
Estimating Mean Time to Reach a Milestone, Using Retrospective Data
Author(s): Corwin L. Atwood and Adam Taube
Source: Biometrics, Vol. 32, No. 1 (Mar., 1976), pp. 159-172
Published by: International Biometric Society
Stable URL: http://www.jstor.org/stable/2529346
Accessed: 23/09/2010 08:38

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=ibs.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

International Biometric Society is collaborating with JSTOR to digitize, preserve and extend access to
Biometrics.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=ibs
http://www.jstor.org/stable/2529346?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=ibs


BIOMETRICS 32, 159-172 
March, 1976 

ESTIMATING MEAN TIME TO REACH A MILESTONE, 
USING RETROSPECTIVE DATA 

CORWIN L. ATWOOD' AND ADAM TAUBE2 

Haile Selassie I University,3 Addis Ababa, Ethiopia 

SUMMARY 

In surveys to estimate the mean age at menarche (or another milestone reached by the whole popula- 
tion), interviewed girls in the age range can respond that menarche (a) has not occurred or (b) has occurred 
or (c) occurred at a certain age t. Answers of type (a) and (b) are called status quo data. Answers of type 
(a) and (c) are called retrospective data. One kind of data is assumed. The distribution of age at menarche 
may also be assumed to be normal or not necessarily normal. This gives four possible sets of assumptions. 
Estimators, with their asymptotic distributions and optimal sampling allocations, are found for the case 
of retrospective data and non-normal distribution. These estimators are compared in examples with pre- 
viously proposed estimators based on the other sets of assumptions. In these examples, retrospective data 
should certainly be used if available and reliable. 

1. INTRODUCTION 

The mean age at menarche has attracted considerable interest in the medical literature. 
For a list of references, see for example Bojltn and Bentzon [1968], Aw and Tye [1970] or 
Tekle Wold, Sterky and Taube [1972]. 

The data are usually of a cross sectional type: there is a set of samples of girls from 
various age groups, such that in the youngest age group none of the girls has experienced 
menarche while in the oldest group all the girls have passed their menarche. Interviewed 
girls may give several kinds of responses: 

(a) "Menarche has not yet occurred." 
(b) "Menarche has occurred." 
(c) "Menarche occurred when I was t years old." 
If the answers are all of type (a) and (b), call this status quo data. If the answers are all 

of type (a) and (c), call this retrospective data. This terminology can be found in medical 
literature. See e.g. Aw and Tye [1970]. In statistical literature, the first kind of data is 
also called quantal data while tie second can be called censored quantitative data. 

We do not consider the mixed case in which some girls give their age at menarche while 
others can only say that menarche has occurred. 

There are two common approaches concerning the probability distribution of age at 
menarche: either assume (possibly after a transformation such as taking logarithms) that 
the distribution is normal or adopt a distribution free approach, assuming that the distri- 
bution is not necessarily normal. If the distribution is normal, the unknown parameters are 

1 Now with the Department of Mathematics, University of California at Davis, Davis, CA 95616. 
2 Now with the Department of Statistics, University of Uppsala, Uppsala, Sweden. 
3 Now the National University. 
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A and a. Otherwise the unknown parameters are pi , defined as the probability that 
menarche occurs in the ith age group, for the various possible values of i. 

Thus, the four situations listed below are commonly encountered. The fourth case, 
with retrospective data and no assumption of normality, will be the primary case of interest 
in this paper, although the estimators used for the other cases will be mentioned and com- 
pared. The cases and corresponding estimators to be considered in Section 2 are: 

Status quo data, distribution normal 
Probit analysis estimator 

Status quo data, distribution not necessarily normal 

Spearman-Kdrber estimator 

Retrospective data, distribution normal 

Maximum likelihood estimator 

Retrospective data, distribution not necessarily normal 

"Retrospective" estimator 
Maximum likelihood estimator 

If the mean age at menarche is the only parameter of interest, the optimal sampling 
allocation (i.e., the proportion of girls of each age interviewed) can be found. The allocation 
will of course depend on the estimator being used. Since the optimal allocation also will 
depend on the actual values of the unknown parameters, it can at best only be approxi- 
mated in practice. However the optimal allocation can be used to get a theoretical lower 
bound on the variance of the estimator in question. 

Judicious consideration of the optimal sampling allocation is also useful for the practical 
experimenter. As an example, suppose that an experimenter believes that age at menarche 
is approximately normally distributed and that he can only get reliable status quo data. 
Thus he plans to use probit analysis. A glance at Fig. 1 and Section 2.3 reveals that the 
theoretical optimal allocation would be to interview only girls whose ages are very near A, 
the mean age at menarche. He does not know ,4 but he is quite sure that it is between, say, 
11 and 15 inclusive. He therefore decides to interview approximately equally many girls 
of each age from 11 through 15. This is a conservative, and not unreasonable, use of the 
theory. The allocation used is only an exceedingly rough approximation of the optimal 
allocation. However even this simple consideration has prevented the wasted effort of 
interviewing a lot of nine year-olds. It is unfortunate that experimenters seem in the past 
generally to have ignored such considerations. There are papers in which A seems to be 
the only quantity of interest, where many girls were interviewed from whom very little 
information about A could be expected to be obtained. 

If the survey is of a multipurpose character, then a less specialized allocation must be 
used. In comparisons of the various estimators we will use both the optimal allocation for 
the estimator under consideration and the multipurpose allocation in which equal numbers 
of girls in each age group are interviewed. 

The problem has been expressed in terms of mean age. It may be that an experimenter 
is less interested in the mean and more interested in the values of pi , the probability that 
menarche occurs in the ith age class. If normality is assumed, then the pi's can be esti- 
mated based on the estimates of A and a'. If normality is not assumed, one must first 
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estimate the pi's; then one may calculate the corresponding estimate of A (and T2). Thus 
in either case estimates of all these unknown quantities can be found. In this paper the 
mean will be regarded as the quantity of chief interest because it is easier to compare 
estimators of a one-dimensional quantity A than of a multidimensional quantity 

The numerical examples of Section 3 indicate that if retrospective data are available 
and reliable they should definitely be used. In particular the maximum likelihood esti- 
mators using retrospective data are considerably better in these examples than any of the 
other estimators considered. 

Although the problem is phrased here in terms of menarche, the analysis of this paper 
applies equally well to any milestone which is reached by the whole population and for 
which retrospective data is available. 

Note added in revision: Several related papers have come to our attention; all assume 
retrospective data and a distribution which is not necessarily normal. Kaplan and Meier 
[1958] find the MLE if the data are ungrouped. Peto [1973] uses a computer interation to 
find the MLE if the data are grouped in possibly overlapping classes with arbitrary possibly 
unequal widths. Elveback [1958] gives an estimator which is mathematically equivalent 
to our MLE of Section 2.6 although the parametrization and technique of solution are 
different. 

2. ESTIMATION OF A 

2.1 Formulation of the Problem. 

Let T be the time of menarche, a random variable with unknown cumulative distribu- 
tion F, and mean ,4 = E(T). At this point no assumptions will be made about the form of F. 

The time axis is divided into k classes (age groups), each of width h and with midpoint 
of the ith class at a + ih. Let pi be the probability that menarche occurs in the ith age 
class. We will frequently use the phrase "at age i" to mean "in the ith age class." 

For the purpose of later comparisons we formulate the problem using retrospective 
data and treat the status quo case as a special case in which part of the information is 
ignored. Suppose that ni girls are interviewed from the ith age class and let n = E ni, 
i-= 1, ... , lo. Each girl responds by giving her age at the time of her menarche or by 
saying that her menarche has not yet occurred. If her age is i, the probability that she 
will give j as her age at menarche is pi, for j < i. 

The probability that she will say her menarche occurred at age i, her present age, is 
more complicated. Her exact age at the time of interview, A, may be considered as a random 
variable which is uniformly distributed between a + (i - 1/2)h and a + (i + 1/2)h. 
The probability that she will say menarche occurred at age i is. 

P(a + (i - 1/2)h < T < A). (2.1) 

Every estimator considered in this paper makes some simplifying approximation here. If 
T is not assumed to be normal, (2.1) is approximated by pi/2; this approximation would 
be exact if T were uniformly distributed in each age class. If T is assumed to be normal, 
(2.1) is approximated by P(a + (i - 1/2)h < T < a + ih). The inaccuracy introduced 
by these simplifications is not serious if h is small. Moreover, in the non-normal case the 
alternative to this approach would be to estimate (2.1) for each i; this would increase the 
number of unknown parameters from l - 1 to 2k - 1, and not necessarily improve the 
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accuracy of a. (For a discussion of the effect of the approximation in the probit analysis 
case, see Finney [1971, Sec. 10.7] and Tocher [1949].) 

In some studies it is possible to learn each girl's exact age. For each girl this value can 
then be inserted in (2.1). In Section 2.6 the MLE for this case will also be given. 

2.2 General Considerations. 
Consider the non-normal case and approximate (2.1) by pi/2. Let ni girls of age i be 

interviewed. The probability of a set of responses is 

P1ZSI * * l(pi/2)zs ipvi (2.2) 
where 

xii = number of responses "menarche at age j", 
yi = number of responses "no menarche yet" and 

pi = Pi/2 + pi+, + + Pk . 

Multiplying expressions of the form (2.2) together for i = 1, * k, lo yields the prob- 
ability of a set of responses from all n girls. 

L = Pil . . . pk (1/2)Eziill . . . k (2.3) 
where 

Xi= E=j Xi; = number of girls with menarche at age j. 

To avoid ambiguity when some pi = 0, (2.3) should be understood only to include terms 
pi"' and pi" for which the exponent is nonzero. 

Let us now consider the allocation question with retrospective data. If reliable retro- 
spective data can be obtained then clearly the most information is obtainable from a girl 
who is interviewed after she has passed menarche. Thus the optimal allocation for esti- 
mating A is to interview n girls who are all old enough to have passed menarche. If this is 
done then yi = 0 for all i and the maximum likelihood estimator is easily found to be 

u= ,(a + jh)p; where ^ =xi,/n. 

Here i only takes one value since the interviewed girls are all in one age group. Thus /2 is 
simply the sample mean of the responses based on grouped data. Sheppard's correction gives 

E(U)-E(T) = Is 

V(u)-n-1[V(T) + h2/12]. 

All of the estimators of Sections 2.5 and 2.6 reduce to this estimator when this allocation 
is used, the optimal allocation for retrospective data. 

Now let us consider the estimators and corresponding optimal sampling allocations 
for the four situations described in Section 1. 

2.3 Status Quo Data, Distribution Normal. 
The maximum likelihood estimator in this case is the probit analysis estimator fp 

detailed in Finney [1971]. There is no explicit formula for Up - Rather it is found iteratively 
as the solution of the maximum likelihood equations. The asymptotic distribution of the 
MLE is well known (Cram6r [1946]). Under conditions which hold here, it is asymptot- 
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ically normal and unbiased. In the notation of Section 2.1, the asymptotic covariance 
matrix of nl/2(fp , 3p) is the inverse of 

M =-1 E nifi2[Fi(1 - Fi)]- E nio1(x (-i _)fi2[Fi(1 Fi)]-l 
L~ nia '(xi - i )f2[Fi(1 - Fi)]-' Eni2(x -2,i)2f 2[Fi(12 F )1j 

where xi = a + ih, the midpoint of the ith class, Fi = F(xi) and fi = F'(xi). 
We wish to find an allocation which minimizes the asymptotic variance of Up, i .e., 

which minimizes the upper left entry of M-1. This theoretically optimal allocation turns 
out to be suitable for practical use only in modified form as indicated in Section 1. We 
treat here only the case with an even number of cells symmetrically placed around a. 
This is sufficient to get the entries of Table 1 in Example 2. 

If lo is even and the cells are symmetrically placed around ,, then any allocation can be 
symmetrized as follows. For any i, if there are ni and nk+ -i girls interviewed in cells i and 
lo + 1 - i, let the symmetrized allocation take (ni + nAk+1-i)/2 observations in each of 
the two cells. If ni + nk+ 1i is odd, assign the last observation arbitrarily. Symmetrizing 
the allocation leaves the diagonal elements of M unchanged but it makes the off-diagonal 
elements 0. (If some ni + nk+1-i are odd, then the off-diagonal elements are nearly 0 for 
n large). This decreases the diagonal elements of M-1, as an elementary computation 
shows. Thus the upper left entry of M-1 is minimized if the design is symmetrical in which 
case the asymptotic variance of UP is (I nifi2[Fi(1 - Fj)]f")"l. This is minimized by 
taking half of the interviewed girls each in the two age groups on opposite sides of , where 
fi2[Fi 1- Fi)]-1 is maximized. 

In Example 2 of Section 3, there are eight cells symmetrically placed around a. The 
optimal allocation for UP is to interview n/2 girls each from age groups four and five. The 
asymptotic variance is listed in Table 1. 

2.4 Status Quo Data, Distribution Not Necessarily Normal. 

The unknown parameters are pi, . . ., p, . Assume that E pi = 1, i.e. the age classes 
sampled cover the entire age range in which menarche ever occurs. If only status quo 
data is available, the probability of a set of responses analogous to (2.3) is 

L = ir (1 _ pi)ni--ip 

where as before pi = pi/2 + pi+, + * * * + pk . 
From this it follows that the MLE of Pi is yi/ni . The corresponding estimator of ju is 

itSK = a + 1h + h yi/ni 
the "Spearman-Kirber estimator." (See Finney [1964]). Since the yi are independent 
binomial with parameters ni and Piit is immediate that 

E(USK) = a + h + h i (2.4) 

so that 

E(^isK) A 

The equality is not exact because the ages were grouped. Similarly 
k 

V(LaSK) =h~~~( pi)/ni.(25 
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Use of Lagrange multipliers shows that the choice of ni's which minimizes V(#sK) is 

ni = n[P(i - pi 1/2 / [pi(l _ p-)]/2. (2.6) 

Of course the pi's are unknown so the optimal ni can only be approximated, based on any 
available prior information about the distribution. However this does not seem difficult 
when dealing with age at menarche. Note that since j (1 - pi) is largest when pi = 1/2, 
the value of ni should be largest when i is somewhere in the middle between 1 and k. Sub- 
stitution of (2.6) in (2.5) yields a lower bound on V(9SK): 

(k ]2 

V(isK) > h2n 1{ [Pi( _ - p)]1/2} 

with equality attained if and only if the values of ni are given by (2.6). 
Suppose now that girls are interviewed in too few age classes, say in classes 1 to k, 

when menarche can also occur (although with small probability) in classes 0 and k + 1. 
In this case, formulas (2.4) and (2.5) are still correct, where kc is the number of age groups 
sampled, and now pi = pi/2 + Pi+, + * * * + Pk+I . Thus the 0 and k + 1 terms are missing 
from the summation in (2.4) and a bias is introduced (which is small if po and Pk+l are 
small). On the other hand the variance (2.5) is smaller than it would be if girls in more 
age groups had been interviewed. To avoid this complication the experimenter may wish 
to take a few observations outside the range where he believes menarche occurs or he may 
decide that the complication does little damage and he can live with it. 

2.5 Retrospective Data, Distribution Normal. 
Swan [1969] assumes that one can observe an upper and lower bound on the normal 

random variable. Our situation here is thus a special case of his; indeed, so is Section 2.3. 
Swan then finds the maximum likelihood equations for 1 and a which can be solved numeri- 
cally by the Newton-Raphson iterative method. If the underlying assumption of nor- 
mality is correct, then the estimator is asymptotically normal with asymptotic mean MA. 
The asymptotic covariance matrix of the estimator of (is, a) can be worked out in a routine 
way, although it is rather cumbersome to write down. 

A numerical example is presented in Table 1. 
The optimal allocation for this estimator, or any estimator using retrospective data, 

was discussed at the end of Section 2.2. 

2.6 Retrospective Data, Distribution Not Necessarily Normal. 
Two estimators will be considered for this case, the "retrospective estimator" intro- 

duced in Tekle Wold et al. [1972] and the maximum likelihood estimator (MLE). 

Retrospective Estimator. 
The retrospective estimator is easily motivated. The estimator of pi is taken to be a 

multiple of x. i where x. i is the number of girls (of all ages > j) who had menarche at age j. 
To make the estimates unbiased, set 

Pi = cix.i 
where 

c- = n,/2 
+ E ni 

i+1 
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These 'i's do not necessarily sum to 1. This will be corrected later but for now define the 
uncorrected retrospective estimator as 

UPUR -a (a + jh)Pi,. 

Since the 'i's are unbiased, E(fuR) = E (a + jh)pj-M. Unfortunately the variance 
computations are not so simple because the 'i's are correlated. The derivation of V(UuR) 
is only sketched since in the examples of Section 3 UR is definitely poorer than the MLE. 
We have 

V( u) =V (a + jh) Exi 

= ,V[ (a + jh)xi As 

Expand the sum over j in terms of the variances and covariances of the xi i's and get 

V(,^uR) = a2A + 2aB + C (2.7) 

where 

A = [c c2V(xi) + E ccl cov (xi xil)] 
i j~i jili 

and B and C are similar expressions. Note here the surprising fact that V(^uR) depends 
on the location parameter a. 

The terms A, B and C can be evaluated using the fact that (xi, * *, , yj) has a 
multinomial distribution. After some manipulation in the case ni = n/k we obtain 

A = n E'k [ d 2p - (I dip,)2 + Idi2(1 - l2p)pi- didipipi 

i B = n'lkh E [ I jd,2p, i- ( d sp )( I jd sp,) + l~di2i(1 -l pip-1 I d sdi(i + i)pipi] 

C = n-1kh2 I [ j2di2pi - (I jd p,)2 + Idi2i2(1 Ipip.- E dsd jipjpi] 

where di k j- + 1/2 and all the summations within the brackets are over j < i. This 
result will be used in the numerical comparisons of Section 3. 

To correct for the fact that ^ i is not necessarily 1, set pi* = p3j/i Pi and define the 
corrected retrospective estimator 

JCR = ? (a + jh)pi*. 

Exact results are difficult because pi* is a quotient of correlated random variables. How- 
ever the asymptotic distribution of --cR can be found as follows. 

Since (Pk, * , Pk) can be expressed as a sample mean, it is asymptotically multi- 
variate normal and therefore - UR is also asymptotically normal. Since p-i 1 in prob- 
ability, it follows (by Rao [1965], Theorem 2.c.4.x.) that 

UPUR - 

and 
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have the same asymptotic distribution. If u = 0, i.e. if a is chosen to equal -h E ipi 
then the expression on the right of the equality reduces to @CR -. Therefore nl1/2(CR - 

N(0, cr2) in distribution where o2 is expression (2.7) with a = -h A ip, . This forms 
the basis for part of Table 1 in Section 3. 

Maximum Likelihood Estimator. 
We now derive the MLE. Those who only wish to use the estimator will find a sum- 

mary of the procedure for calculating it given at the end of the derivation. 
We want to maximize (2.3), or equivalently to maximize 

k-1 k-1 

log L = c + x. i log pi + E 10 Pi + X.k 109 Pk + Yk 109 Pk (2.8) 
1 1 

where c is a term which does not depend on the pi's. To avoid ambiguity when pi = 0, 
no terms are included in which the logarithm is multiplied by zero. There are k - 1 param- 
eters to be estimated. Let Pk be the dependent parameter by setting pi, = 1 -Elk-l Pi 
Differentiating (2.8) with respect to pt , i = 1, , k- 1 and setting the result equal 
to zero gives 

k-1 

0 = x.i/pi - y/2pi (Yi/P) (X.k + Yk)/Pk (2.9) 
i+1 

for i = 1, , k - 1. The summation vanishes if i = k - 1. Note that if pi , Pk 
are any nonnegative numbers which satisfy (2.9), then cpl , * , CPk also satisfy (2.9) for 
any constant c > 0. (Here 

Pi 2Pi+ Pi+1 + + Pk (2.10) 

not 1 -p- - P* * - 'pi!). Therefore the method of solution will be to find some 
Pi I .. Pk which satisfy the k - 1 equations (2.9) and then to multiply them by the 
appropriate c so that E cpi = 1. 

We will find the values of pi one at a time, beginning at the top by choosing an arbi- 
trary Pk > 0. If at a certain point we have found pk* p.., , then (2.9) gives 

Api2 + (AB + y-x.Op - Bx.i = 0 (2.11) 

where A and B are defined by 
k-I 

A = I (Yji'P) + (X.kG + YkA)/Pk 
i+1 (2.12) 

B = 2(pi+l + *. + Pk). 

If x. k + Yk > 0, then A is nonzero and equation (2.11) has a unique nonnegative solu- 
ticn (since ABx. 2 0) which can be found by using the quadratic formula. 

If X-k + yk = 0, then for some i we may have A = 0 and perhaps many solutions or 
no solution for pi . As a fairly general example, suppose X.k = X.k-1 = Yk = Yk-i = 0 and 
X.k-2 > 0. When i = k - 1 then (2.11) reduces to 0 = 0. Thus Pk-1 is not determined. 
Essentially, the data cannot distinguish between the classes k - 1 and k but treat them 
as a single class. Arbitrary values must initially be assigned to both pk and Pk-l ; in par- 
ticular they may be set equal, or either may be made zero based on considerations other 
than the data. It will eventually be clear that PI1 + Pk is determined, but if this sum is 
nonzero then the relative weights of the two components are not determined. 

Having assigned a value to Pk-1 , set i = kr -2 and try to solve (2.11) for Pk-2. Again 
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A = 0, and (2.11) becomes 

(Yk-2 - -2 = 2(Pk- + Pk)X.k-2 

If Yfk- > X.k-2 then there is a unique solution and no further complication in finding the 
remaining pi's. If Yk-2 < X.k-2 , then there is no nonnegative solution for Pk-2 , i.e., the 
derivative of (2.8) is positive for all positive Pk-2 . Therefore the maximum likelihood 
solution cannot have Pk-l + Pk > 0. Thus the upper two class probabilities should be 
set equal to 0 and the number of classes under consideration reduced by two. A simple 
way is to redefine k, setting it equal to the former k - 2. With this redefined k, begin by 
letting pk > 0 be arbitrary, then solve (2.11) successively for Pk -l , * pl with no com- 
plications since now X. k > 0. 

So in summary to find the 1ILE, let Pk > 0 be arbitrary. For i = k - 1, * , 1, suc- 
cessively define A and B by (2.12) and (2.10) and let pi be the nonnegative solution of 
(2.11). If for any i, the solution pi is not unique, then a nonnegative value must be as- 
signed arbitrarily. If for any i there is no nonnegative solution pi , then redefine k equal 
to this i, assign all the higher classes probability zero and return to the beginning of this 
paragraph with the redefined k. Finally for i = 1, * *, k set 

pi. = pi /Epij 

The usual asymptotic theory for the MLE applies here. The -i's which correspond to 
nonzero pi's are asymptotically normal, unbiased and minimum variance. If k now denotes 
the number of nonzero pi's, the asymptotic covariance matrix of (p , ..-, Pk-1) is the 
inverse of the symmetric matrix 1M1 with 

k-l 

Mii = ni/pi + Y. n1/P4 + ni/4pi + nkC/pk, 
i+l 

where i, is Ini plus the total number of girls interviewed at ages > i and 
k-l 

Mi= E n1/pt + ni/2fi + nk/pkc 
i+l 

for j < i. 
The corresponding estimator of ,u is Zl k (a + jh)f, which is an asymptotically un- 

biased and asymptotically efficient estimator of Zlk (a + jh)pi i *. Since h = a + kh - 
h Elk-I (k - j)p, the asymptotic variance of f is h2b'Vb, where V is the asymptotic 
covariance matrix of (Ak, * * , b 6' is the row vector (k - 1, * , 1) and b is the cor- 
responding column vector. 

MLE If the Girls' Ages Are Known Exactly. 
As mentioned at the end of Section 2.1, each girl's age may be known exactly. In this 

case, the probability that a girl of age i will say that her menarche occurred at age i is 
given by (2.1) with A replaced by her exact age- at the time of interview. This can be ap- 
proximated by piej, where ej1 is the time that the lth girl has been in the ith age class 
divided by the class width. The likelihood equations to be solved are then 

ni / 1 

0 = x.j/pi- yjteij/ pi + pi(l -eil) 

k- ni k 

E E il /E Pi + Pi(l ei)j (X. k + 
YJ)/Pk (2.13) 
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for i- 1, , k - 1, where yi, = 1 if the lth girl of age i has not had menarche and 
yil= 0 otherwise. The method of solution is similar to that for (2.9): choose Pk > 0 arbi- 
trarily, solve successively for pk--l , * * * , pi and then set Pi5 = pi . The difference 
is that each pi must be found numerically using a computer rather than as the solution of 
a quadratic equation. 

3. NUMERICAL EXPENSES 

3.1 Estimation Methods. 
As described in Tekle Wold et al. [1972], Ethiopian girls from ages nine to 17 were 

interviewed. The girls were classed by year of age so the class width is h = 1. The MLE 
of the pi's corresponding to ages 12 through 16 are .0940, .3094, .4280, .1255 and .0431, 
respectively; the pi's for other ages are 0. 

As Example 1, suppose that these are the true class probabilities and that the distribu- 
tion is uniform within each class so that (2.1) equals !pi . We consider the estimators 
which do not assume normality and three sampling allocations: interview n/9 girls from 
each of the ages nine through 17 (as was actually done), interview n/5 girls from each of the 
ages 12 through 16 and for the estimator being used interview girls according to the best 
allocation for that estimator. We will call these the "nine cell allocation," the "five cell 
allocation" and the "optimal allocation for the estimator." (The optimal allocations were 
described at the ends of Sections 2.2, 2.3 and 2.4). Estimators which assume a normal 

-4 8 Cell Allocation 4 -4 Spearman-K'arber 4 
Optimal Allocation 

-4 Probit Optimal 4 -4 Retrospective 4 
Allocation Optimal Allocation 

FIGURE 1 
SAMPLING ALLOCATIONS USED FOR EXAMPLE 2 
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TABLE 1 
nV(i) 

Example 1 Example 2 

9 cell 5 cell optimal 8 cell optimal 
alloca- alloca- alloca- alloca- alloca- 
tion tion tion tion tion 

Probit analysis _ _ _ - 4.43 1.72 

Spearman- 5.65 3.14 2.80 4.70 2.80 
Kirb er 

Retrospective 1.69 1.08 
data, distr. 
normal, MLE 

Uncorrected > 2.14 > 1.79 .90 > 2.14 1.08 
retrospective 

Corrected 2.80 3.37 .90 2.97 1.08 
retrospective 

Retrospective 1.93 1.45 .90 1.89 1.08 
data, distr. 
not normal, MLE 

distribution are not considered because it is difficult to find the asymptotic distribution 
of the MLE when the assumptions on which the MLE was based do not hold. 

As Example 2, suppose that T is Normal(O, 1) and the time axis is divided into eight 
cells of width 1, from -4 to 4. We consider all the estimators mentioned in Section 2 and 
two allocations: the "eight cell allocation," in which n/8 girls are interviewed from each of 
the eight classes and the optimal allocation for the estimator being used. All the allocations 
used in this example are illustrated schematically in Fig. 1. 

Table 1 shows nV(-) for the various estimators and allocations considered. The 
symbol indicates an asymptotic result, approximately correct for large n. The figure in 
the "uncorrected retrospective" row is the minimum possible value, attained for the 
proper choice of the location parameter. Note that all of the estimators which use retro- 
spective data coincide when the optimal allocation for these estimators is used. 

In Example 1, it was assumed that expression (2.1) equals "pi so no approximations 
are involved in Table 1 except for the usual approximation involved in any asymptotic 
result. 

In Example 2, the tabulated variances obtained by large sample theory for the MLE's 
are the asymptotic values which would be correct if (2.1) were exactly equal to its approxi- 
mation. To give an idea of the inaccuracy introduced by this approximation, the variances 
of the retrospective and the Spearman-Karber estimators were computed exactly and also 
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TABLE 2 
COMPARISON OF ESTIMATES 

.~~~~~~~~~ 
Method P 95% Confidence Limits 

Probit analysis 13.58 13.34, 13.82 

Spearman-KArber 13.60 13.36, 13.84 

Retrospective 
data, distr. 
not norm., MLE 13.71 13.57, 13.85 

by using the simplification for (2.1). Some of the approximate variances then differed 
from the exact variances by as much as .2 or .3. This suggests that the tabulated asymp- 
totic variances of the MLE's in Example 2 may be inaccurate by .2 or .3 units. 

Study of the table shows that the MLE using retrospective data are substantially 
better than any of the other estimators in these examples. Also in Example 2, use of the 
normality of the distribution results in a modest decrease in V(#). 

3.2 Values of the Estimates. 
The methods of estimation have been compared above. We now compare actual values 

of some of the estimates for real menarche data. This does not show which estimators are 
most efficient; for that comparison one should look at Table 1. Rather, our one purpose 
for looking at the estimates is that something might be learned about which assumptions 
hold for menarche data. Specifically, if the MLE's of Section 2.6 differed greatly from the 
Spearman-Khrber estimate, then we would question the reliability of the retrospective 
data. If the probit analysis estimate differed greatly from the Spearman-Kirber estimate, 
then we would question the normality of the distribution. If there were any large dis- 
crepancy among the estimates we would also be concerned about the effect of grouping 
the data into one-year age classes. 

Using the data reported in Tekle Wold, Sterky and Taube [1972], we get Table 2. As 
can be seen from a comparison of the confidence limits, the estimates are quite consistent 
with each other and this example does not provide grounds for questioning any of the 
assumptions made in this paper. 

For further comparisons of estimates, based on not entirely comparable sets of data, 
the reader is referred to Aw and Tye [1970]. 
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ESTIMATION DU TEMPS D'ATTENTE D'UNE PHASE DE LA VIE, UTILISANT DES DONNEES 
RETROSPECTIVES 

RASUMP 

Dand les enquete que l'on fait pour estimer 1'ge moyen de la menarche (ou toute autre phase atteinte 
par toute la population), les jeunes files de cet Age interrog6es peuvent r6pondre que la m6narche 

a) n6 s'est pas encore produite ou 
b) s'est produite ou 
c) s'est produite a un certain Ige t. 

Des reponse du type a) et b) sont appelees des donnees de statut (status quo data). Des reponses de type 
a) et c) sont appel6es donneres retrospectives On suppose que les donn6es sont de l'un de ces deux types, la 
distribution de l'ge de la menarche peut aussi etre suppose normale ou non ne'cessairement normale. Cela 
donne quatre ensembles d'hypotheses possibles. On trouve, dans le cas de conn6es r6trospectives et de 
distribution non-normale, des estimateurs, leurs distributions asymptotiques et leurs positions d'echantil- 
lonnage optimales. Ces estimateurs sont compares sur des exemples avec des estimateurs precedemment 
proposes sur la base des autres ensembles d'hypotheses. D'apres ces exemples, on devrait certainement 
utiliser les donn6es r6trospectives lorsqu'elles sont disponibles et utilisables. 
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APPENDIX 

A summary of the data reported in Tekle Wold, Sterky and Taube [1972] is given 
here. "Age i" means that the true age is between i-1/2 and i + 1/2. In the notation 
of the present paper ni = 40 for i= 9,..., 17 and 

= 21 Y12 = 38 

X.13= 57 Y,3 = 29 

x, = 62 Y14 = 11 

x.15 = 14 Y15 = 4 

= 2 Y18 = 2 

Y17 = 0. 

All other values of x.i are 0; all other values of yi are 1. 
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