disturbed dreams.

 TABLE 4

 Age Rating
 in

 years 4 3 2 1 Total

 5- 7 7 3 4 7 21
 8- 9 13 11 15 10 49
 10-11 7 11 9 23 50
 12-13 10 12 9 28 59
 14-15 3 4 5 32 44

 Total 40 41 42 100 223

 Here we can fit main effects and a linear x linear interaction using an x-variate
 of the form uv where u -2, - 1, 0, 1 or 2 according to the age group and v is the
 rating for disturbed dreams.
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 1972] NELDER AND WEDDERBURN - Generalized Linear Models 379

 The estimated linear x linear interaction is - 0-205.
 We can form an analysis of deviance thus (regarding main effects as fixed):

 Degrees
 Model term(s) Deviance Difference of

 freedom

 Minimal (i.e. main effects only) 32f46 18-38 1
 Linear x linear 14-08 14f08 11
 Complete 0

 Treating 18f38 and 14 08 as x2 variates with 1 and 11 degrees of freedom respectively
 we find that 18X38 is large while 14*08 is close to expectation. We conclude that the
 data are adequately described by a negative linear x linear interaction (indicating
 that the dream rating tends to decrease with age).

 Maxwell, using the method of Yates (1948), obtained a decomposition of a Pearson
 X2 as follows:

 Degrees

 Source of variation Of X2
 freedom

 Due to linear regression 1 17X94
 Due to departure from linear regression 11 13X73

 Total 12 31X67

 Maxwell's values of x2 are clearly quite close to ours and his conclusions are
 essentially the same.

 3.3. The Binomial Distribution

 We re-write the usual form

 L = rlnp+(n-r)lnq

 as

 L = z ln (k/n) + (n-z) ln {(-(/n)}

 = z ln {4/(n-)} + n ln (n-) + terms in n,

 i.e. we put z for r, and pu = E(z) = np. Thus

 6 =ln{/n)

 and

 V = t(n-p,)/n.

 Sufficient statistics are provided by the logit transformation giving

 = ney/(1 + ey).
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 380 NELDER AND WEDDERBURN - Generalized Linear Models [Part 3,

 Probit analysis

 We put

 p = n(D(Y),

 where (D is the cumulative normal distribution function. There are no sufficient
 statistics here; the analysis via iterative weighted least-squares is well known (Finney,
 1952).

 Fitting constants on a logit scale

 This technique was introduced by Dyke and Patterson (1952) and is applied to
 multiway tables of proportions. It is a special case of the logistic transformation when
 all the x's are qualitative, and yields as sufficient statistics the total responding

 (Zz) for each relevant margin.
 The logit analogue of probit analysis is, of course, formally identical, with quanti-

 tative rather than qualitative x's. Again arbitrary mixtures of x types do not introduce
 anything new. Models based on the logistic transform have been extensively developed
 by Cox (1970).

 From the results of Birch (1963) mentioned above, it follows that models with
 independent binomial data are equivalent to models with independent Poisson data.
 Bishop (1969) showed that a binomial model that is additive on the logit scale can be
 treated as a Poisson model additive on the log scale.

 3.4. The Gamma Distribution

 For the gamma distribution

 L = -p(z/,u+ln,u-lnz)-lnz.

 We have 0 =- l/p and V = dpud6 = ,U2. There are sufficient statistics when Y = l/,u.
 Thus the inverse transformation to linearity is related to the gamma distribution,

 as the logarithmic to the Poisson, or the identity transformation to the normal. The
 corresponding models seem not to have been explored.

 One application of linear models involving the gamma distribution is the esti-
 mation of variance components. Here we have sums of squares which are proportional
 to x2 variates and the expectation of each is a linear combination of several variances
 which are to be estimated. It is better to write

 L = - (zv/2p) - (v/2) In t +{(v/2) + 1} ln z,

 where v is the degrees of freedom of z; then putting 0=- v/2p we have
 V= dudO = 2u2/v and y = z, Y= =, and w = v/2u2.

 The deviance takes the form

 Iv Iln (z/,u) + {(z- A)I}]

 and the result of the Appendix gives Z{v(z-,u)/1A} = 0; hence the deviance simplifies
 to
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 1972] NELDER AND WEDDERBURN - Generalized Linear Models 381

 Example

 In a balanced incomplete block design in which b > v, we can produce an analysis
 of variance as follows (Yates, 1940 or paper VIII of Yates, 1970).

 Degrees of
 freedom

 Blocks (eliminating varieties):
 Varietal component v-1
 Remainder b-v

 Total b-1

 Varieties (ignoring blocks) v-1
 Intra-block error rv-v-b +1

 Total rv-1

 The expectations of some of the mean squares are as follows:

 Expected
 mean square

 Blocks (eliminating varieties):
 Varietal component a2 + Ekcb
 Remainder a2+ ka2b

 Intra-block error a2

 Here u2 iS the intra-block variance and U2 iS the inter-block variance.
 On p. 322 of Yates (1940) (or p. 207 of Yates, 1970) an example is given with

 v = 9, r = 8, k = 4, b = 18, A = 3 and E= - . The three mean squares mentioned
 above, their degrees of freedom and their expectations are as follows:

 Degrees
 Mean square of Expectation

 freedom

 Blocks (eliminating varieties):
 Varietal component 4-6329 8 a + 87Ob
 Remainder 15-3557 9 a2 +4ab

 Intra-block error 2-5968 46 a2

 Each iteration then takes the form of a weighted fitting of a straight line with
 x-values 2, 4 and 0.

 The estimates obtained were:

 o= 2-5870, b- = 20314.

 Yates equated the intra-block error mean square and the blocks (eliminating
 varieties) mean square to their expectations. This gives

 a = 2 5968, N2 = 2-0813.
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 382 NELDER AND WEDDERBURN - Generalized Linear Models [Part 3,

 This was one example where the first approximation was not very good. Our
 first approximation was

 2 = 2-5874, 'bA = 09313

 Subsequent iterations gave the following values:

 Iteration No. a2 orb

 1 2-5695 2.0737
 2 2-5874 2.0302
 3 2-5870 2.0315
 4 2-5870 2.0314

 4. THE MODELS IN THE TEACHING OF STATISTICS

 We believe that the generalized linear models here developed could form a useful
 basis for courses in statistics. They give a consistent way of linking together the
 systematic elements in a model with the random elements. Too often the student
 meets complex systematic linear models only in connection with normal errors, and if
 he encounters probit analysis this may seem to have little to do with the linear
 regression theory he has learnt. By isolating the systematic linear component
 the student can be introduced to multiway tables and their margins, additivity,
 weighting, quantitative and qualitative independent variates, and transformations,
 quite independently of the added complications of errors and associated probability
 distributions. The essential unity of the linear model, encompassing qualitative,
 quantitative and mixed independent variates can be brought out and the introduction
 of qualitative variates brings in naturally the ideas of singularity of matrices and of
 constraints.

 The complementary set of probability distributions would be introduced in the
 usual way, including the use of transformations of data to attain desirable properties
 of the errors. The difficult problem of discussing how far transformations can produce
 both linearity and normality simultaneously now disappears because the models
 allow two different transformations to be used, one to induce the linearity of the
 systematic component and one to induce the desired distribution in the error
 component. (Note that this distribution need not necessarily be equal-variance
 normal.)

 The systematic use of log-likelihood-ratios (or, equivalently, differences in
 deviance) extends the ideas of analysis of variance to other distributions and produces
 an additive decomposition for the sequential fit of the model. To appreciate the
 simplicity that this can produce it is only necessary to look at the algebraic complexities
 arising from the attempts to analyse contingency tables by extensions of the Pearson

 x2 approach. Irwin (1949), Lancaster (1949, 1950) and Kimball (1954) have given
 modifications of the usual formulae for the Pearson x2 in contingency tables, to
 produce an additive decomposition of x2 when the table is partitioned. These formulae
 are much more complicated than the usual one for Pearson x2. However, the equiva-
 lent likelihood statistic, namely

 2fn 1lnnnj- i~ ln n ni-YnlnnjI +n lnn }
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 does not need any modification to make it additive and is easy to compute as tables
 of n Inn are available (Kullback, 1968).

 Finally, the fact that a single algorithm can be used to fit any of the models
 implies that quite a small set of routines can provide the basic computing facility to
 allow students to fit models to a wide range of data. They can get experience of
 programming by writing special routines to deal with special forms of output required
 by particular models, such as the LD5O of probit analysis. In this way the distinction
 can be made between the model-fitting part of an analysis and the subsequent derived
 quantities (with estimates of their uncertainties) which particular problems require.

 We hope that the approach developed in this paper will prove to be a useful way of
 unifying what are often presented as unrelated statistical procedures, and that this unifi-
 cation will simplify the teaching of the subject to both specialists and non-specialists.
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 APPENDIX

 We can sometimes simplify the expression for deviance. In what follows, sum-
 mation is to be taken to be over the observations unless otherwise stated.

 Theorem. If either (a) Y = j1 or (b) Y = log p- and a constant term is being
 fitted in the model (say Y = E/i xi where xo takes the constant value 1) then
 ~{(z- 2)i/J2} = 0, where [i and Vj are the maximum likelihood estimates of , and V.

 Proof. For case (b)

 AL =0_
 ~Xo V

 In case (a), we have

 AL z-,udp, -Z __

 api V dYXi V 0 yi
 Hence

 (z V2) j Xi =

 Then

 - ~ ~ ~ ~ ~ ~ ~ ~ -

 (Z- H) Z Y (Z- &)_ A

 = zRiXiVY = i V Ij VY Xi) =
 This completes the proof. When the conditions of this theorem are satisfied, we have,
 for the Poisson distribution

 z-_2=O

 and for the gamma distribution

 - A 0.
 IJL

 Then the deviances for these distributions simplify as follows:

 Poisson 2 i z ln (zlj),

 Gamma -2 ln (z/p).
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