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Support

than N. S‘hould this not be taken into account? The argumen
for not dmn.g'so is that in any simple model for the distribution
of N in fan.:nlles, p will not appear, so that N by itself is wholly
uninformative about p. Thus we may, without prejudice, conditio
the support on the actual value observed. i

_Agam, confronted with an infinite sequence of binomiil
trials, we might decide to evaluate p by counting trials uniil
R successes have been observed. Let n be the number counted
then the support for p is still

S(p)=RInp+ (n — R)In(x — p),

;;nl;:e rt: r;?w ha§ ? negative binomial distribution.?* This tinw
y itself is uninformative abou ayt
fore be conditioned on its value. A iy then

The general principle we should follow is to condition as mucl)
as poss:bl.e without destroying any information about the para
meter of interest. Support functions are independent of the ruls
for stopping the count provided they are not conditioned on any
statistic which is itself informative, and this is true even if the
rule is of the sequential type in which the count is stoppel
only when a chosen support difference between two competing
hypotheses has been reached. Thus in a binomial sequential schems
tl'_ne stopping rule can be represented as a boundary on the lattice
fhagram of-the possible sample points; when a particular poinl
is reach.ed it would be misleading to condition the support oil
the achieved sample number, because this number would, by
itself, gf:r‘u:rally be informative. One must simply write dawn‘ the
unconditional probability of reaching the sample point, and s
this to derive the support. In the binomial case a sample poinl
with 7 successes and N — r failures will have a probability
Cp'(x — p)'~", where C is a coefficient given by the number ol
paths to the point.?? It will only be a binomial coefficient if the
boundary does not interfere with any possible path, but the sup
E;)ré for p induced by the sample point is in any case independent

We are not here concerned with the benefits of sequential
Pro?edut:es, which are essentially decision procedures whom
_|ust1ﬁcfatlon is to be sought in their repeated-sampling propertics,
but with what we ought to believe about a parameter from the
knowledge that a particular sample point has been reached ™
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1.6] Conditional support

he support supplies the necessary information. We are not
pven concerned with biasses that might arise on repeatedly taking
decisions based on ‘open-ended’ schemes where the chosen
houndary may never be reached,?* for even if the stopping rule

‘stop when tired’, the support carries the required information.

We shall meet the concept of conditional support again, when
flealing with the elimination of nuisance parameters (section 6.3)
and 2 X 2 tables (section 9.4). Example 6.3.1 illustrates the use of
onditional support in the partitioning of the total information
rovided by a sample into its constituent parts.

3.7. EXAMPLE

‘A particularly simple demonstration of the Method of Support
|s afforded by applying it to the classic calculation which led
Nernstein,® in 1924, to conclude that the ABO blood-groups in
II man were determined by three alleles (4, B, 0) at a single locus
pther than two alleles at each of two loci (4, a; B, b) as formerly
ught.

Four blood-groups are distinguished:
rresponding to the presence or absence of the antigens ‘A’
d ‘B, ‘AB’ referring to the presence, and ‘O’ to the absence, of
th. The two-locus hypothesis (H,) supposed that a locus 4,a
yontrolled the antigen ‘A’ as follows: genotypes AA and Aa-‘A’
Eﬂént; genotype aa—‘A’ absent. Similarly, an independent

lA" ‘B!’ ‘AB'I and (0}’

us B, b controlled the antigen ‘B’ (table 1, column 3). The single-

us hypothesis (H,) supposes that there are three alleles 4, B
sd O, A and B conferring the corresponding antigens, and O
wonferring nothing (table 1, column 5). Note that an i
wunnot have an ‘AB’ parent on this hypothesis (H,), though
e can on Hy: Aa Bb X Aa Bb — aa bb, for example. But, remark-
bly enough, it was not the failure of H, to explain the segregation
i families which led Bernstein to postulate H;, but its failure
1o account for the frequencies of the four blood-groups in the
population at large, as the following example shows.

WAAMPLE 3.7.1
(‘onsider the data2® used by Bernstein (table 1, column 2). The sample

Man is n = 502,
Hernstein observes that on H; we expect

| (%1 + x3)(22 + x3) = X3 (3.7.1)
fur  large sample from a population in Hardy-Weinberg equilibrium
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V74 Example

lho helow), whereas on these data the LHS is 0.142, nearly twice Xa.
Wi I, he expects the relation

9
: : PR
’ma kS RO NO {1t — V(xa +x}+ {1 — Vi + %)} + VEa =1, (3.7.2)

5 t 9
L4 & |° ‘]’ Sl which he finds adequately satisfied. With the Method of Support we
3 < ‘dm /LL LN" Winy by-pass the consideration of these somewhat arbitrary indices, and
= g § §agt Lsleulute the relative support for H, versus Hj.
g ] L oL We do not need to evaluate the gene frequencies explicitly on Hj,
- & az lsnuse the class expectations may be found directly from a fourfold
< &S] S sble, A4 and B being independent:
g

&
2 2 Q0O & b

t t
g = §;§ SRmo presen absen
] ' - -
g g ;’::: ég S92 : present AB: o.142 B:o.142 AB + B:o0.284
] O
_3 ubsent A:o.358 0:0.358 A + O:0.716
g . o &
n 8 2.8 & Qe AB 4+ A:o.ss00 B+ O:o.500 all 1.000
8¢ | 385ET R
%‘ B E; gg 60600 Y marginal totals give the proportions actually observed; the class
N e pectations are then calculated assuming independence. Thus in a
°°i Fi.e sample we expect X;¥3 = ¥a¥y, which is equivalent to (3.7.1).
f m"‘ E i valculating the likelihoods for the two hypotheses, the multinomial
%;’ Q’: susllicients (equation (2.4.1)) will be the same, and may therefore be
23 < Waearded. For H, we need only calculate S; = ZayIn py (equation
3.2 5 259 l;.q..‘}) over the four classes, where the p; refer to the expectations
'a"o%o 2 % 9 § whle 1, column 4), and a; = nx,. We find
—6 ~_ ™ 3 o)
25 | © 5 FEL Sa= —647.50.
g S § ng % Mute that we have implicitly evaluated the gene frequencies at both loci,
) o s that H, involves two parameters.
< ?5 (i the single-locus theory the expectations in the four classes are
2 < glven in table 1, column 6, where p, g and r are the frequencies of the
o = A, 1t and O genes (p + g + r = 1). (We adhere to tne usual notation in
) splte of the incompatibility with the p, that appear above.) Replacing the
g o & IR & %, I (3.7.2) by these expectations demonstrates Bernstein’s relation.
= _ E'% +q 0« I'he numerical expected proportions in column 6 are obtained by
y= | < 8¢ 0 .00 .02 lissiting the best-supported values for the gene frequencies p, ¢ and r
2 8 g lL [L lL |L i the nlgebraic expectations. These values cannot be found explicitly,
@ & 8 R R8R #iil must be obtained by iteration, as is done on the present data in
@ pasinple 6.8.2 where we find
- 8 X g = 0.2945,
m = 3 Sl = 0.1547,
El] ~ 86 x8 < o wil r = 0.5508.
< e support for H; is then
S, = —627.52,
41
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TABLE 1. Bernstein’s data on the ABO blood-groups, with genotypes and expectations on the two-locus (H,) and
single-locus (H,) hypotheses.

(1) (2) (3) (4) (s) (6)
Observed Genotypes on 2ok ect‘ed Genotypes on Expected proportions
L proportions
Group proportions H, H, on H;
on H2
‘A’ X, = 0.422 AAbb, Aabb 0.358 AA, AO p(p + 27) = o.4112
‘B’ xz = 0.206 aaBB, aaBb 0.142 BB, BO q(q + 2r) = 0.1943
‘AB’ x3 = 0.078 AABB, AaBB, AABb, AaBb 0.142 AB 2pg = 0.09II
‘o’ X4 = 0.204 aabb 0.358 (0]0] 72 = 0.3034




Support

and thus exceeds S; by 19.98 units. As wi i
98 1 with Hy, two independent parn
$eters ht;ve_be:-.r_: eva_ll_lated in H,, so that the hypmhesfs ﬂrznstfillli"
o mparz e in simplicity’. A support difference of nearly 20 units i
Bery suk sfnr_mal. oorres?ondmg to a ratio of likelihoods of over 4 % 10"
ernstein’s judgement is indeed well supported. .

3.8. SUMMARY

"The adoption of the Likelihood Axiom leads to a method of form
ing opinions about statistical hypotheses which is intuitivel
satisfying, and which has all the properties that may reasonabl:
be expecfed of a measure of support. The ensuing Method o
Sup{mrt is developed without reference to Bayes’ Theorem, and
pronc!es a convenient way of recording, combining and asse’ssin-
statlst.lca'l information. Prior support is introduced as a means r:E
quantifying prior opinions which do not justify probability state-
ments, and th? question of support functions based on conditional
probabilities is discussed, with special reference to sequenti;l
?rocec!ures. Support functions are independent of the rule for
stopping the count’. An example is given of the comparison
of two hypotheses by the Method of Support.
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CHAPTER 4

BAYES’ THEOREM AND
INVERSE PROBABILITY

4.1. INTRODUCTION

I section 3.5 there was an example of the use of support as a
Juwans of incorporating prior information into a final assessment.
We had to argue solely by induction, that is, from the occurrence
l an effect — the measured height of a column of mercury — to the
pissumed cause —an unknown atmospheric pressure. We were
wiible to argue by analogy, that is, by reference to a relevant
wilos from which the case under discussion might be regarded
w having been drawn at random, because we had no series of
wutlier measurements of atmospheric pressure.

Nowadays we could make a statement about the atmospheric
jifessure at noon at a particular place on a particular day without
wwking any measurement at all, but purely by analogy. If the
place is London, and the day April 1st, and we possess many

ats’ records of the pressure in London at noon, we may adopt a
probability model according to which this year’s April 1st and all
fifevious April 1sts in the series are regarded as being random
sxamples of a population of April 1sts, with an associated popula-
{lon of atmospheric pressures. If the series is long enough we will
hie able to define the parameters of this population with some
Accuracy: say it is Normal with mean 760 and standard deviation
10 millimetres. Then the statement ‘the pressure at noon today,
April 1st, in London, exceeds 760 millimetres with probability
|' is a valid statement of probability by analogy. We will consider
at a later stage how good the analogy is.

Such a statement does not, of course, preclude us from making
4 measurement of the pressure today. Suppose that we do so,
finding a value of 770 millimetres of mercury, with a Normal
distribution of error having, as before, a standard deviation of one
millimetre. The support for u is thus (770 — ©)?[2. The question
now arises as to how this information, obtained in the form of a
support function by induction, is to be combined with the prior
information, obtained in the form of a probability distribution by
nnalogy.
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Several parameters

In order to maximize this we introduce the Lagrangian multiplicr A and
consider the new function

S(p, ) = ZayIn py + A (Zp, — 1),
The stationary point of this new function is at

a8’ a as’

'3; = e + A= o, (all I?), and 27 = Epl —-— 1 =0,
whose solution is clearly
b= ayn, (all i), and A= —n,

In order to find the extended information matrix we note that

%8 28

ay

EPT? - B 8pi2py =0 @ # )
and hence that the matrix is
—a,[p? o a oo o 1
(<) —agfp3 ... o 1
o ° —axlp} 1
1 1 . 9 1 °
The inverse of this is readily shown to be
~piZja, + pilat . . . pivilara ila,
1 o Dy B xR o D T eat Fel e
b pivilara .« —biZlay + pila; pilax

pilay R pilay 1

where 2 stands for (Zp?#/a,). On substituting for the observations In
terms of the evaluates, @; = np;, and omitting the last row and colum,
we obtain the observed formation matrix

Pz — p1) — Prfx
n 7
—P1 P = Pu(l — P)
n n

which is the generalization of the formation of a binomial paramets
(example 5.2.1).

The analogue of Newton—Raphson iteration when there are constraints
is given by Aitchison and Silvey. For the above case of a single lineas
constraint 20, = 1 it will be found that the effect of the constraint is

138

Maximum likelthood with a constraint

fy the standard procedure by adding 4 to each element of the
trained scores vector T at each iteration, and that

1¢ F is the inverse of the unconstrained information matrix.

We close this section with an example of the counting method
sxample 5.7.2).

AMPLE 6.8.2

I'he genetics of the ABO blood-group system in man is described
suetlon 3.7 (single-locus hypothesis, H,) and the algebraic expectations
\lie four classes are given in table 1, column 6. Preserving the notation
section 3.7, the support function is

¢, 7)) =n{x;Inp(p + 27) + x2In g(g + 2r) + x3In 2pg + x4 In 73},
o), omitting the constant term nx3 In 2, reduces to

@ 1) = n{(xy + x3)Inp + (x2 + x3) Ingq + 2x4In7

4 2 In (p + 2r) + x321In (g 4 27} (6.8.9)
view of the restriction p + g + r = 1 the support surface may be
ed on a triangular Streng diagram. Figure 20 shows the diagram for
data given in table 1, column 2, the sample size n being 502.

Iy order to find the evaluates of p, g and r, iteration is necessary, and
y be undertaken after the substitution of any one parameter in terms
{he other two, or by using Fisher’s method, or by using the Lagrangian
Itiplier method, or by using the counting method. Rather than follow-
ench cycle of the counting method numerically, as in example 5.7.2,
follow through a cycle algebraically, thus establishing the equivalent
rrence relations.

|Let the actual proportions in the six genotype classes 44, AO, BB,
, AB and OO be ¢, . . . cg respectively. We observ? cs (= :x'a) .and
(= x,) directly, but the remainder are only observed in combination:
# c3 = X1, €a + €4 = %2, If we could observe all the ¢s directly we
1d have the gene frequencies

2p’ = 2¢1 + ca + ¢s
29’ = 2¢3 + ¢4 + ¢s
27’ = ¢g + €4 + 2¢e.

139
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Several parameters M) Maximum likelihood with a constraint

{6,8.10) we have used primes to denote the gene frequencies because

Since we cannot observe ¢; . . . c4 directly, we get them from x, uwinl I ) =
by splitting the latter according to expectation, as the counting maohJ oquations are to be used to obtain new values after ¢; . . . ¢g have
PESELbes calculated from (6.8.11) using trial valugs 9f pygandr.
» ) {ontinuing to work algebraically, we eliminate ¢;. . . ¢ce between
=t ™ I,10) and (6.8.11), obtaining
2r ,
C3=P+2rx1 p'= p_:_zrxl-*-i‘xa
q z (6.8.12)
= e
€3 = X o ((u My r— q
3 qg+z2r? ) q q+2rx2+§x3
zr . . 0
€= o an equation for 7’. But it is only necessary to work with p anfi q,
L g i1l substituting 1 — p — g for 7 in (6.8.12) gives the recurrence relations
And also:
€5 == X3, C€g = X4 ) p’= __I_jle_l_é-xa
2 . (6.8.13)
(0.225’ 0.300. 04?5 ! = ———'—"—x - p — X2 + %xa-
2 —2p—4q
cceeding iterates, starting with trial values p = ¢ = 0.3, for the data
ven in table 1, column 1, are given in table 5. The resulting evaluates are

that have been used in example 3.7.1.

TABLE 5. Successive iterates for the gene
frequencies p and ¢ obtained by using the
counting method (example 6.8.2).

Iteration b q
- 0.3000 0.3000
1 0.3075 0.1701
2 0.2980 0.1564
3 ©.2953 0.1549
4 ©.2947 ©0.1547
5 0.2945 0.1547
\ 6 0.2945 0.1547
1 1 1 1 1 1 1 1 | | R ,-
(0425, 0100, 0:475) (0225, 0:100, 0 (1,3} P = 0.2045, g = 0.1547, r = 0.5508

Figure zo. The support surface for the frequencies p, ¢ and

r of the 4, B and O blood-group genes (example 6.8.2). Only

a part of the Streng diagram is shown; the co-ordinates of the

vertices of the triangle are indicated, and the scale is one division

to o.020 units of gene frequency. I am indebted to Mr C. G.
Hopewell for computing the figure.

We may note that the evaluates must be the solutions to (6.8.1 3) whe'n
' and ¢’ are set equal to p and g, leading to simultaneous quadratic
uations. Further, we can see — without giving a formal proof — why
e counting method leads to the evaluates, for (6.8.10) gives the actual
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Summary

ilference to the inference about the parameters of interest,

Several parameters

values of the gene frequencies conditional on ¢; . . . ¢, since only counl

ing is involved, whilst (6.8.11) gives the most probable values of ¢, " {s shown not to imply the validity of tl.xe B'aye.smn approach.
given the gene frequencies. Thus the two sets of equations togeth gla uumple based on the Normal distribution is given.
e eheacrad ez st et neral forms for the multiparameter score vector and informa-
The observed formation matrix is best calculated separately undoi il 2 - ! sl
- . J and formulae provided for the approxi
counting method, as it does not appear naturally during the couiw imatrix are given, sl iy
iterstion.'* The most straightforward procedure is that discussed abovi i bination of vectors of evaluates. After a descrip

connection with the use of a Lagrangian multiplier, according to whil
the formation matrix is
B —I\"?
(6,0 14)
—1 0

with the final row and column removed, where B is the unconstiaiii
information matrix. From (6.8.9) we readily find B to be n times

son iteration for many parameters, varimfs modiﬂc_:ations are

idered, including the case in which a partial analytic solution
{he support equations is available, and the case f'f a restriction
ngst the parameters. The chapter concludes with an example
the counting method.

Xy + Xy %1 = 2%,
»* (p + 2r)? (p + 2r)?
> X -+ &3 Xg 2xg
q (g + 2r)? (g + 2r)?
22X 2Xxg 2_#_4 + 4x1 + 4x3
(p + 2r)? (g + 2r)? (p+ 20 (q+ 2n)!

From this point on it is best to proceed numerically, inserting the evalunieg
P, gand 7 in B, and then calculating (6.8.14). In the present case we find
the formation matrix to be

2.4984 —0.4442 —2.0542
—0.4442 1.4246 —0.9804 ] X 10-%,
—2.0542 —o0.9804 3.0345

The spans of p, § and 7 (table 5) are thus 0.0158, 0.0119 and 0.0174
respectively.

6.9. SUMMARY

The interpretation of evaluates in multiparameter situations i
considered, and a detailed method given for the case of approxi
mately quadratic support surfaces, enabling, in particular, «
formula to be given for the support for the sum of two or more
parameters. The elimination of nuisance parameters is treated in
depth, and shown to be possible if the likelihood factors, or if the
model can be suitably restructured. The important concept of a
neutral prior distribution is introduced for the probability distribu-
tion of a nuisance parameter which, if it were known, would make
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