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DEFINITIONS. 

Centre of Location.--That abscissa of a frequency curve for which the sampling errors 
of optimum location are uncorrelated with those of optimum scaling. (9.) 

Consistency.-A statistic satisfies the criterion of consistency, if, when it is calculated 

from the whole population, it is equal to the required parameter. (4.) 
Distribution.-Problems of distribution are those in which it is required to calculate 

the distribution of one, or the sirmultaneous distribution of a number, of functions of 

quantities distributed in a known manner. (3.) 
Eficiency.-The efficiency of a statistic is the ratio (usually expressed as a percentage) 

which its intrinsic accuracy bears to that of the most efficient statistic possible. It 
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expresses the proportion of the total available relevant information of which that 
statistic makes use. (4 and 10.) 

Efficiency (Criterion).-The criterion of efficiency is satisfied by those statistics which, 
when derived from large samples, tend to a normal distribution with the least possible 
standard deviation. (4.) 

Estimation.-Problems of estimation are those in which it is required to estimate the 
value of one or more of the population parameters from a random sample of the 

population. (3.) 
Intrinsic Accuracy.-The intrinsic accuracy of an error curve is the weight in large 

samples, divided by the number in the sample, of that statistic of location which satisfies 
the criterion of sufficiency. (9.) 

Isostatistical Regions.-If each sample be represented in a generalized space of which 
the observations are the co-ordinates, then any region throughout which any set of 
statistics have identical values is termed an isostatistical region. 

Likelihood.-The likelihood that any parameter (or set of parameters) should have 

any assigned value (or set of values) is proportional to the probability that if this were 
so, the totality of observations should be that observed. 

Location.-The location of a frequency distribution of known form and scale is the 
process of estimation of its position with respect to each of the several variates. (8.) 

Optimum.-The optimum value of any parameter (or set of parameters) is that value 
(or set of values) of which the likelihood is greatest. (6.) 

Scaling.-The scaling of a frequency distribution of known form is the process of 
estimation of the magnitudes of the deviations of each of the several variates. (8.) 

Specification.-Problems of specification are those in which it is required to specify 
the mathematical form of the distribution of the hypothetical population from which 
a sample is to be regarded as drawn. (3.) 

Sufficiency.-A statistic satisfies the criterion.of sufficiency when no other statistic 
which can be calculated from the same sample provides any additional information as 
to the value of the parameter to be estimated. (4.) 

Validity.-The region of validity of a statistic is the region comprised within its 
contour of zero efficiency. (10.) 

1. THE NEGLECT OF THEORETICAL STATISTICS. 

SEVERAL reasons have contributed to the prolonged neglect into which the study of 

statistics, in its theoretical aspects, has fallen. In spite of the immense amount of 
fruitful labour which has been expended in its practical applications, the basic principles 
of this organ of science are still in a state of obscurity, and it cannot be denied that, 
during the recent rapid development of practical methods, fundamental problems have 
been ignored and fundamental paradoxes left unresolved. This anomalous state of 
statistical science is strikingly exemplified by a recent paper (1) entitled " The Funda- 
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mental Problem of Practical Statistics," in which one of the most eminent of modern 
statisticians presents what purports to be a general proof of BAYES' postulate, a proof 
which, in the opinion of a second statistician of equal eminence, " seems to rest upon a 
very peculiar-not to say hardly supposable-relation." (2.) 

Leaving aside the specific question here cited, to which we shall recur, the obscurity 
which envelops the theoretical bases of statistical methods may perhaps be ascribed 
to two considerations. In the first place, it appears to be widely thought, or rather 
felt, that in a subject in which all results are liable to greater or smaller errors, precise 
definition of ideas or concepts is, if not impossible, at least not a practical necessity. 
In the second place, it has happened that in statistics a purely verbal confusion has 
hindered the distinct formulation of statistical problems; for it is customary to apply 
the same name, mean, standard deviation, correlation coefficient, etc., both to the true 
value which we should like to know,. but can only estimate, and to the particular value 
at which we happen to arrive by our methods of estimation; so also in applying the 
term probable error, writers sometimes would appear to suggest that the former quantity, 
and not merely the latter, is subject to error. 

It is this last confusion, in the writer's opinion, more than any other, which has led 
to the survival to the present day of the fundamental paradox of inverse probability, 
which like an impenetrable jungle arrests progress towards precision of statistical 
concepts. The criticisms of BOOLE, VENN, and CHRYSTAL have done something towards 

banishing the rnethod, at least from the elementary text-books of Algebra ; but though 
we may agree wholly with CHRYSTAL that inverse probability is a mistake (perhaps the 
only mistake to which the mathematical world has so deeply committed itself), there 
yet remains the feeling that such a mistake would not have captivated the minds of 
LAPLACE and POISSON if there had been nothing in it but error. 

2. THE PURPOSE OF STATISTICAL METHODS. 

In order to arrive at a distinct formulation of statistical problems, it is necessary to 
define the task which the statistician sets himself: briefly, and in its most concrete 
form, the object of statistical methods is the reduction of data. A quantity of data, 
which usually by its mere bulk is incapable of entering the mind, is to be replaced by 
relatively few quantities which shall adequately represent the whole, or which, in other 
words, shall contain as much as possible, ideally the whole, of the relevant information 
contained in the original data. 

This object is accomplished by constructing a hypothetical infinite population, of 
which the actual data are regarded as constituting a random sample. The law of distri- 
bution of this hypothetical population is specified by relatively few parameters, which 
are sufficient to describe it exhaustively in respect of all qualities under discussion. 
Any information given by the sample, wvhich is of use in estimating the values of these 
parameters, is relevant information. Since the number of independent facts supplied in 

2 X 2 
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the data is usually far greater than the nunmber of facts sought, much of the information 

supplied by any actual sample is irrelevant. It is the object of the statistical processes 
employed in the reduction of data to exclude this irrelevant information, and to isolate 
the whole of the relevant information contained in the data. 

When we speak of the probability of a certain object fulfilling a certain condition, we 

imagine all such objects to be divided into two classes, according as they do or do not 
fulfil the condition. This is the only characteristic in them of which we take cognisance. 
For this reason probability is the most elementary of statistical concepts. It is a para- 
meter which specifies a simple dichotomy in an infinite hypothetical population, and it 

represents neither more nor less than the frequency ratio which we imagine such a 

population to exhibit. For example, when we say that the probability of throwing a 
five with a die is one-sixth, we must not be taken to mean that of any six throws with 
that die one and one only will necessarily be a five; or that of any six million 
throws, exactly one million will be fives; but that of a hypothetical population of an 
infinite number of throws, with the die in its original condition, exactly one-sixth will 
be fives. Our statement will not then contain any false assumption about the actual 
die, as that it will not wear out with continued use, or any notion of approximation, as 
in estimating the probability from a finite sample, although this notion may be logically 
developed once the meaning of probability is apprehended. 

The concept of a discontinuous frequency distribution is merely an extension of that of 
a simple dichotomy, for though the number of classes into which the population is 
divided may be infinite, yet the frequency in each class bears a finite ratio to that of the 
whole population. In frequency curves, however, a second infinity is introduced. No 
finite sample has a frequency curve : a finite sample may be represented by a histogram, 
or by a frequency polygon, which to the eye more and more resembles a curve, as the 
size of the sample is increased. To reach a true curve, not only would an infinite number 
of individuals have to be placed in each class, but the number of classes (arrays) into 
which the population is divided must be made infinite. Consequently, it should be 
clear that the concept of a frequency curve includes that of a hypothetical infinite 

population, distributed according to a mathematical law, represented by the curve. 
This law is specified by assigning to each element of the abscissa the corresponding 
element of probability. Thus, in the case of the normal distribution, the probability 
of an observation falling in the range dx, is 

1 (r-mw)' 
__ e 22 d.x, 

7V 27r 

in which expression x is the value of the variate, while m, the mean, and o, the standard 
deviation, are the two parameters by which the hypothetical population is specified. 
If a sample of n be taken from such a population, the data comprise n independent facts. 
The statistical process of the reduction of these data is designed to extract from them 
all relevant information respecting the values of m and a, and to reject all other 
information as irrelevant. 
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It should be noted that there is no falsehood in interpreting any set of independent 
measurements as a random sample from an infinite population; foi any such set of 
numbers are a random sample from the totality of numbers produced by the same 
matrix of causal conditions: the hypothetical population which we are studying is an 

aspect of the totality of the effects of these conditions, of whlatever nature they may be. 
The postulate of randomness thus resolves itself into the question, " Of what population 
is this a random sample ? "which must frequently be asked by every practical statistician. 

It will be seen from the above examples that the process of the reduction of data is, 
even in the simplest cases, performed by interpreting the available observations as a 

sample from a hypothetical infinite population; this is a fortiori the case when we have 
more than one variate, as when we are seeking the values of coefficients of correlation. 
There is one point, however, which may be briefly mentioned here in advance, as it 
has been the cause of some confusion. In the example of the frequency curve mentioned 
above, we took it for granted that the values of both the mean and the standard deviation 
of the population were relevant to the inquiry. This is often the case, but it sometimes 

happens that only one of these quantities, for example the standard deviation, is required 
for discussion. In the same way an infinite normal population of two correlated variates 
will usually require five parameters for its specification, the two means, the two standard 
deviations, and the correlation; of these often only the correlation is required, or if not 
alone of interest, it is discussed without reference to the other four quantities. In such 
cases an alteration has been made in what is, and what is not, relevant, and it is not 

surprising that certain small corrections should appear, or not, according as the other 

parameters of the hypothetical surface are or are not deemed relevant. Even more 

clearly is this discrepancy shown when, as in the treatment of such. fourfold tables- as 
exhibit the recovery from smallpox of vaccinated and unvaccinated patients, the method 
of one school of statisticians treats the proportion of vaccinated as relevant, while 
others dismiss it as irrelevant to the inquiry. (3.) 

3. THE PROBLEMS OF STATISTICS. 

The problems which arise in reduction of data may be conveniently divided into three 

types : 

(1) Problems of Specification. These arise in the choice of the mathematical form of 
the population. 

(2) Problems of Estimation. These involve the choice of methods of calculating from 
a sample statistical derivates, or as we shall call them statistics, whicl are designed 
to estimate the values of the parameters of the hypothetical population. 

(3) Problems of Distribution. These include discussions of the distribution of 
statistics derived from samples, or in general any functions of quantities whose 
distribution is knowln. 

It will be clear that when we know (1) what parameters are required to specify the 
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population from which the sample is drawn, (2) how best to calculate from the sample 
estimates of these parameters, and (3) the exact form of the distribution, in different 
samples, of our derived statistics, then the theoretical aspect of the treatment of any 
particular body of data has been completely elucidated. 

As regards problems of specification, these are entirely a matter for the practical 
statistician, for those cases where the qualitative nature of the hypothetical population 
is known do not involve any problems of this type. In other cases we may know by 
experience what forms are likely to be suitable, and the adequacy of our choice may 
be tested a posteriori. We must confine ourselves to those forms which we know how 
to handle, or for which any tables which may be necessary have been constructed. 
More or less elaborate forms will be suitable according to the volume of the data. 
Evidently these are considerations the nature of which may change greatly during the 
work of a single generation. We may instance the development by PEARSON of a very 
extensive system of skew curves, the elaboration of a method of calculating their para- 
meters, and the preparation of the necessary tables, a body of work which has enormously 
extended the power of modern statistical practice, and which has been, by pertinacity 
and inspiration alike, practically the work of a single man. Nor is the introduction of 
the Pearsonian system of frequency curves the only contribution which their author has 
made to the solution of problems of specification: of even greater importance is the 
introduction of an objective criterion of goodness of fit. For empirical as the specifica- 
tion of the hypothetical population may be, this empiricism is cleared of its dangers if 
we can apply a rigorous and objective test of the adequacy with which the proposed 
population represents the whole of the available facts. Once a statistic, suitable for 

applying such a test, has been chosen, the exact form of its distribution in random 

samples must be investigated, in order that we may evaluate the probability that a 
worse fit should be obtained from a random sample of a population of the type con- 
sidered. The possibility of developing complete and self-contained tests of goodness of 
fit deserves very careful consideration, since therein lies our justification for the free 
use which is made of empirical frequency formulae. Problems of distribution of great 
mathematical difficulty have to be faced in this direction. 

Although problems of estimation and of distribution may be studied separately, they 
are intimately related in the development of statistical methods. Logically problems of 
distribution should have prior consideration, for the study of the random distribution of 
different suggested statistics, derived from samples of a given size, must guide us in the 
choice of which statistic it is most profitable to calculate. The fact is, however, that 

very little progress has been made in the study of the distribution of statistics derived 
from. samples. In 1900 PEARSON (15) gave the exact form of the distribution of x2, the 
Pearsonian test of goodness of fit, and in 1915 the same author published (18) a similar 
result of more general scope, valid when the observations are regarded as subject to 
linear constraints. By an easy adaptation (17) the tables of probability derived from 
this formula may be made available for the more numerous cases in which linear con- 
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straiilt-s are imposed upon -tlhe hlypothetical population by the means which we employ 
in its reconstruction. The distributiori of the mean of samples of n from a normal 

population has long been known, but in 1908 "Student :' (4) broke new ground by 
calculating the distribution of the ratio which the deviation of the mean from its popula- 
tion value bears to the standard deviation calculated from the sample. At the same 
time he gave the exact form of the distribution in samples of the standard deviation. 
In 1915 FISHER (5) published the curve of distribution of the correlation coefficient for 
the standard method of calculation, and in 1921 (6) he published the corresponding 
series of curves for intraclass correlations. The brevity of this list is emphasised by the 
absence of investigation of other important statistics, such as the regression coefficients, 
multiple correlations, and the correlation ratio. A formula for the probable error of any 
statistic is, of course, a practical necessity, if that statistic is to be of service: and in 
the majority of cases such formuloe have been found, chiefly by the labours of PEARSON 

and his school, by a first approximation, which describes the distribution with sufficient 

accuracy if the sample is sufficiently large. Problems of distribution, other than the 
distribution of statistics, used to be not uncommon as examination problems in proba- 
bility, and the physical importance of problems of this type may be exemplified by the 
chemical laws of mass action, by the statistical mechanics of GIBBS, developed by 
JEANS in its application to the theory of gases, by the electron theory of LORENTZ, and 

by PIANCK'S development of the theory of quanta, although in all these appli- 
cations the methods employed have been, from the statistical point of view, relatively 

simple. 
The discussions of theoretical statistics may be regarded as alternating between 

problems of estimation and problems of distribution. In the first place a method of 

calculating one of the population parameters is devised from common-sense considera- 
tions : we next require to know its probable error, and therefore an approximate solution 
of the distribution, in samples, of the statistic calculated. It may then become apparent 
that other statistics may be used as estimates of the same parameter. When the 

probable errors of these statistics are compared, it is usually found that, in large samples, 
one particular method of calculation gives a result less subject to random errors than 
those given by other methods of calculation. Attacking the problem more thoroughly, 
and calculating the surface of distribution of any two statistics, we may find that the 
whole of the relevant information contained in one is contained in the other: or, in 
other words, that when once we know the other, knowledge of the first gives us no 
further information as to the value of the parameter. Finally it may be possible to 

prove, as in the case of the Mean Square Error, derived from a sample of normal popula- 
tion (7), that a particular statistic summarises the whole of the information relevant 
to the corresponding parameter, which the sample contains. In such a case the problem 
of estimation is completely solved. 
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4. CRITERIA OF ESTIMATION. 

The common-sense criterion employed in problems of estimation nlay be stated thus :- 
That when applied to the whole population the derived statistic should be equal to the 
parameter. This may be called the Criterion of Consistency. It is often the only test 

applied: thus, in estimating the standard deviation of a normally distributed population, 
from an ungrouped sample, either of the two statistics- 

= n A S (Ix- |) (Mean error) 

and 

,2 = S/ (x-P)2 (Mean square error) n 

will lead to the correct value, r , when calculated from the whole population. They both 
thus satisfy the criterion of consistency, and this has led many computers to use the 
first formula, although the result of the second has 14 per cent. greater weight (7), and 
the labour of increasing the number of observations by 14 per cent. can seldom be less 
than that of applying the more accurate formula. 

Consideration of the above example will suggest a second criterion, namely :-That in 
large samples, when the distributions of the statistics tend to normality, that statistic 
is to be chosen which has the least probable error. 

This may be called the Criterion of Efficiency. It is evident that if for large samples 
one statistic has a probable error double that of a second, while both are proportional 
to n-:, then the first method applied to a sample of 4n values will be no more accurate 
than the second applied to a sample of any n values. If the second method makes use 
of the whole of the information available, the first makes use of only one-quarter of it, 
and its efficiency may therefore be said to be 25 per cent. To calculate the efficiency of 
any given method, we must therefore know the probable error of the statistic calculated 
by that method, and that of the most efficient statistic which could be used. The 
square of the ratio of these two quantities then measures the efficiency. 

The criterion of efficiency is still to some extent incomplete, for different 
methods of calculation may tend to agreement for large samples, and yet differ for 
all finite samples. The complete criterion suggested by our work on the mean 
square error (7) is:- 

That the statistic chosen should summarise the whole of the relevant information 
supplied by the sample. 

This may be called the Criterion of Sufficiency. 
In mathematical language we may interpret this statement by saying that if 0 be 

the parameter to be estimated, 0, a statistic which contains the whole of the information 
as to the value of 0, which the sample supplies, and 02 any other statistic, then the 
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surface of distribution of pairs of values of 01 and 0,, for a given value of 0, is such that 
for a given value of 0,, the distribution of 02 does not involve 0. In other words, when 
0, is known, knowledge of the value of 0, throws no further light upon the value of 0. 

It may be shown that a statistic which fulfils the criterion of sufficiency will also 
fulfil the criterion of efficiency, when the latter is applicable. For, if this be so, the 
distribution of the statistics will in large samples be normal, the standard deviations 

being proportional to n-. Let this distribution be 

d I 
1 

{02 2'01-0--0 + 
0- 

-2 

0 

df = ->-e T-7 
1 2 -rrz 2-2 d J do0 s, 

then the distribution of 0o is 
1 82o- 

df = --/ e d 21 del, 

so that for a given value of 0, the distribution of 02 is 

1 ,_ sr,0,-oi 0__ 
e 

^ vT- 
21"^r V2 de2; df = - - .2// e 21-2 { d--o' }d2; 

Cr2 /27ri 

and if this does not involve 0, we must have 

r'a2 = O; 

showing that a- is necessarily less than o2, and that the efficiency of 02 is measured by 
r2, when r is its correlation in large samples with 01. 

Besides this case we shall see that the criterion of sufficiency is also applicable to finite 

samples, and to those cases when the weight of a statistic is not proportional to the 
number of the sample from which it is calculated. 

5. EXAMPLES OF THE USE OF THE CRITERION OF CONSISTENCY. 

In certain cases the criterion of consistency is sufficient for the solution of problems 
of estimation. An example of this occurs when a fourfold table is interpreted as repre- 
senting the double dichotomy of a normal surface. In this case the dichotomic ratios 
of the two variates, together with the correlation, completely specify the four fractions 
into which the population is divided. If these are equated to the four fractions into 
which the sample is divided, the correlation is determined uniquely. 

In other cases where a small correction has to be made, the amount of the correction 
is not of sufficient importance to justify any great refinement in estimation, and it is 
sufficient to calculate the discrepancy which appears when the uncorrected method is 

applied to the whole population. Of this nature is SHEPPARD'S correction for grouping, 
VOL. CCXXII.-A. 2 Y 
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and it will illustrate this use of the criterion of consistency if we derive formulae for 
this correction without approximation. 

Let ~ be the value of the variate at the mid point of any group, a the interval of 
grouping, and x the true value of the variate at any point, then the kth moment of an 
infinite grouped sample is 

ekf (x) dx, 
-a 

in which of f(x) dx is the frequency, in any element dx, of the ungrouped population, and 

p being any integer. 
Evidently the kth moment is periodic in 0, we will therefore equate it to 

Ao + A1 sin 0 + A2 sin 20... 

+ Bi cos 0+ B2 cos 20.... 
Then 

:p - X2r I -la 

Ao= 2 J d f (x) dx 

1 r2i00 o c+ la 
AS sin sO dO s0 (x) dx, 

7r 
p=_~x 0 u-Ja- 

01 P=00 
Bs=k J cos sgd0J (x) dx. 

But 

0 a C-27rp, 0 
a 

therefore 

2w do = e 

sin sO = sin -7 s, 
a 

2C cos o = cos - se, a 

hence 

AO = deF ie f(X)dx = f- X(), dx kC. 
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Inserting the values 1, 2, 3 and 4 for k, we obtain for the aperiodic terms of the four 
moments of the grouped population 

r0 
IAo = I xf(x)dx, 

2Ao = (+ 12f f(x) dx, 

A f (x+ ) f (x) dx, 

4Ao = X 4+ X + 80) f (X) dx. 

If we ignore the periodic terms, these equations lead to the ordinary SHEPPARD 

corrections for the second and fourth moment. The nature of the approximation involved 
is brought out by the periodic terms. In the absence of high contact at the ends of the 
curve, the contribution of these will, of course, include the terms given in a recent paper 
by PEARSON (8); but even with high contact it is of interest to see for what degree of 
coarseness of grouping the periodic terms become sensible. 

Now 
1 

=< 
f" a 

As=- sin sO dO kf (x)dcx 
p =o0 r-J 

2 r Csin 27 de - :kf(x) dx, 
-a -oo a 1 e-a f 

f (x) dx - sin 2r d. 
Ca J - x-2a Ca 

But 
2 +2 2 -s a 27sx 

go sin d$ fo-- cos -rs, 
a Jx-2a a 7rS a 

therefore 

As = (-)'sa cos2 (x) dx; 

similarly the other terms of the different moments may be calculated. 
For a normal curve referred to the true mean 

2 
,As = (-)C+l2ee 2e2 

bs = 0, 
in which 

a = 27re. 

The error of the mean is therefore 
/ 4o-2 9&02 

-2 e-e2 sin o-e-2 2 sin 20 + e 2 sin 30-...). 

2 Y 2 
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To illustrate a coarse grouping, take the group interval equal to the standard deviation: 
then 

2r 
e =_ 

and the error is 
a' 2,12 - - e- sin 0 
7F 

with sufficient accuracy. The standard error of the mean being -, we may calculate 
V/n 

the size of the sample for which the error due to the periodic terms becomes equal to 
one-tenth of the standard error, by putting 

C C _ 27r2 

10/n n T 
whence 

n = - e42 = 13,790 billion. 
100 

For the second moment 
( s ( / 2 s2V2 

B2 
= 2 

and, if we put 
v/22 2 _*<M2 - = 4- e , 

o10/n 
there results 

n = -o-e42r = 175 billion. 

The error, while still very minute, is thus more important for the second than for 
the first moment. 

For the third moment 
s 48 2 

F4 2 
292\ A ~ (Sd e4+ 

A, = (--)s - I + 6,_ 
3 4 

S 6s 'e 2 

putting 

2/10v/n 

= 2 e=' = 14 7 billion. 

While for the fourth moment 

Q 6^ f f 6 1 s30'2 

B= (-) -(7r2_3) 4 (7r2-6) e 22 

so that, if we put, 
v/96 . 2- 4.244 

n = -- e4 = 1- 34 billion. 
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In a similar manner the exact form of SHEPPARD'S correction may be found for other 
curves ; for the normal curve we may say that the periodic terms are exceedingly minute 
so long as a is less than -, though they increase very rapidly if a is increased beyond 
this point. They are of increasing importance as higher moments are used, not only 
absolutely, but relatively to the increasing probable errors of the higher moments. 
The principle upon which the correction is based is merely to find the error when the 
moments are calculated from an infinite grouped sample; the corrected moment therefore 
fulfils the criterion of consistency, and so long as the correction is small no greater 
refinement is required. 

Perhaps the most extended use of the criterion of consistency has been developed by 
PEARSON in the " Method of Moments." In this method, which is without question of 

great practical utility, different forms bf frequency curves are fitted by calculating as 

many moments of the sample as there are parameters to be evaluated. The parameters 
chosen are those of an infinite population of the specified type having the same moments 
as those calculated from the sample. 

The system of curves developed by PEARSON has four variable parameters, and may 
be fitted by means of the first four moments. For this purpose it is necessary to confine 
attention to curves of which the first four moments are finite; further, if the accuracy 
of the fourth moment should increase with the size of the sample, that is, if its probable 
error should not be infinitely great, the first eight moments must be finite. This 
restriction requires that the class of distribution in which this condition is not fulfilled 
should be set aside as " leterotypic," and that the fourth moment should become 

practically valueless as this class is approached. It should be made clear, however, 
that there is nothing anomalous about these so-called " heterotypic " distributions 

except the fact that the method of moments cannot be applied to them. More- 
over, for that class of distribution to which the method can be applied, it has not 
been shown, except in the case of the normal curve, that the best values will be 
obtained by the method of moments. The method will, in these cases, certainly be 
serviceable in yielding an approximation, but to discover whether this approximation 
is a good or a bad one, and to improve it, if necessary, a more adequate criterion is 

required. 
A single example will be sufficient to illustrate the practical difficulty alluded to 

above. If a point P lie at known (unit) distance from a straight line AB, and lines be 
drawn at random through P, then the distribution of the points of intersection with 
AB will be distributed so that the frequency in any range dx is 

= 1 dx 
df = 

7' 1 + (X-m)2 

in which x is the distance of the infinitesimal range dx from a fixed point 0 on the line, 
and m is the distance, from this point, of the foot of the perpendicular PM. The distri- 
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bution will be a svyumetrical one (Type VII.) having its centre at x =-m v (fig. 1). It is 
therefore a perfectly definite problem to estimate the value of m (to find the best value of 
m) from a random sample of values of x. We have stated the problem in its simplest 
possible form: only one parameter is required, the middle point of the distribution. 

-6 -5 -4 -3 -2 -10 1 2 3 4 5 6 

Fig. 1. Symmetrical error curves of equal intrinsic accuracy. 

A . .f . . . . . 
+ 

rr l+x2. 

B . . . . . . . e 4 

By the method of moments, this should be given by the first moment, that is by the 
mean of the observations: such would seem to be at least a good estimate. It is, 
however, entirely valueless. The distribution of the mean of such samples is in fact the 
same, identically, as that of a single observation. In taking the mean of 100 values of 
x, we are no nearer obtaining the value of m than if we had chosen any value of x out 
of the 100. The problem, however, is not in the least an impracticable one: clearly 
from a large sample we ought to be able to estimate the centre of the distribution with 
some precision; the mean, however, is an entirely useless statistic for the purpose. 
By taking the median of a large sample, a fair approximation is obtained, for the standard 

error of the median of a large sample of n is 2- which, alone, is enough to show that 

by adopting adequate statistical methods it must be possible to estimate the value for 
m, with increasing accuracy, as the size of the sample is increased. 

This example serves also to illustrate the practical difficulty which observers often 
find, that a few extreme observations appear to dominate the value of the mean. In 
these cases the rejection of extreme values is often advocated, and it may often happen 
that gross errors are thus rejected. As a statistical measure, however, the rejection of 
observations is too crude to be defended: and unless there are other reasons for rejec- 
tion than mere divergence from the majority, it would be more philosophical to accept 
these extreme values, not as gross errors, but as indications that the distribution of 
errors is not normal. As we shall show, the only Pearsonian curve for which the mean 
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is the best statistic for locating the curve, is the normal or gaussian curve of errors. If 
the curve is not of this form the mean is not necessarily, as we have seen, of any value 
whatever. The determination of the true curves of variation for different types of work 
is therefore of great practical importance, and this can only be done by different workers 
recording their data in full without rejections, however they may please to treat the 
data so recorded. Assuredly an observer need be exposed to no criticism, if after 

recording data which are not probably normal in distribution, he prefers to adopt some 
value other than the arithmetic mean. 

6. FORMAL SOLUTION OF PROBLEMS OF ESTIMATION. 

The form in which the criterion of sufficiency has been presented is not of direct 
assistance in the solution of problems of estimation. For it is necessary first to know 
the statistic concerned and its surface of distribution, with an infinite number of other 
statistics, before its sufficiency can be tested. For the solution of problems of 
estimation we require a method which for each particular problem will lead us 

automatically to the statistic by which the criterion of sufficiency is satisfied. Such a 
method is, I believe, provided by the Method of Maximum Likelihood, although I am 
not satisfied as to the mathematical rigour of any proof which I can put forward to 
that effect. Readers of the ensuing pages are invited to form their own opinion as 
to the possibility of the method of the maximum likelihood leading in any case to an 
insufficient statistic. For my own part I should gladly have withheld publication until 
a rigorously complete proof could have been formulated; but the number and variety 
of the new results which the method discloses press for publication, and at the same 
time I am not insensible of the advantage which accrues to Applied Mathematics from 
the co-operation of the Pure Mathematician, and this co-operation is not infrequently 
called forth by the very imperfections of writers on Applied Mathematics. 

If in any distribution involving unknown parameters 0,, 02, 0,..., the chance of 
an observation falling in the range dx be represented by 

f(x, 0, 02, ... ) dx, 

then the chance that in a sample of n, n, fall in the range dx,, n2 in the range dx2, and 
so on, vwill be 

( (!) f ( v, 01, 02, ... ) dx)'n 

The method of maximum likelihood consists simply in choosing that set of values 
for the parameters which makes this quantity a maximum, and since in this expression 
the parameters are only involved in the functionf, we have to make 

S (logf) 
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a maximum for variations of 01, 02, 0, &c. In this form the method is applicable to 
the fitting of populations involving any number of variates, and equally to discontinuous 
as to continuous distributions. 

In order to make clear the (listinction between this Imethod and that of BAYES, we 

will apply it to the same type of probleim as that wvhich BAYES discussed, in the hope 
of making clear exactly of wThat kind is the information which a sample is capable of 

supplying. This question naturally first arose, not with respect to populations distri- 
buted in frequency curves and surfaces, but with respect to a population regarded as 
divided into two classes only, in fact in problems of probability. A certain proportion, 
p, of an infinite population is supposed to be of a certain kind, e.g., " successes," the 
remainder are then " failures." A sample of n is taken and found to contain x successes 
and y failures. The chance of obtaining such a sample is evidently 

! P'(1-P)Y 

Applying the method of maximum likelihood, we have 

S (logf) = x log p+y log (I -) 

whence, differentiating with respect to p, in order to make this quantity a maximum, 

y A x 
--= _ , or - -. 
p 1p n 

The question then arises as to the accuracy of this determination. This question was 
first discussed by BAYES (10), in a form which we may state thus. After observing 
this sample, when we know p, what is the probability that p lies in any range dp ? In 
other words, what is the frequency distribution of the values of p in populations which 
are selected by the restriction that a sample of n taken from each of them yields x 
successes. Without further data, as BAYES perceived, this problem is insoluble. To 
render it capable of mathematical treatment, BAYES introduced the datum, that among 
the populations upon which the experiment was tried, those in which p lay in the range 
dp were equally frequent for all equal ranges dp. The probability that the value of p 
lay in any range dp was therefore assumed to be simply dp, before the sample was 
taken. After the selection effected by observing the sample, the probability is clearly 
proportional to 

px ( l-p)Ydp. 

After giving this solution, based upon the particular datum stated, BAYES adds a 
scholium the purport of which would seem to be that in the absence of all knowledge 
save that supplied by the sample, it is reasonable to assume this particular a priori 
distribution of p. The result, the datum, and the postulate implied by the scholium, have 
all been somewhat loosely spoken of as BAYES' Theorem. 
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The postulate would, if true, be of great importance in bringing an immense variety 
of questions within the domain of probability. It is, however, evidently extremely arbi- 
trary. Apart from evolving a vitally important piece of knowledge, that of the exact 
form of the distribution of values of p, out of an assumption of complete ignorance, it is 
not even a unique solution. For we might never have happened to direct our attention 
to the particular quantity p: we might equally have measured probability upon an 

entirely different scale. If, for instance, 

sin 0 = 2p -1, 

the quantity, 0, measures the degree of probability, just as well as p, and is even, for 
some purposes, the more suitable variable. The chance of obtaining a sample of x 
successes and y failures is now 

! (1 +sin 0) ( 1-sin 0)Y; 2 x y! 

applying the method of maximum likelihood, 

S (logf) = x log (1 +siin 0) +y log ( -sin 0) -n log 2, 

and differentiating with respect to 0, 

x cos 0 y cos 0 . y xcos0 _ ycos0 whence sin 0 - 
l.+sn 0 1-sinO' 2n 

an exactly equivalent solution to that obtained using the variable p. But what a priori 
assumption are we to make as to the distribution of 0 ? Are we to assume that 0 is 

equally likely to lie in all equal ranges do ? In this case the a priori probability will 
be d0/7r, and that after making the observations will be proportional to 

(1 + sin 0)x ( -sin o0) d0. 

But if we interpret this in terms of p, we obtain 

px (1-P)y dp p- (1 -p)Y dp, 
vp (1-p)" 

a result inconsistent with that obtained previously. In fact, the distribution previously 
assumed for p was equivalent to assuming the special distribution for 0, 

cos 0 
df= de, 

the arbitrariness of which is fully apparent when we use any variable other than p. 
In a less obtrusive form the same species of arbitrary assumption underlies the method 
VOL. CCXXII.-A, 2 4 
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known as that of inverse probability. Thus, if the same observed result A might be 
the consequence of one or other of two hypothetical conditions X and Y, it is assumed 
that the probabilities of X and Y are in the same ratio as the probabilities of A occurring 
on the two assumptions, X is true, Y is true. This amounts to assuming that before 
A was observed, it was known that our universe had been selected at random for an 
infinite population in which X was true in one half, and Y true in the other half. 
Clearly such an assumption is entirely arbitrary, nor has any method been put forward 
by which such assumptions can be made even with consistent uniqueness. There 
is nothing to prevent an irrelevant distinction being drawn among the hypothetical 
conditions represented by X, so that we have to consider two hypothetical possibilities 
X, and X2, on both of which A will occur with equal frequency. Such a distinction 
should make no difference whatever to our conclusions; but on the principle of inverse 
probability it does so, for if previously the relative probabilities were reckoned to be 
in the ratio x to y, they must now be reckoned 2x to y. Nor has any criterion been 
suggested by which it is possible to separate such irrelevant distinctions from those 
which are relevant. 

There would be no need to emphasise the baseless character of the assumptions made 
under the titles of inverse probability and BAYES' Theorem in view of the decisive 
criticism to which they have been exposed at the hands of BOOLE, VENN, and CHRYSTAL, 
were it not for the fact that the older writers, such as LAPLACE and POISSON, who accepted 
these assumptions, also laid the foundations of the modern theory of statistics, and have 
introduced into their discussions of this subject ideas of a similar character. I must 
indeed plead guilty in my original statement of the Method of the Maximum Likeli- 
]lood (9) to having based my argument upon the principle of inverse probability; in the 
same paper, it is true, I emphasised the fact that such inverse probabilities were relative 
only. That is to say, that while we might speak of one value of p as having an inverse 
probability three times that of another value of p, we might on no account introduce 
the differential element dp, so as to be able to say that it was three times as probable 
that p should lie in one rather than the other of two equal elements. Upon considera- 
tion, therefore, I perceive that the word probability is wrongly used in such a connection: 
probability is a ratio of frequencies, and about the frequencies of such values we can 
know nothing whatever. We must return to the actual fact that one value of p, of 
the frequency of which we know nothing, would yield the observed result three times 
as frequently as would another value of p. If we need a word to characterise this 
relative property of different values of p, I suggest that we may speak without confusion 
of the likelihood of one value of p being thrice the likelihood of another, bearing always 
in mind that likelihood is not here used loosely as a synonym of probability, but simply 
to express the relative frequencies with which such values of the hypothetical quantity 
p would in fact yield the observed sample. 

The solution of the problems of calculating from a sample the parameters of the 
hypothetical population, which we have put forward in the method of maximum likeli- 
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hood, consists, then, simply of choosing such values of these parameters as have the 
maximum likelihood. Formally, therefore, it resembles the calculation of the mode of 
an inverse frequency distribution. This resemblance is quite superficial: if the scale 
of measurement of the hypothetical quantity be altered, the mode must change its 
position, and can be brought to have any value, by an appropriate change of scale; but 
the optimum, as the position of maximum likelihood may be called, is entirely unchanged 
by any such transformation. Likelihood also differs from probability* in that it is not 
a differential element, and is incapable of being integrated : it is assigned to a particular 
point of the range of variation, not to a particular element of it. There is therefore an 
absolute measure of probability in that the unit is chosen so as to make all the elementary 
probabilities add up to unity. There is no such absolute measure of likelihood. It 
may be convenient to assign the value unity to the maximum value, and to neasure 
other likelihoods by comparison, but there will then be an infinite number of values 
whose likelihood is greater than one-half. The sum of the likelihoods of admissible 
values will always be infinite. 

Our interpretation of BAYES' problem, then, is that the likelihood of any value of p 
is proportional to 

pX (1p)Y, 

and is therefore a maximum when 
x . . . . p --- _,-7 
n 

which is the best value obtainable from the sample; we shall term this the optimum 
value of p. Other values of p for which the likelihood is not much less cannot, however, 
be deemed unlikely values for the true value of p. We do not, and cannot, know, from 
the information supplied by a sample, anything about the probability that p should lie 
between any named values. 

The reliance to be placed on such a result must depend upon the frequency distribution 
of x, in different samples from the same population. This is a perfectly objective 
statistical problem, of the kind we have called problems of distribution ; it is, however, 
capable of an approximate solution, directly from the mathematical form of the 
likelihood. 

When for large samples the distribution of any statistic, 01, tends to normality, we 

* It should be remarked that likelihood, as above defined, is not only fundamentally distinct from 
mathematical probability, but also from the logical " probability " by which Mr. KEYNES (21) has recently 
attempted to develop a method of treatment of uncertain inference, applicable to those cases where we 
lack the statistical information necessary for the application of mathematical probability. Although, in 
an important class of cases, the likelihood may be held to measure the degree of our rational belief in a 
conclusion, in the same sense as Mr. KEYNES' " probability," yet since the latter quantity is constrained, 
somewhat arbitrarily, to obey the addition theorem of mathematical probability, the likelihood is a 

quantity which falls definitely outside its scope. 
2 z 2 
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may write down the chance for a given value of the parameter 0, that 0, should lie in 
the range do, in the form 

( 01 (-0) 

$ ==-=:e d6,. 

The mean value of 0, will be the true value 0, and the standard deviation is a-, the 

sample being assumed sufficiently large for us to disregard the dependence of aC upon O. 
The likelihood of any value, 0, is proportional to 

(e, -ey2 

this quantity having its maximum value, unity, when 

log 0; 

Differentiating now a second time 

2" 1 
a02 log : 2= 2 

Now 4) stands for the total frequency of all samples for which the chosen statistic 
has the value 01, consequently =- S' (0), the summation being taken over all such 
examples, where /s stands for the probability of occurrence of a certain specified sample. 
For which we know that 

iog p = CJ+S (logf), 
the summation being taken over the individual members of the sample. 

If now we expand logf in the form 

--2 

log f (0) logf (0) ?-, log (0) + log f(o,) f ...,) 

or 

log f = log i + 0-01+ 2 0-0 +..., 
we have 

log = c+0-0os(a)+0-01e, (b)+...; 
now for optimum statistics 

S (a) 0, 

and for sufficiently large samples S (b) differs from nb only by a quantity of order v/nab ; 
moreover, 0-01 being of order n-~, the only terms in log p which are not reduced 
without limit, as n is increased, are 

log C + nT_0 ; 
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hence 

^oc e~ ?----. 

Now this factor is constant for all samples which have the same value of 0,, hence 
the variation of 4) with respect to 0 is represented by the same factor, and conse- 

quently 
log q = C'+nn b 0-01; 

whence 
1 a2 

2--; = ~-flog 
I = n6, 

where 

b -= logf(01), 
p32 

01 being the optimum value of 0. 
The formula 

- = ax log 

supplies the most direct way known to me of finding the probable errors of statistics. 
It may be seen that the above proof applies only to statistics obtained by the method 
of maximum likelihood.* 

For example, to find the standard deviation of 

A X 

n 

* A similar method of obtaining the standard deviations and correlations of statistics derived from 

large samples was developed by PEARSON and FILON in 1898 (16). It is unfortunate that in this memoir 
no sufficient distinction is drawn between the population and the sample, in consequence of which the 
formulae obtained indicate that the likelihood is always a maximum (for continuous distributions) when 
the mean of each variate in the sample is equated to the corresponding mean in the population (16, p. 232, 

A, = 0 "). If this were so the mean would always be a sufficient statistic for location; but as we have 
already seen, and will see later in more detail, this is far from being the case. The same argument, indeed, 
is applied to all statistics, as to which nothing but their consistency can be truly affirmed. 

The probable errors obtained in this way are those appropriate to the method of maximum likelihood, 
but not in other cases to statistics obtained by the method of moments, by which method the examples 
given were fitted. In the ' Tables for Statisticians and Biometricians ' (1914), the probable errors of the 
constants of the Pearsonian curves are those proper to the method of moments; no mention is there made 
of this change of practice, nor is the publication of 1898 referred to. 

It would appear that shortly before 1898 the process which leads to the correct value, of the probable 
errors of optimnum statistics, was hit upon and found to agree with the probable errors of statistics found 

by the method of moments for normal curves and surfaces; without further enquiry it would appear to 
have been assumed that this process was valid in all cases, its directness and simplicity being peculiarly 
attractive. The mistake was at that time, perhaps, a natural one; but that it should have been discovered 
and corrected without revealing the inefficiency of the method of moments is a very remarkable circumstance. 

In 1903 the correct formulhe for the probable errors of statistics found by the method of moments are 

given in ' Biometrika ' (19); references are there given to SHEPPARD (20), whose method is employed, as 
well as to PEARSON and FILON (16), although both the method and the results differ from those of the latter. 
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in samples from an infinite population of which the true value is p, 

logf = log p+ y log ( -p), 

l * .' x y 

_x y -log f = --- 
ap2 p lI-p 

Now the mean value of x in pn, and of y is (l--p) n, hence the mean value of 

-logfi 1 is- 

therefore 
2_p(L-p) 

2'~ - -- 

n 

the well-known formula for the standard error of p. 

7. SATISFACTION OF THE CRITERION OF SUFFICIENCY. 

That the criterion of sufficiency is generally satisfied by the solution obtained by 
the method of maximum likelihood appears from the following considerations. 

If the individual values of any sample of data are regarded as co-ordinates in 

hyperspace, then any sample may be represented by a single point, and the frequency 
distribution of an infinite number of random samples is represented by a density 
distribution in hyperspace. If any set of statistics be chosen to be calculated from 
the samples, certain regions will provide identical sets of statistics; these may be called 
isostatistical regions. For any particular space element, corresponding to an actual 

sample, there will be a particular set of parameters for which the frequency in that 
element is a maximum; this will be the optimum set of parameters for that element. 
If now the set of statistics chosen are those which give the optimum values of the 

parameters, then all the elements of any part of the same isostatistical region will 
contain the greatest possible frequency for the same set of values of the parameters, 
and therefore any region which lies wholly within an isostatistical region will contain 
its maximum frequency for that set of values. 

Now let 0 be the value of any parameter, 0 the statistic calculated by the method of 
maximum. likelihood, and 01 any other statistic designed to estimate the value of 0, 
then for a sample of given size, we may take 

f (, 0, e1)d do1d 

to represent the frequency with which 0 and 0, lie in the assigned ranges do and dol. 
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The region dOdol evidently lies wholly in the isostatistical region d4. Hence the 
equation 

a log/f(, 4, 1) = o 

is satisfied, irrespective of 01, by the value 0 = . This condition is satisfied if 

y(0, 0, o ,)= ) (o, 4) 0'.0 (, 0); 
for then 

alog =a log , 

and the equation for the optimum degenerates into 

i log q (, 4) 0, 

which does not involve 01. 
But the factorisation of f into factors involving (0, 6) and (4, 01) respectively is merely 

a -mathematical expression of the condition of sufficiency; and it appears that any 
statistic which fulfils the condition of sufficiency must be a solution obtained by the 
method of the optimum. 

It may be expected, therefore, that we shall be led to a sufficient solution of problems 
of estimation in general by the following procedure. Write down the formula for the 
probability of an observation falling in the range dx in the form 

f(0, x) dx, 

where 0 is an unknown parameter. Then if 

L= S(logf) 

the summation being extended over the observed sample, L differs by a constant only 
from the logarithm of the likelihood of any value of 0. The most likely value, 0, is 
found by the equation 

aL 
-= O, 80 

and the standard deviation of 4, by a second differentiation, from the formula 

2_L 1, 

802 ~ 2 

this latter formula being applicable only where 6 is normally distributed, as is often 
the case with considerable accuracy in large samples. The value 0- so found is in 
these cases the least possible value for the standard deviation of a statistic designed to 
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estimate the same parameter; it may therefore be applied to calcullate the efficiency of 

any other such statistic. 
When several parameters are determnined simultaneously, we nmust equate the second 

differentials of L, with respect to the parameters, to the coefficients of the quadratic 
terms in the index of the normal expression which represents the distribution of the 

corresponding statistics. Thus with two parameters, 

a2L 1 1 a1 L I1 

a2L 1 r 

-2 - - 2.-r 2. a - 2. 4' 

2J __ 1 r 
a01 ae3 1O _ r -r2* a2 a 

or, in effect, a(r is found by dividing the Hessian determinant of L, with respect to the 

parameters, into the corresponding minor. 
The application of these methods to such a series of parameters as occur in the speci- 

fication of frequency curves may best be made clear by an example. 

8. THE EFFICIENCY OF THE METHOD OF MOMENTS IN FITTING CURVES OF THE 

PEARSONIAN TYPE III. 

Curves of PEARSON's Type III. offer a good example for the calculation of the efficiency 
of the Method of Moments. The chance of an observation falling in the range dx is 

drV= -. -6 e a dx.* 

By the method of moments the curve is located by means of the statistic u, its dimen- 
sions are ascertained from the second moment ,2, and the remaining parameter p is 
determined from ,3. Considering first the problem of location, if a and p were known 
and we had only to determine m, we should take, according to the method of moments, 

- A= m,+ (p+ 1), 

where m~ represents the estimate of the parameter m, obtained by using the method of 
moments. The variance of m, is, therefore, 

2 2 = , 2a +1) 

If, on the other hand, we aim at greater accuracy, and make the likelihood of the 
sample a maximum for variations of In, we have 

L =-n log a-n log (p !) +pS ( log xm ) -S(), 

* The expression, x !, is used here and throughout as equivalent to the Gaussian II (x), or to r (+l 1), 
whether x is an integer or not. 
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and the equation to determine m is 

L., -p 1S ('A = -PS - +- . ; . . 
. 

(1) Cm \x-m/ a * 

the accuracy of the value so obtained is found fromr the second differential, 

,m2 ':\'-p/ 
of which the mean value is 

whence 

( - - 
n 

We now see that the efficiency of location by the method of lmomlents is 

2p-) I- 1. 
P +1 p + 1 

Efficiencies of over 80 per cent. for location are therefore obtained if p exceeds 9; for 

p = 1 the efficiency of location vanishes, as in other cases where the curve makes an 

angle with the axis at the end of its range. 
Turning now to the problem of scaling, we have, by the method of moments, 

.2 =, (2 + l ), 

whence, knowing p, a is obtained. Since 

2 2 [-1 2 

we must have 
2 p321 2 4 + 3 

, 2 ___ 2 2 

c-r 4n 8n 2 (p+t) , 

on the other hand, from the value of L, we find the equation 

|L^ k n(p+ l)+iS(^-) , (2) 

to be solved for m and a as a simultaneous equation with (1) ; whence 

Ia_, 
am a a- t 

and 
a2L (p.) s(-.) 
;' Ca a5 
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of which !thie jmean vaflue is 
n(p 1.) 

a2 

dividing 

cr c (p-1) 
by the dete rminant 

~" 
(){p .) , 9t,a 

__ n_ a _ (p + ) 
(2 

which reduces to 
2 ^ 

whence 
a ..... 

2/, 

and the efficiency of sca,lng )by the method of moments is 

p?l 3 

p+ 4 p+ 4 

Efficiency of over 80 per cent. for scaling are, therefore, obtained when p exceeds 11. 

The efficiency of scaling does not, however, vanish for any possible value of p, though 
it tends to zero, as p approaches its limiting value, -1. 

Lastly, p is found by the method of m:oments by putting 

4 

p + 1 
Now 

- _ /2 ('434-242 + 36 + 90/3-12'33 51), 

and for c:rves of r'ypel 11II, 

/,2 3 + V 

/ - (s + 23, 3) = -a/ (3A+.:S + 6), 
hence 

2 
= ...t.(5Afi + 4) (/, + 4), 

_ 63 ((p+ 2) (p, +6) 
1 , ' p+ 
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whence it follows, since n is large, that 

2 = 6(+. L | + ( 1)(p+)2) (p +6). * = " .. np+ - 

From the value of L, 

L d 
'-. = --n - log (p!) + S log --- , 

which equation solved for m, a and p as a simultaneous equation with (1) and (2), w-il 
yield the set of values for the parameters which has the maximum likelihood. To find 
the variance of the value of p, so obtained, observe that 

c?m p \xI /I 

of which the mean value is 
. - ,~~~~~~a 

BaL p - _ 
aa ap - 2' 

a2L = 
3 

f (I , 
p 

- 2 
,log !). 

and 

The variance of p, derived from this set of simultaneous equations, is tlherefore found 

by dividing the minor of a L 
namely * 

3p 
- 

2 n2 

P- ]e adt 
by the determinant 

(t4 p-1 

1 

1 

P . 

hence 

When p is large, 

. 1 
P 

p+1 1 
d2 -- log 

-(1p 12 

~~(p}v~!)l ( 

ct p - dp^ tp-(p 

(?')~~~~~ 

I 2 

d' r2d 
's2 (+~= .2- log (p!) 2+ 

(-I 
2 

in p p 
2' 

) 

2 

2. p, 
3 2+1}, 

I"j - .5 
' 
7p7 '"' 

3 A 2 
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so that, approximately, 
2= 6(p3+'p); 

for large values of p, the efficiency of the method of moments is, therefore, approximately 

p+ p + 2 p + 6 

Efficiencies of over 80 per cent. occur whein p exceeds 381 (,fi -- 0 102); evidently 
the method of moments is effective for determining the form of the curve only when it 
is relatively close to the normal form. For small values of p, the above approximation 
for the efficiency is not adequate. The true values can easily be obtained from the 
recently published tables of the Trigarima* function (ll). The following values are 
obtained for the integral values of p from 0 to 5. 

p 0 1 2 3 4 5 

Efficiency . . . 0 0-0274 0-0871 0-1532 0-2159 0-2727 

An interesting point which may be resolved at this stage of the enqulir is to find 
the variance of m, when a and p are not known, derived from the above set of simul- 
taneous equations; that is to say, to calculate the accuracy with which the limiting 
point of the curve is determined; such determinations are often stated as the result 
of fitting curves of limited range, but their probable errors are seldonl, if ever, evaluated. 
To obtain the greatest possible accuracy with which such a point can be determined 

we must divide the minor of ,, namely, 

{p+1- log(p!)d2 i 
by 

n3 _L_ __ 1 - * \2 log (p !) + , 
(t4 p-g (dp2 lVP'I / 

p2p" 
whence 

2 (tp 1 p + dpS log (!)- 1 
d 2d" 2 1 2 log (p!)- + 2 

dp2 p p 

The position of the limiting point will, when p is at all large, evidently be determined 
with mtuch less accuracy than is the position, as a whole, of a curve of known form and 
size. Let n' be a multiplier such that the position of the extremity of a curve calculated 

d2 * It is sometimes convenient to write (x) for - log (x). fo vlo (!) 

3 %f6 
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from nn' observations will be determined with the same accuracy as the position, as a 

whole, of a curve of known form and size, can be determined from a sample of n observa- 
tions when n is large. Then 

P 4 2 log (p!) -1. 

2--- log (p!)-- ? ..- Up22 + P' 
but, when p is large, 

d2 2 p?1 log (p!) -t . .....-.l-() .P + log (P - - + 2 ... 
;p ~ ~ '\3p 3p/ 

and 
d2 2 22 log (p i) + = 3 ); 

therefore 

el/ 
2 

p3(_2 p 8 ) 3 
3 p + - 

" 

- = 3Jp-p+2 

For large values of p the probable error of the determiination of the end-point may be 
found approximately by multiplying the probable error of location by 

(p-?) -3/-. 

As p grows smaller, n' diminishes until it reaches unity, when p-- 1. For values of 

p less than 1 it would appear that the end-point had a smaller probable error than tle 
probable error of location, but, as a matter of fact, for these values location is determined 

by the end-point, and as we see from the vanishing of o^, whether or not p and a 
are known, when p - 1, the weight of the determination from this point onwards increases 
more rapidly than n, as the sample increases. (See Section 10.) 

The above method illustrates how it is possible to calculate the variance of any 
function of the population. pa rameters as estimated from large samples by comparirng 
this variance with th that of the sae function estimated by the methiod of mloments, we 

may find the efficiency of that method for any proposed function. Thle above examnina- 

tion, in which the determinations of the locus, the scale, and the forim of the curve are 

treated separately, will serve as a general criterion of the application of the method of 
moments to curves of Type III. Special combinations of the parameters will, however, 
be of interest in special cases. It may be noted here that by virtue of equation (2) the 
function of rm -1-- a (p - I) is the same, whether determined by moments or by the method 
of the optimum : 

, + Ca (p-L+ 1) = n + ? ( + 1). 

The efficiency of the method of moments in deter this function is therefore 100 

per cent. 'rhat this function is the abscissa of the mean does not imply 100 per cent. 

efficiency of location, for the centre of location of these curves is not the mean (see p. 340). 
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9. LOCATION AND SCALING OF FREQUENCY CURVES IN GENERAL. 

The general problem of the location and scaling of curves may now be treated more 
generally. This is the problem which presents itself with respect to error curves of 
assumed form, when to find the best value of the quantity mleasured we must locate the 
curve as accurately as possible, and to find the probable error of the result of this process 
we must, as accurately as possible, estimate its scale. 

The form of the curve may be specified by a fun ction (,, s-uch that 

3;, --'D 1 d j' c c~ ) de, when e = -. 

In this expression < specifies the form of the curve, which is unaltered by variations 
of a an(I m. 

When a sample of n observations has been taken, the likelihood of any combination 
of values of a and m is 

L -( C- lfog aC+S (I), 
whence 

aL = 
am (dl dAm a 

since 

a8 a 
also 

?L 1: Q /- ,, 
8a t (at 

since 
at _ t. 
aa a 

Differentiating a second time, 
a2L 1 , 
-- -- -b _(p ) , 

therefore 

(rhi -e 't,a 

This expression enables us to compare the accuracy of error curves of different form, 
when the location is performed in each case by the method which yields the minimum 
error. 

Example -The curve 
d 

d(/' - 
7r 1 +- ? 

referred to in Section 5 has an infinite standard deviation, but it is not on that accolunt 
an error curve of zero accuracy, for 

,-log ( +)," = _ +2 )2 I~~/ - (1? ii$ ')2 
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Now 

hence 
--i. ct < CT; (f" = -} and c-~ = ? 

The quantity, 
X 81 
a2 2a2t 

which is the factor by which n is multiplied in calculatiing the weight of the estimate 
made from rn mleasurements, may be called the intrinsic accuracy of an error curve. In 
the above example we see that errors distributed so that 

d a d 
,2 X2 

have the samle intrinsic accuracy as errors distributed according to the normal curve 

df -- 2-e2x (Ix 

provided 
2 ) 2 

Fig. 1 illustrates two such curves of equal intrinsic accuracy. 
Returning now to the general problem. in which 

L J= C- log +S (), 
we have 

c L s (+ ) s (fF) 
C(:1 a ct a 0, 

and 

a:L = 8 (2 '+r ?" ) 
' 

C =1 S 
(+"- ). 

The latter expression will. directly give the accuracy witi which a is determined only if 

m c -c-0 Qm da 

and we can always arrange thiat this shall be so by subtracting from E the quantity 

")! 

Thus in a Type III. curve where, referred to the end of the range, 

9-1 1, 
b,v =--1, (/)" = - 1 
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instead of 
,p = p log c-$ 

we must write 

j = log t+P- - +~ - 1; 
then 

_,+ p-/l 
' 

?f+p_ 
hence 

_2L = (120_1 

'' ( ' 
$+P-1 +p-1_ 

of which the mean value is 

(- +2p- -p-: --) = - 

, 

hence 
22 

2n 

2n 

For one particular point of origin, therefore, the variations of the abscissa are 
uincorrelated with those of a; this point may be termed the centre of location. 

Example :--To determine the centre of location of the curve of Type IV., 

df e-v tall- (L + :- 
r + ?2 

Here 

=-v tan-l 
r + 2 

log T g, 

-2 
9' = - (v+,+ 2 ) I +t~ , 

g" = r+ + 2 2 +2 (v--r +2) 1 
+ 2; 

from these we find 

i'+4 +?r2 r++ 1 ,r+2 r+ 
(f 

=- -2 2 

qr+4 +ir 

r}+ 4 +IJ 

so that 

e4 ? 

The centre of location, therefore, at the distance fro+ the mode, 

rvt- 
) "~+4' 
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:Exmnple :-Determine the intrinsic acculracy of an error curve of Type IV. and tle 

efficiency of the method of moments in location and scaling.- 
Since 

777 _ 1 r r+2r +4 
r-+4 +v2 

2 ~2 v2 
2 a r+4 +v 

8rh + l r +- 2 r -- 4 n ,-+lr+2r+4 

and the intrinsic accuracy of the curve is 

1 r+1r+2 i2r+4 
a ----_- 2 

a r+4 +v2 
but 

2 -a(2 .a2+ v2 
~ n --r2 

therefore the efficiency of tte method of moments in location is 

- 1 (r+ 2 +2) 
^r27^ 24-^ V(3) 

r-+l ,+2r+4(r24-2) a( / 

When v= 0, we have for curves of Type VII. an efficiency of location 

6 ,1 
+ 1 r +2 

The efficiency of location of these curves vanishes at r = 1, at which value the standard 
deviation becomes infinite. Although values down to --1 give admissible frequency 
curves, the conventional limit at which curves are reckoned as heterotypic is at r = 7. 
For this value the efficiency is 

49 121+ v 
132 49+v2 ' 

which varies from 91*'67 per cent. for the symmetrical Type VII. curve, to 37*12 per 
cent. when v ->- o and the curve to Type V. 

Turning to the question of scaling, we find 

~f~"- 1 = ?( r-+2r +4+v) 
2 2 

r+4 +v2 
whence 

(- = r+4 
anld 

2 a2 a r+4 
ct - -- : 2 

' 

n 2r+l 
3 B VOL. CCXXII.-A. 
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the intrinsic accuracy of scaling is therefore independent of i,. Now for thlese curves 

3r--1 8'? 
2 

2 = 2 ' 3 - +6 - 2 4'1 r-2r-3\ r+v/2 

so that 
/32-1 _r3 r-2 + 2 (r2+ 10r-12) 

4 r-2 r-3 (r2+2) 
and 

2 a2 r3 -2 + 2 lv(r2+10r-12) 
a, n'- 2 r- 3 (r2 + 2) 

The efficiency of the method of moments for scaling is thus 

r-2 r-3 r+4 (+ v2 ) (4 
r+1 {ri3r--+2 v2(.2+l Or-12)}' 

when v- =O, we have for curves of Type VII. an efficiency of scaling 

L2 

1r +1 

The efficiency of the miethod of mnomlents iii scaling these curves vanishes at r - 3, 
where ,2 becomes infinite; for r - 7, the efficiency of scaling is 

55 49+v 
2 ' 1715+107v:' 

varying in value from 78-57 per cent. for the symmetrical Type VII. curve, to 25*70 

per cent. when v -> oo and the curve to Type V. 

10. THE EFFICIENCY OF THE METHOD OF MOMENTS IN FITTING THE PEARSONIAN 

CURVES. 

The Pearsonian group of skew curves are obtained as solutions of the equation 

1 dy _ -(x-r) . 

y dx a + bx + cx2 ' 

algebraically these fall into two main classes, 

df (i+2 ( li-) dx 

and 

( -" X) 2e -vtanlr 
df 2: e a dx, 

a/ 

according as the roots of the quadratic expression in (5) are real or imaginary. 
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The first of these forms may be rewritten 

?i(i a2 
r+2 

dfj 1-2 ) a dx, 

r being negative, showing its affinity with the second class. 
In order that thlese expressions may represent frequency curves, it is necessary that 

the integral over the whole range of the curve should be finite; this restriction acts in 
two ways:- 

(1) When the curve terminates at a finite value of x, say x = a., the power to which 

a2--x is raised must be greater than - 1. 

(2) When the curve extends to infinity, the ordinate, when x is large, must diminish 

more rapidly than -; 
x 

Tn Fig. 2 is shown a conspectus of all possible frequency curves of the Pearsonian type; 
A 

A. 

_.. 
Y= O0 

. . . .... HeHerotypic Limit r 7 

. ..- .- .--. LimitoF( diagram r3 

C 

B. Showing region of validity of second moment. 

Fig. 2. Conspectus of Pearsonian system of frequency curves. 
3 :B 2 
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the lines AC and AC' represent the limits along which the area between the curve and 
a vertical ordinate tends to infinity, and on which il,, or mn,, takes the value -- 1 ; the 
line CC' represents bhe limit at which unbounded curves enclose an i:nfinite area with 
the horizontal axis; at this limit r - -1. 

The symmetrical curves of Type II. 

2' \ r4~-2 
d I z (~t -) 

? 

extend from the point N, representing the normal curve, at which r is infinite, through 
the point P at which r --4, and the curve is a parabola, to the point B (r - -2), 
where the curve takes the form of a rectangle ; from this point the curves are U-shaped, 
and at A, when the arms of U are hyperbolic, we have the limiting curve of this type, 
which is the discontinuous distribution of equal or unequal dichotomy ('r - 0). 

Tr-le unsymmetrical curves of Type I. are divided by PEARSON into three classes 

according as the terminal ordinate is infinite at neither end, at one end (J curves)j or 
at both ends (U curves); the dividing lines are C'BD and CBD', along which one of 
the terminal ordinates are finite (mn,, or , -- 0) ; at the point B, as we have seen, both 
terminal ordinates are finite. 

The same line of division divides the curves of Type III., 

dcf oc xPe- dx, 

at the point E (p = 0), representing a simple exponential curve ; the J curves of Type II I. 
extend to F (p -1), at which point the integral ceases to converge. In curves of 

Type III., r is infinite ; v is also infinite, but one of the quantities mi, and mn2 is finite, 
or zero (= p); as p tends to infinity we approach the normal curve 

df c e-"2 dx. 

Type VI., like Type III., consists of curves bounded only at one end; here r is 

positive, and both mn and in, are finite or zero. For the J curves of Type VI. both 
in, and mn, are negative, but for the remainder of these curves they are of opposite sign, 
the negative index being the greater by at least unity in order that the representative 
point may fall above CC' (r -1). 

Type V. is here represented by a parabola separating the regions of Types IV. and VI.; 
the typical equation of this type of curve is 

- , t .3 1 

dYf oc x2 e d x. 

As r tends to infinity the curve tends to the normal form; the integral does not 

become divergent until ~rk 1, or r -1. On curves of Type V., then, r is finite 

or zero, but , is infinite. 
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In Type IV. 

-7 f c1 + a^Y1'?" vxtan-1T 

cr-l1^2 
eI a; 

we have written v, not as previously for the difference between ml and m, for these 
quantities are now complex, and their difference is a pure imaginary, but for the differ- 
ence divided by /--1; , is then real and finite throughout Type IV., and it vanishes 

along the line NS, representing the symmetrical curves of Type VII. 

2 9\+2 

dfo1+( 
2) 2 

from r = to or = -1.. 
The Pearsonian system of frequency curves has hitherto been represented by the 

diagram (13, p. 66), in which the co-ordinates are /3 and 2,. This is an unsymmetrical 
diagram which, since /3l is necessarily positive, places the symmetrical curves on a 

boundary, whereas they are the central types from which the unsymmetrical curves 
diverge on either hand; further, neither of the limiting conditions of these curves can 
be shown on the /3 diagram; the limit of the U curves is left obscure,* and the other 
limits are either projected to infinity, or, what is still more troublesome, the line at 

infinity cuts across the diagram, as occurs along the line r 3, for there /, becomes 
infinite. This diagram thus excludes all curves of Types VII., IV., V., and VI., for which 

< 3. 
In the a3 diagram the condition r = constant yields a system of concurrent straight 

lines. The basis of the representation in fig. 2 lies in making these lines parallel and 

horizontal, so that the ordinate is a function of r only. We have chosen r == y-- -, 
y 

and have represented the limiting types by the simplest geometrical forms, straight lines 
and parabolas, by taking 

4 e 9 
92^ + 

v2 
( 

+ _x +-2 2). 
y (Xz2_y) 

It might have been thought that use could have been made of the criterion, 

Ai (02+3)2 I-- 
4 (482-3/31)(2/2-3A,-6) ( 4? 

by which PEARSON distinguishes these curves; but this criterion is only valid in the 

region treated by PEARSON. For when r = 0, K2 = 1, and we should have to place 
a variety of curves of Types VII., TV., V., and VI., all in Type V. in order to adhere to 
the criterion. 

This diagram gives, I believe, the simplest possible conspectus of the whole of the 
Pearsonian system of curves; the inclusion of the curves beyond r = 3 becomes neces- 

* The true limit is the line 2 = PI + 1, along which the curves degenerate into simiple dichotomies. 
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sary as soon as we take a view unrestricted by the method of moments ; of the so-called 

heterotypic curves between r = 3 and r = 7 it should be noticed that they not 

only fall into the ordinary Pearsonian types, but have finite values for the nmoment 
coefficients /3, and 32; they differ from those in which r exceeds 7, merely in the fact 

that the value of f32, calculated from the fotrth moment of a sample, has an infinite probable 
error. It is therefore evident that this is not the right method to treat the sample, but 
this does not constitute, as it has been called, " the failure of Type IV.," b-ut merely 
the failure of the method of moments to make a valid estimate of the form of these 

curves. As we shall see in more detail, the method of moments, when its efficiency is 
tested, fails equally in other parts of the (diaoram. 

In expression (3) we have found that the efficiency of the method of nmoments for 
location of a curve of Type IV. is 

_--2 
E= 

2 
r-"--L (r?+4 v2) 

_1 r2t2r+4 (r_ 2) 

whence if we substitute for r and , in terms of the co-ordinates of our diagram, we obtain 
a general formula for the efficiency of t:he method of moments in locating Pearsonian 

curves, which is applicable within the boundary of the zero contour (fig. 3). lThis may 

0 D 

Fig. 3. Region of validity of the first moment (the mean) applied in the location of 

Pearsonian curves showing contours of efficiency. 

be called the region of validity of the first moiment; it is bounded at the base by the 

line r - 1, so that the first monient is valid far beyond the heterotvpic limit ; its other 

boundary, however, represents those curves which make a finite angle with the axis at 
the end of their range (m1, or n, -- 1); all J curves (m,, or n2, < 0) are thus excluded. 

This boundaryhas a double point at P, which thus forms the apex of the region of validity. 
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I:n fig. 3 are shllown the contours along which thle efficiency is 20, 40, 60, and 80 per cent. 
For high efficiencies these contours tend to the system of ellipses, 

8x2+6y2 = 1-E. 

In a similar manner, we have obtained in expression (4) the efficiency of the 
second moment in fitting Pearsonian curves. The region of validity in this case is 
shown in fig. 4; this region is bounded by the lines r = 3, r = --4, and by the limits 

_ .. A_ 
' 

o_ . -- - I 

Fig. 4. Region of validity of the second nmoment (standard deviation) applied in scaling of 
Pearsonian curves, showing contours of efficiency. 

(mI, or n2, = -1) on which r2 +-v2 vanishes. This statistic is therefore valid for certain 
J curves, though the maximum efficiency amnong the J curves is about 30 per cent. 
As before, the contours are centred about the normal curve (N) and for high efficiencies 
tend to the system of concentric circles, 

12x+ 12y2 = I-E, 

showing that the region of high efficiency is somewhat more restricted for the second 
moment, as compared to the first. 

The lower boundary to the efficiencies of these statistics is due merely to their probable 
errors becoming infinite, a weakness of the method of moments wlich has been partially 
recognised by the exclusion of the so-called heterotypic curves (r < 7). The stringency 
of the upper boundary is much more unexpected; the probable errors of the moments do 
not here become infinite; only the ratio of the probable errors of the moments to the 

probable error of the corresponding optimum statistics is great and tends to infinity as 
the size of the sample is increased. 

That this failure as regards location occurs when the curve makes a finite angle with 
the axis may be seen by considering the occurrence of observations near the terminus 
of the curve. 

Let 
idf = k.x dx 
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in the neighbourhlood of the terminus, then the chance of ani observation falling within 
a distance x of the terminus is 

./ = ]ic-- _ 
t_ rLd S l 

a+ 1 

and the chalce of n observations all failing to fall in this region is 

(1 -f)n 

or, when m is great, aiddf correspondingly small, 

Equating this to any finite probability, eC', we have 

k'xa+l a 
n 

o:r, in other words, if we use the extremle observation as a mleans of locatinlg the terminns, 
the error, x, is proportional to 

1, a 

when oa < 1, this quantity diminishes more rapidly tLhan ,-- and coiisequently for large 
samples it is much mrore accurate to locate the curve by the extremle observation than 

by the mean. 
Since it might be doubted whlether such a sim.ple method could really be more accurate 

than the process of finding the actual mean, we will take as example the location of 
the curve (B) in the form of a rectangle, 

7 dx a 0a alf =-, m - - < x < m- '+* 
a 2 2 

and 
clf= 0, 

outside these limits. 
This is one of the simplest types of distribution, and we may readily obtain examples 

of it from matheml atical tables. The mean of the distribution is ,m, and the standard 

deviation C, the error m,--m, of the mean obtained from n observations, when n is 
V 12 

reasonably large, is therefore distributed according to the formula 

-/ (7mar2 1 . 6n , dx. 
-e a dx. 

a C 7r 

The difference of the extreme observation fro;mt the end of the range is distributed 

according to the formula 
y6 -E 
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if - is the difference at one end of the range and 7 the difference at the other end, the 

joint distribution (since, when n is considerable, these two quantities may be regarded 
as independent) is 

2 
2 en a de d, 

Now if we take the mean of the extreme observations of the sample, our error is 

for which we write x; writing aso y for + we have the oint distribution of x ad y 
for which we write x ; writing also y for S + ^, we have the joint distribution of z and y, 

n2 n, ^ -2 e ad dx y. 

For a given value of x the values of y range from 2 x to oo, whence, integrating with 

respect to y, we find the distribution of x to be 

df =- e a dx, 

the double exponential curve shown in fig. 5. 

12- 

4 

3 - 

-25 -20 -15 -10 -5 5 10 15 20 25 

Fig.A. Double exponential frequency curve, showing distribution of 25 deviations. 

The two error curves are thus of a radically different form, and strictly no value for 
the efficiency can be calculated; if, however, we consider the ratio of the two standard 
deviations, then 

. _ .a2 6 
2 

T 
" 2 ' ,12n 2 

when nt is large, a quantity which diminishes indefinitely as the sample is increased. 
VOL. CcXX::.---A. 
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.For example, we h.ave taken from VEGA (14) sets of digits from the table of Natural 

Logarithms to 48 places of decimals. The last block of four digits was taken from the 
logarithms of 100 consecutive numbers from 101 to 200, giving a sample of 100 numbers 
distributed evenly over a limited range. It is sufficient to take the three first digits 
to the nearest integer; then each number has an equal chance of all values between 0 
and 1000. The true mean of the population is 500, and the standard deviation 289. 
The standard error of the mean of a sample of 100 is therefore 28*9. 

Twenty-five such samples were taken, using the last five blocks of digits, for the 

logarithms of numbers from 101 to 600, and the mean determined merined ely from the highest 
and lowest number occurring, the following values were obtained:- 

1st hundred. 2nd hundred. 3rd hundred. 4th hundred. 5th hundred. 

Digits. .i 

45-48 24 978 + 1-0 39 980 + 9.5 1 999 0 16 983 - 05 18 994 -I-6-0 

41-44 35-5 993 --14-0 3 960 -18 5 6 997 +1-5 1 978 -10-5 4 979 -.-8-5 

37-40 9 988 -1-5 11 999 + 5-0 31 984 +7-5 4 978- 90 2 986 -6.0 

33-36 7 995 ,- 1-0 13 997 + 5 0 4 998 +10- 0 994 - 30 3 981 --8-0 

29-32 1 988 - 55 3 988 - 4-5 4 992 --2 0 1 996 - 1'5 21 977 --10 

It will be seen that these errors rarely exceed one-half of the standard error of the 
mean of the sample. The actual mean square error of these 25 values is 6 86, while the 

calculated value, v/50, is 7 . 07. It will therefore be seen that, with samples of only 100, 
there is no exaggeration in placing the efficiency of the method of moments as low as 
6 per cent. in comparison with the more accurate method, which in this case happens 
to be far less laborious. 

Such a value for the efficiency of the mean in this case is, however, purely conven- 

tional, since the curve of distribution is outside the region of its valid application, and 
the two curves of sampling do not tend to assume the same form. It is, however, 
convenient to have an estimate of the effectiveness of statistics for small samples, and 
in such cases we should prefer to treat the curve of distribttion of the statistic as an 
error curve, and to judge the effectiveness of the statistic by the intrinsic accuracy of 
the curve as defined in Section 9. Thus the intrinsic accuracy of the curve of distri- 
bution of the mean of all the observations is 

1 2n? 
a2 
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while that of the mean of the extreme values is 

4n2 
2 ? 

so yielding a ratio 3/n. It is probable that this quantity may prove a suitable substitute 
for the efficiency of a statistic for curves beyond its region of validity. 

To determine the efficiency of the moment coefficients /i and 32 in determining the 
form of a Pearsonian curve, we must in general apply the method of Section 8 to the 
calculation of the simultaneous distribution of the four parameters of those curves when 
estimated by the method of maximum likelihood. Expressing the curve by the formula 

appropriate to Type IV., we are led to the determinant 

r -1lr+2r+4 r+lr+2v r 1 r+2 r+l1 
a2 (+2+v2) a2(r+42+v2) a (r22 2) a (2 2) a2 (rS44Jy a (r-2 2~+. ) 

r+1 r+2v r+l (2r+4+v2) r+1 v r+2+v2 2 2 C - 2 7 I 1-_ 11 I 

-a2(r4 +4v2) a2(r+4 2) a(+2 v2) a (r+ 22 + v2) 

r+lr+2 r+l v + o a2 a2 
- 

(r2 a - 22 v2) log F ar log 

r+l v r+2+v2 32 o a 32 
-' 2 a) afr2+ 

a log F log F 
a(rt2 +Y 2) a (r+ 2' v2) av r 

as the Hessian of -L, when 

Io 
F =e-2 eVO sinr 0 d0. 

The ratios of the minors of this determinant to the value of the determinant give 
the standard deviations and correlations of the optimum values of the four parameters 
obtained from a number of large samples. 

In discussing the efficiency of the method of moments in respect of the form of the 
curve, it is doubtful if it be possible to isolate in a unique and natural manner, as we 
have done in respect of location and scaling, a series of parameters which shall successively 
represent different aspects of the process of curve fitting. Thus we might find the 
efficiencies with which r and v are determined by the method of moments, or those of 
the parametric functions corresponding to 31 and 32, or we might use- m and ma as 
independent parameters of form; but in all these cases we should be employing an 
arbitrary pair of measures to indicate the relative magnitude of corresponding contour 
ellipses of the two frequency surfaces. 

For the symmetrical series of curves, the Types II. and VII., the two systems of 
3 c 2 
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ellipses are coaxial, the deviations of r and v being uncorrelated ; in the case of Type VII. 
we put v 0, in the determinant given above, which then becomes 

r +r- r+ 2 1 2 
r+4 r--t 2 

2r+ 
1 

0 0 2 2 

r ?4 ? 2 

and falls in the two factors 

r[ I =+1 r rf (t \ r+lr+2 F ( \ + T 
_' 2F L2r+4 l 22 / \2/J -22 2r+4 2/ ::-22 

so that 
2- 2r 23+ 2 

r?+2 F (- 2r1-2 T+ r+4 

and 
2 4 r + l+22 

. 

-+. ( 2 -7 -2 I-4 4 

The corresponding expressions for the method of moments are 

_3 __2-_22(2r+ ?10) 2 _- (Xr'+ Jo) % - 8' --rI -3r9--5 

and 

2 2 r 12 - 3 (r- r+18) 
y^ 3 q-5 -7 

Since for moderately large values of r, we have, approximately, 

r+2 F (2 -2 r+ J r+4 2 -3 (L- 5 =-l- 

and 

r+1 r+2 2 ---2 r+l 1+4 6--.2; 
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we have, approximately, for the efficiency of v, 

(r+2+,('r + 2 + ... ) r-rl-3 r-5 

(r12++ 10) r2 r-22 
or, when r is great, 

and for the efficiency of r,, 

28'8 
-I 

_ 
, 

(r+22 +1...) rTi2 r- 
(r2_r+18)rr - lor-3 

or, when r is great, 
53'3 

The following table gives the values of the transcendental quantities required, and 
the efficiency of the method of moments in estimating the value of v and r from samples 
drawn from Type VII. distribution. 

--..32 --2 

r. r ( v 2 Efficiency 1 r +2 Efficiency 
2-21 .of x - 1 of r,. 

-2r+1 r+ 4. 

5 5 31271 0 
6 5-31736 0-2572 
7 5-32060 0-4338 5-9473 0 
8 5-32296 0-5569 5-9574 0-1687 
9 5-32472 0-6449 5-9649 0-3130 

10 5-32607 0-7097 5-9706 0-4403 
11 5-32713 0-7586 5-9750 0-5207 
12 5-32797 0*7963 5-9787 0-5935 
13 5-32866 0-8259 5*9810 0-6519 
14 5-32919 0-8497 5-9839 0-6990 
15 5-9853 0-7376 
16 5-9870 0-7694 
17 5-9883 0-7959 
18 5-9895 0-8182 

It will be seen that we do not attain to 80 per cent. efficiency in estimating the form 
of the curve until r is about 17-2, which corresponds to /32- 342. Even for sym- 
metrical curves higher values of /2 imply that the method of moments makes use of 
less than four-fifths of the information supplied by the sample. 
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On the other side of the normal point, among the Type II. curves, very similar formulae 

apply. The fundamental Hessian is 

-1 r--2 r-1 
- 

ro,4 r 2-2 

0 - 

9 - 2 2 

I r-2(I--22Ir - r'- ? -- 2 2 

where r is written for the positive quantity, - r, whence 

2 ~ 2 2--23 

r-2 ( ) -2 r---1 r--4 
and 

- -2 

?2 ___i_a 4 --i-2 

-- r-'2 2 ( 2 )}-2--4 

Now since 
r-2 = -4 4 

( 2 2 ) 2 
it follows that 

r-23 F 2 -2rIr-4 = F (r-4)-2r r3, 

which is the same function of r-4 as 

ri+2 F ()-2r+ r+4 

is of r. 
In a similar manner 

2 - 22{ (f -2 --1-4 - F ii 2 2 -- 

-- - -h-4 m- 232}---2r-1 =, ~l__ r- T ... . ?Q 
-- 

2 r2r+l , 

1-2 1-2 r- I 

which is +he same function of r-3 as 

r+l r+2 1 -F - -2r+lr+4 CI ( 2 / \J 
is of r. 
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In all these functions and those of the following table, r must be substituted as a 

positive quantity, although it must not be forgotten that r changes sign as we pass from 

Type VII. to Type II., and we have hitherto adhered to the convention that r is to 
be taken positive for Type VII. and negative for Type II. 

2.E.e .3,......... ..---2 --, 

_ 

/2 

. 

r.' -~ 2i 
1-- 

1 k ) Efficiency r 4.( - Efficiency 
of v, . 2/ of r,. 

2-2r - r - 4. 
- 2r - r - 4. 

2 4 0 4 0 
3 4'93480 0. 0576 5'1595 0.0431 
4 5'15947 0*2056 5.5648 0.1445 
5 5523966 0-3590 5.7410 0*2613 
6 5.27578 0-4865 5.8305 0.3708 
7 5.29472 0.5857 5.8813 0.4653 
8 5.30576 0.6615 5.9126 0.5441 
9 5.31271 0.7198 5.9331 0-6090 

10 5.31736 0.7650 5.9473 0.6624 
11 5.32060 0.8005 5.9574 0.7063 
12 5.32296 0 8287 5.9649 0.7427 
13 5.32472 0-8516 5.9706 0.7731 
14 5.32607 0.8702 5.9750 07986 
15 5.9787 0.8202 

In both cases the region of validity is bounded by the rectangle, at the point B 

(fig. 2, p. 343). Efficiency of 80 per cent. is reached when r is about 14-1 (/32 2 65). 
Thus for symmetrical curves of the Pearsonian type we may say that the method of 
moments has an efficiency of 80 per cent. or more, when /, lies between 2 65 and 3 42. 
The limits within which the values of the parameters obtained by moments cannot be 

greatly improved are thus much narrower than has been imagined. 

11. THE REASON FOR THE EFFICIENCY OF THE METHOD OF MOMENTS IN A SMALL 
REGION SURROUNDING THE NORMAL CURVE. 

We have seen that the method of moments applied in fitting Pearsonian curves has 
an efficiency exceeding 80 per cent. only in the restricted region for which 32 lies between 
the limits 2 65 and 3-42, and as we have seen in Section 8, for which /3, does not exceed 

0.1. The contours of equal efficiency are nearly circular or elliptical within these 
limits, if the curves are represented as in fig. 2, p. 343, and are ultimately centred round 
the normal point, at which point the efficiencies of all parameters tend to 100 per cent. 
It was, of course, to be expected that the first two moments would have 100 per cent. 
efficiencies at this point, for they happen to be the optimum statistics for fitting 
the normal curve. That the moment coefficients /3 and /2 also tend to 100 per cent. 

efficiency in this region suggests that in the immediate neighbourhood of the normal 
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curve the departures from normality specified by the Pearsonian formula agree with 
those of that system of curves for which the method of moments gives the solution of 
maximum likelihood. 

The system of curves for which the method of moments is the best method of fitting 
may easily be deduced, for if the frequency in the range dx be 

y (x, 01, 02, 03, 04) dx, 
then 

log y 

must involve x only as polynomials up to the fourth degree; consequently 

y -- a (x 4+pI-z3+PaX2+p3X + P) 

the convergence of the probability integral requiring that the coefficient of xl should be 

negative, and the five quantities a, p,, p2, P3, P.4 being connected by a single relation, 
representing the fact that the total probability is unity. 

Typically these curves are bimodal, and except in the neighbourhood of the normal 

point are of a very different character from the Pearsonian curves. Near this point, 
however, they may be shown to agree with the Pearsonian type; for let 

;2 I3 2 4 

W ae-I 2a2+1 +0i4 

represent a curve of the quartic exponent, sufficiently near to the normal curve for the 

squares of k, and k, to be neglected, then 

d X / x27 X 7 *^\ 
log y 

= 

- 3k/ --4k,) 

x 

- (I - + ' 4ta2 2 

neglecting powers of kc and kJ. Since the only terms in the denominator constitute a 

quadratic in x, the curve satisfies the fundamental equation of the Pearsonian type of 
curves. In the neighbourhood of the normal point, therefore, the Pearsonian curves 
are equivalent to curves of the quartic exponent; it is to this that the efficiency of ^ 
and 4,, in the neighbourhood of the normal curve, is to be ascribed. 

12. DISCONTINUOUS DISTRIBUTIONS. 

The applications hitherto made of the optimum statistics have been problems in 
which the data are ungrouped, or at least in which the grouping intervals are so small 
as not to distulrb the values of the derived statistics. By grouping, these continutous 
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distributions are reduced to discontinuous distributions, and in an exact discussion must 
be treated as such. 

If p, be the probability of an observation falling in the cell (s), ps being a function of 
thle required para'rmeters 0,, 0 ... ; and in a samnple of:l N, if 'n, are foundl to fall. into 
that cell, then 

S (logf) = S (n, log p). 

If now we write n, p=,N, we may conveniently put 

L S (n, log ,, 

where L differs by a constant only from the logarithm of the likelihood, with sign 
reversed, and therefore the method of the optimum will consist in finding the minimum 
value of L. The equations so found are of the form 

aL snI /. 
a_L = _s ( ). . (6) 

It is of interest to compare these formulae withl those obtained by making the Pearsonian 
x2 a minimum. 

For 

fls 

and therefore 
-1,2 Q 2\ 

=+x S , 

so that on differentiating by do, the condition that x2 should be a minimum for variations 
of 0 is 

- $2 a : 0 . . . . . . . . . . 

Equation (7) has actually been used (12) to "improve" the values obtained by the 
method of moments, even in cases of normal distribution, and the POISSON series, where 
the method of moments gives a strictly sufficient solution. The discrepancy between 
these two methods arises from the fact that x2 is itself an approximation, applicable 
only when ., and ns are large, and the difference between them. of a lower order of 
magnitude. In such cases 

L = S(nslog) == S( x+log m, + = 8m f 2 -X-.. J 
\ m 12m 6M2 

. 

and since 
S (x) 0, 
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we have, when x is in all cases small compared to m, 

L = iS ( ) 

as a first approximation. In those cases, therefore, when x2 is a valid measure of the 

departure of the sample from expectation, it is equal to 2L; in other cases the approxi- 
mation fails and L itself must be used. 

The failure of equation (7) in the general problem of finding the best values for the 

parameters may also be seen by considering cases of fine grouping, in which the majority 
of observations are separated into units. For the formula in equation (6) is equivalent to 

/sl a 

where the summation is taken over all the observations, while the formula of 

equation (7), since it involves n,", changes its value discontinuously, when one 
observation is gradually increased, at the point where it happens to coincide with a 
second observation. 

Logically it would seem to be a necessity that that population which is chosen in 

fitting a hypothetical population to data should also appear the best when tested for 
its goodness of fit. The method of the optimum secures this agreement, and at the 
same time provides an extension of the process of testing goodness of fit, to those cases 
for which the x2 test is invalid. 

The practical value of x2 lies in the fact that when the conditions are satisfied in 
order that it shall closely approximate to 2L, it is possible to give a general formula 
for its distribution, so that it is possible to calculate the probability, P, that in a random 

sample from the population considered, a worse fit should be obtained; in such cases 

x2 is distributed in a curve of the Pearsonian Type III., 

df c x2 X) 

or 
n'- -3 

dfocL e-LdL, 

where n' is one more than the number of degrees of freedom in which the sample may 
differ from expectation (17). 

In other cases we are at present faced with the difficulty that the distribution L 

requires a special investigation. This distribution will in general be discontinuous (as 
is that of x2), but it is not impossible that mathematical research will reveal the existence 
of effective graduations for the most important groups of cases to which x2 cannot 
be applied. 
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We shall conclude with a few illustrations of important types of discontinuous 
distribution. 

1. The Poisson Series. 

--)lt' | Art/I _______ . | e :! , 2 !',... x' 

involves only the single paramteter, and is of great importance in modern statistics. 
For the optimum value of nm, 

S a { (-im+x log ml = 0, 

whence 

or 
A - 

The most likely value of m is therefore found by taking the first moment of the series. 
Differentiating a second time, 

-1 n 
C a2 \ m2 m' 

so that 

0F= -- ? n 

as is well known. 

2. Grouped Normal Data. 

In the case of the normal curve of distribution it is evident that the second moment 
is a sufficient statistic for estimating the standard deviation ; in investigating a sufficient 
solution for grouped normal data, we are therefore in reality finding the optimum 
correction for grouping; the SHEPPARD correction having been proved only to satisfy 
the criterion of consistency. 

For grouped normal data we have 
_2 

Ps.= --- o e 212 dx, 

and the optimum values of m and. a are obtained from the equations, 

aL= f-s, 8 , 

m \-s am/ 
CL n= n, 

\ 
= 

3 D 2 
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or, if we write, 
1_ - . 

C >2w 

we have the two conditions, 
"(~--?/ 1- 0 

and 
S { x, =0. 

As a simple examnple we shall take the case chosen by K. SMITH in her investigation of 
the variation of x2 in the neighbourhood of the moment solution (12). 

Three hundred errors in right ascension are grouped in nine classes, positive and 

negative errors being thrown together as shown in the following table:-- 

0" 1 arc 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 

Frequency . . 114 84 53 24 14 6 3 1 1 

The second moment, without correction, yields the value 

-- 2 2282542. 

Using SHEPPARD'S correction, we have 

,-2 264214, 

while the value obtained by making x2 a minimum is 

c,, - 2 355860. 

If the latter value were accepted we should have to conclude that SHEPPARD'S correc- 
tion, even when it is small, and applied to normal data, might be altogether of the 

wrong magnitude, and even in the wrong direction. In order to obtain the optimum 

value of r, we tabulate the values of - in the region under consideration; this miay 

be done without great labour if values of or be chosen suitable for the direct application 
of th.e table of the probability integral (13, Table II.). Wae thein have thle follow\ing 

values:- 

4()3 04 4 ( 16 

IA2L -0 261! I - 0 '260 ( I a" I 0 0'200- 6 

360 



FOUNDATIONS OF THEORETICAL STATISTICS. 

By interpolation, 
- 0'441624 

= 2'26437. 

We may therefore summarise these results as follows: 

Uncorrected estimate of C ..... 2 28254 
SHEPPARD'S correction 0 . - 01833 
Correction for maximum likelihood . . .. . -001817 
" Correction " for minimum x2 . . . .. +007332 

Far from shaking our faith, therefore, in the adequacy of SHEPIPARD'S correction, 
when small, for normal data, this example provides a striking instance of its effective- 
ness, while the approximate nature of the x2 test renders it unsuitable for inproving a 
method which is already very accurate. 

It will be useful before leaving the subject of grouped normal data to calculate the 
actual loss of efficiency caused by grouping, and the additional loss due to the small 

discrepancy between moments with SHEPPARD'S correction and the optimum solution. 
To calculate the loss of efficiency involved in the process of grouping normal data, let 

', - - f(e) e, a 

when ar is the group interval, then 

? =f(eZ) f,'(f)+ " ; f/" (e) + V/(() + 7(4 (- + Ji9- 0 (f) + 3,6-- 24 1 920 322,560 

=f( 1' 1)+ -6-) - (34--6 ) + 322,5 ($6-l5e4+45"-215)+... , (-) 24 1-920 322,560 

whence 

log v = log f+ j- 1) '- C ( 4" - 2) -+ 4 . +6g i+ 0 6:1) .. 
lgV24 -28W 181-,440. 

and 

2 2 a. a 4 e 2____ - log ' = - -- (3+2) + - (5+12+) - * * 
,2~ < ((2 70 +( 30,240 j 

of which the mean value is 

-- I. _ a2 a 
4 

6 

-r -1. 2 + 144 4320 
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neglecting the periodic terms; and consequently 

2 . C. b a 
2(1 n 12 2880) 

Now for the mtean of uingrouped data 
t - ) 

2 

2 

so that the loss of efficiency due to grouping is nearly 12 

The further loss caused by using the mean of the groutped data is very small, for 

2 _ ^ t(2 5-i a 2) 
, = . 12/ 

neglecting the periodic terms; the loss of efficiency by using V, therefore is only 

2880 

Similarly for the efficiency for scaling, 
2 4 

ylog ':- 3, (10o-3) -- (94+21-5) 
a, "12 360 

30,-24( - (26 "116 04+36-7)- i;i (5 
,8+31516+351-i 

55 9) ... 

of which the mean value is 

2f ......2 83 
c2 6 40 270 129,600 

neglecting the periodic terms; and consequently 

2 as a _ . '' ' .= 

' 

f . 

0~2 a4 

a 21 6 360 10,800 J 
For ungrouped data 

2 

-- -2 (r2 

so that the loss of efficiency in scaling due to grouping is nearly -. 'ihis may be made 

as low as 1 per cent. by keeping a less than . 
The further loss of efficieney produced by using the groupe( second moment with 

SHEPPARD's correction is again very small, for 

2 4 v- 2r 4 / + 
egleting the peric 

neglecting the periodic terms, 
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Whence it appears that the further loss of efficiency is only 

-a8 
10,800 

We may conclude, therefore, that the high agreement between the optimumtn value of 
and that obtained by SHEPPARD'S correction in the above example is characteristic 

of grouped normal data. The method of moments with SHEPPARD'S correction is highly 
efficient in treating such material, the gain in efficiency obtainable by increasing the 
likelihood to its maximum value is trifling, and far less than can usually be gained by 
using finer groups. The loss of efficiency involved in grouping may be kept below 
1 per cent. by making the group interval less than one-quarter of the standard deviation. 

Although for the normal curve the loss of efficiency due to moderate grouping is very 
small, such is not the case with curves making a finite angle with the axis, or having at 
an extreme a finite or infinitely great ordinate. In such cases even moderate grouping 
may result in throwing away the greater part of the information which the sample 
provides. 

3. Distribution of Observations in a Dilution Series. 

An important type of discontinuous distribution occurs in the application of the 
dilution. method to the estimation of the number of micro-organisms in a sample of 
water or of soil. The method here presented was originally developed in connection 
with Mr. CUTLER'S extensive counts of soil protozoa carried out in the protozoological 
laboratory at Rothamsted, and altllough the method is of very wide application, this 

particular investigation affords an admirable example of the statistical principles 
involved, 

In principle the method consists in making a series of dilutions of the soil sample, 
and determining the presence or absence of each type of protozoa in a cubic centimetre 
of the dilution, after incubation in a nutrient medium. 

The series in use proceeds by powers of 2, so that the frequency of protozoa in each 
dilution is one-half that in the last. 

The frequency at any stage of the process may then. be represented by 

n 
2X, 

when x indicates the number of dilutions. 
Under conditions of random sampling, the chance of any plate receiving 0, , 2, 3 

protozoa of a given species is given by the Poisson series 

2. 3.!5 
" 
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and in consequence the proportion of sterile plates is 

p ' 5-\ 
and of fertile plates 

In general we may consider a dilution series with dilution factor a so that 

1 ^n 
log p - 

and assume that s plates are poured from each dilution. 
The object of the method being to estimrate the number n from a record of the sterile 

and fertile plates, we have 

L ,1 (log p) +S, (log ) 

when 8S stands for suimmation over t'he sterile plates, and 82 for summation over those 
which are fertile. 

Now 
ap S aq 

;n- == - = aq_ -=p log p, a log n a log n 

so that the optimum value of n is obtained froni the equation, 

S= sig ( ) -s 2 log )) 
= 0.) alog /n , 

Differentiating a second time, 

a2L ( 2i (lolog pi? logP a (lg' = (log p) -S2 'log p++ p log+ q } 

32L 
now the mean number of sterile plates is ps, and of fertile plates qs, so that the in ean 

value of -ig a (log n) 

- --- = S {p log p- log plog plog p)} -8S {'(log p)2 , 
< loogni j1 

the summation, 8, being extended over all the dilutions. 
It thus appears that each plate observed adds to the weight of the determination 

of log n a quantity 

w = P(log p).. q 
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We give below a table of the values of p, and of w, for the dilution series log p - 2-x 
from x =- -4 to x = 11. 

x. p. w. S (w) (per cent.). 

--4 0.00000014167 0-000036 0-002 
-3 0-0003354626 0-021477 0-906 
-2 0-01831564 0-298518 13-485 
--1 0-1353353 0-626071 39-865 

0 0-3678794 0-581977 64-388 
1 0-6065306 0-385355 80-625 
2 0-7788009 0-220051 89-897 
3 0-8824969 0-117350 94-842 
4 0-9394110 0-060565 97-394 
5 0-9692333 0-030764 98-690 
6 0-9844965 0-015503 99-343 
7 0-9922179 0-007782 99-671 
8 0-9961014 0-003899 99-836 
9 0-9980488 0-001951 99-918 

10 0-9990239 0-000976 99-959 
11 

' 
09995119 0-000488 99-979 

Remainder ........ 0-000488 

Total. . ..... . .. 2-373251 

For the same dilution constant the total S (w) is nearly independent of the particular 
2 

series chosen. Its average value being , or in this case 2 373138. The fourth 6 log a' 
column shows the total weight attained at any stage, expressed as a percentage of that 
obtained from an infinite series of dilutions. It will be seen that a set of eight dilutions 
comprise all but about 2 per cent. of the weight. With a loss of efficiency of only 2 to 
2, per cent., therefore, the number of dilutions which give information as to a particular 
species may be confined to eight. To this number must be added a number depending 
on the range which it is desired to explore. Thus to explore a range from 100 to 100,000 
per gramme (about 10 octaves) we should require 10 more dilutions, making 18 in all, 
while to explore a range of a millionfold, or about 20 octaves, 28 dilutions would be 
needed. 

In practice it would be exceedingly laborious to calculate the optimum value of n for 
each series observed (of which 38 are made daily). On the advice of the statistical 
department, therefore, Mr. CUTLER adopted the plan of counting the total number oJ 
sterile plates, and taking the value of n which on the average would give that number, 

When a sufficient number of dilutions are made, log n is diminished by - log a for each 

additional sterile plate, and even near the ends of the series the appropriate values ol 
n may easily be tabulated. Since this method of estimation is of wide application 
and appears at first sight to be a very rough one, it is important to calculate its efficiency 
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For any dilution the variance in the number of sterile plates is 

spq, 

and as the several dilutions represent independent samples, the total variance is 

sS (pq), 
hence 

2 = log a)2S (pq) 

Now S (pq) has an average value log 2 therefore taking a = 2, 

(log a) = '480453, 
and. 

S (pq)= 1 

being very nearly constant and within a small fraction of unity; whence the efficiency 
of the method of counting the sterile plates is 

6 
l2 = 87'71 per cent., 7r log 2 

a remarkably high efficiency, considering the simplicity of the method, the efficiency 
being independent of the dilution ratio. 

13. SUMMARY. 

During the rapid development of practical statistics in the past few decades, the 
theoretical foundations of the subject have been involved in great obscurity. Adequate 
distinction has seldom been drawn between the sample recorded and the hypothetical 
population from which it is regarded as drawn. This obscurity is centred in the so-called 
"6 inverse " methods. 

On the bases that the purpose of the statistical reduction of data is to obtain statistics 
which shall contain as much as possible, ideally the whole, of the relevant information 
contained in the sample, and that the function of Theoretical Statistics is to show how 
such adequate statistics may be calculated, and how much and of what kind is the 
information contained in them, an attempt is made to formulate distinctly the types 
of problems which arise in statistical practice. 

Of these, problems of Specification are found to be dominated by considerations which 

may change rapidly during the progress of Statistical Science. In problems of Distri- 
bution relatively little progress has hitherto been made, these problems still affording 
a field for valuable enquiry by highly trained mathematicians. The principal purpose 
of this paper is to put forward a general solution of problems of Estimation. 
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Of the criteria used in problems of Estimation only the criterion of Consistency has 
hitherto been widely applied; in Section 5 are given examples of the adequate and 

inadequate application of this criterion. The criterion of Efficiency is shown to be a 

special but important case of the criterion of Sufficiency, which latter requires that the 
whole of the relevant information supplied by a sample shall be contained in the statistics 
calculated. 

In order to make clear the nature of the general method of satisfying the criterion 
of Sufficiency, which is here put forward, it has been thought necessary to reconsider 
BAYES' problem in the light of the more recent criticisms to which the idea of " inverse 

probability" has been exposed. The conclusion is drawn that two radically distinct 

concepts, both of importance in influencing our judgment, have been confused under 
the single name of probability. It is proposed to use the term likelihood to designate 
the state of our information with respect to the parameters of hypothetical populations, 
and it is shown that the quantitative measure of likelihood does not obey the mathe- 
matical laws of probability. 

A proof is given in Section 7 that the criterion of Sufficiency is satisfied by that set 
of values for the parameters of which the likelihood is a maximum, and that the same 
function may be used to calculate the efficiency of any other statistics, or, in other 
words, the percentage of the total available information which is made use of by such 
statistics. 

This quantitative treatment of the information supplied by a sample is illustrated by 
an investigation of the efficiency of the method of moments in fitting the Pearsonian 
curves of Type III. 

Section 9 treats of the location and scaling of Error Curves in general, and contains 
definitions and illustrations of the intrinsic accuracy, and of the centre of location of such 
curves. 

In Section 10 the efficiency of the method of moments in fitting the general Pearsonian 
curves is tested and discussed. High efficiency is only found in the neighbourhood of 
the normal point. The two causes of failure of the method of moments in locating these 
curves are discussed and illustrated. The special cause is discovered for the high 
efficiency of the third and fourth moments in the neighbourhood of the normal point. 

It is to be understood that the low efficiency of the moments of a sample in estimating 
the form of these curves does not at all diminish the value of the notation of moments as 
a means of the comparative specification of the form of such curves as have finite moment 
coefficients. 

Section 12 illustrates the application of the method of maximum likelihood to dis- 
continuous distributions. The POIssoN series is shown to be sufficiently fitted by the 
mean. In the case of grouped normal data, the SHEPPARD correction of the crude 
moments is shown to have a very high efficiency, as compared to recent attempts to 

improve such fits by making x2 a minimum; the reason being that x2 is an expression 
only approximate to a true value derivable from likelihood. As a final illustration of 
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the scope of the new process, the theory of the estimation of micro-organisms by the 
dilution method is investigated. 

Finally it is a pleasure to thank Miss W. A. MACKENZIE, for her valuable assistance 
in the preparation of the diagrams. 
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