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1 (Poisson) Model for (Sampling)Variability of
Count in a given amount of “experience”

The Poisson Distribution: what it is, and some of its features

• The (infinite number of) probabilities P0, P1, ..., Py, ..., of observing Y =
0, 1, 2, . . . , y, . . . “events” in a given amount of “experience.”

• These probabilities, Prob[Y = y], or PY [y]’s, or Py’s for short, are gov-
erned by a single parameter, the mean E[Y ] = µ.

• P [y] = exp[−µ] µy/y! {note recurrence relation: Py = Py−1 × (µ/y).}

• Shorthand: Y ∼ Poisson(µ).

• V ar[Y ] = µ ; i.e., σ2
Y = µY .

• Approximated by N(µ, σY = µ1/2) when µ >> 10.

• Open-ended (unlike Binomial), but in practice, has finite range.

• Poisson data sometimes called ”numerator only”: (unlike Binomial) may
not “see” or count “non-events”: but there is (an invisible) denominator
“behind’ the no. of incoming “wrong number” phone calls you receive.

How it arises / derivations

• Count of events (items) that occur randomly, with low homogeneous in-
tensity, in time, space, or ‘item’-time (e.g. person–time).

• Binomial(n, π) when n →∞ and π → 0, but n× π = µ is finite.2

• Y ∼ Poisson(µY ) ⇔ T time b/w events ∼ Exponential(µT = 1/µY ).3

• As sum of ≥ 2 independent Poisson rv’s, with same or different µ’s:
Y1 ∼ Poisson(µ1) Y2 ∼ Poisson(µ2) ⇒ Y = Y1 + Y2 ∼ Poisson(µ1 + µ2).

• Examples: numbers of asbestos fibres, deaths from horse kicks*, needle-
stick or other percutaneous injuries, bus-driver accidents*, twin-pairs*,
radioactive disintegrations*, flying-bomb hits*, white blood cells, typo-
graphical errors, “wrong numbers”, cancers; chocolate chips, radioactive
emissions in nuclear medicine, cell occupants – in a given volume, area,
line-length, population-time, time, etc. [*e.g. on website]

2See also: derivation & applications (counting yeast cells in beer) in Student’s 1907
paper “On the Error of Counting with a Haemacytometer”; and Ch. from Armitage et al.

3cf. ***** “Randomness at the root of things: Poisson sequences” – Physics Education.
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Figure 1: Events in Population-Time.. randomly generated from intensities
that are constant within (2 squares high by 2 squares wide) ‘panels’, but vary
between such panels. In Epidemiology, each square might represent a number
of units of Population-time, and each dot an event.

1.1 Does the Poisson Distribution apply to.. ?

• Yearly variations in no.s of persons killed in plane crashes? 4

• Daily variations in numbers of births?5

• Daily variations in no.s of deaths [variation over the seasons]

• Daily variations in numbers of traffic accidents [variation over the seasons,
and days of week, and with weather etc.]

• Daily variations in numbers of deaths in France in summer 2002 & 20036

• Variations across cookies/pizzas in no. of chocolate chips/olives.
4Yearly variations in no.s of plane crashes may be closer to Poisson [apart from variation

due to improvements in safety, fluctuations in no.s of flights etc].
5See e.g. Number of weekday and weekend births in New York in August 1966 on web

page: the variations are closer to Poisson if use weekly count.
6c.f. Impact sanitaire de la vague de chaleur en France survenue en août 2003. Rapport

d’étape 29 aot 2003 [on course webpage] and Vanhems P et al. Number of in-hospital deaths
at Edouard Herriot Hospital ,and Daily Maximal Temperatures during summers of 2002
and 2003, Lyon, France. New Eng J Med Nov 20, 2003, pp2077-2078. ibid. see Resources.
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Figure 2: Events in Time: 10 examples, randomly generated from constant
over time intensities. Simulated with 1000 Bernoulli(small π)’s per time unit.

1.2 Calculating Poisson probabilities:

1.2.1 Exactly

• pdf: formula for Py (can use recursion).

• cdf:

– Summation of terms in pdf

– Using link between this sum and the cdf of χ2 Distribution7.

• Spreadsheet — Excel function POISSON(y, µ, cumulative)

• Statistical Packages: SAS function POISSON; see www.ats.ucla.edu/
stat/stata/faq/pprob.htm for ‘how to’ in Stata; R functions dpois(),
ppois(), qpois() probability, distribution, and quantile functions.

1.2.2 Using Gaussian Approximations to distribution of y or trans-
forms of it

Described below, under Inference.

7Fisher 1935: see Resources
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2 Inference re µ, based on observed count y

2.1 “First Principles” Confidence Interval

By first-principles 100(1−α)% CI, we mean “not usual point-estimate ± some
multiple of standard error,” but rather the pair (µLOWER, µUPPER) such that

P (Y ≥ y | µLOWER) = α/2 & P (Y ≤ y | µUPPER) = α/2.

0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17...   
count (y)

 y prob(y|2.2)

 4  0.0182
 5  0.0476
 6  0.0174
 7  0.0055
 8  0.0015
 9  0.0004
10  0.0001
..  ..

Prob (y >= 6) 

= 0.0250

if mean = 2.2

 y prob(y|13.06)

 0  0.0000
 1  0.0000
 2  0.0002
 3  0.0008
 4  0.0026
 5  0.0067
 6  0.0147
 7  0.0274
..  .. observed count6

...

Prob (y <= 6) 

= 0.0250

if mean = 13.06

LOWER

UPPER

Figure 3: Example of Exact 95% CI of {2.2, 13.06} for µ, based on y = 6.

2.1.1 Exact – see Figure 3 for example, based on y = 6

Tables: For a given α, there is just one CI for each value of y; these exact
CI’s have been extensively tabulated and made available in several texts and

Tables, e.g., the Documenta Geigy, and Biometrika Tables for Statisticians.8

If don’t have tables.. Can find exact lower and upper limits
µLOWER/UPPER that yield the target α/2’s either by trial & error (rapidly
with software that evaluates Poisson tail areas) or directly using the Link
between the tail areas of the Poisson and tail areas of Chi- Square distribu-
tions (full details in article by Fisher, 1935, under Resources on webpage),
µLOWER = 1

2χ2
2y,α/2, µUPPER = 1

2χ2
2y+2,1−α/2. Some specialized software

packages (eg in R) also have functions that provide them directly.9

2.1.2 Quite accurate approximation to exact tail area

Using Wilson-Hilferty approximation to Chi-square quantiles10 This
has high accuracy for y > 10; it uses z, the normal standardized variate
corresponding to α/2, e.g., α = 0.10 → z = 1.645;α = 0.05 → z = 1.96, etc.

µLOWER = y × {1− [9y]−1 − z × [9y]−1/2}3

µUPPER = (y + 1)× {1− [9(y + 1)]−1 + z × [9(y + 1)]−1/2}3

2.1.3 Not quite as accurate an approximation, but 1st principles

Using Y ' N(µ, σ = µ1/2):

Obtained by solving the two equations:

y = µLOWER + z × {µLOWER}1/2 ; y = µUPPER − z × {µUPPER}1/2

to give
µLOWER,UPPER = ([y + z2/4]1/2 ∓ z/2)2.

8(See (homemade) “Confidence limits for the expectation [i.e. the ’mean’ parameter] of
a Poisson random variable” on last page and (more fully) under Resources.

9Note that the above ”First Principle” is a general and important one; it “just so
happens” that in this particular discrete distribution, if one has access to the percentiles of
the Chi-Square distribution, the link helps avoid the trial and error process involved.

10Rothman[2002], page 134, provides an adaptation from “D. Byar, unpublished” in which
he makes a further approximation, using the average (y + 0.5) for both the lower an upper
limits, rather than the more accurate y for the lower and y + 1 for the upper limit. JH
is surprised at Rothman’s eagerness to save a few keystrokes on his calculator, and at his
reference to an unpublished source, rather than the 1931 publication of Wilson and Hilferty.
The Full Wilson and Hilferty citation, and evaluation of the above equation, can be found
in Liddell’s article “Simple exact analysis of the standardized mortality ratio” in J Epi and
Comm. Health 37 85-88, 1984, available on website.

3



Course BIOS601: intensity rates:- models / inference / planning

y

p(
y)

0.05

0.10

0.15

0.20

12345678910111213141516171819202122232425262728293031323334353637383940414243444546

mu =  16

12345678910111213141516171819202122232425262728293031323334353637383940414243444546

mu =  25

mu =  4

0.05

0.10

0.15

0.20

mu =  9

Figure 4: Poisson Distributions, over range y = 0 to 40, corresponding to
µ = 4, 9, 16, and 25.

2.1.4 Variance-stabilizing transformation, so first principles

With µ large enough, Y 1/2 ∼ (approx)N(µ1/2, σ = 1/2), i.e., the SD is
independent of µ1/2, thus providing for a first-principles interval:

µLOWER,UPPER = y ∓ z × c1/2 + (z/2)2.

2.2 “Not First Principles” Confidence Intervals, based
on SE calculated at point estimate

2.2.1 Based on Y ' N(µ, σ = y1/2).

If lazy, or don’t care about principles /accuracy, or if y is large, can solve

y = µLOWER + z × y1/2 ; y = µUPPER − z × y1/2

to give
µLOWER,UPPER = y ∓ z × y1/2.

“Large-n”: How Large is large?: The same rule of thumb: when expected
no. of events, µ = E[Y ] > 5. or the same JH rule: when the tables don’t go as
high as your value of y. It works well if the distribution is not ‘crowded’ into the
left corner (cf. Figure 3), i.e., if, with the symmetric Gaussian approximation,
the lower tail of the distribution does not spill over the 0 boundary.

The above model is used if one fits a generalized linear model, with Poisson
error but IDENTITY link. Example with y = 4:

e.g. In SAS:

PROC GENMOD; model y = / dist = POISSON link = IDENTITY WALFCI;

e.g. In Stata

input y

1 * glm doesn’t like file with 1 ‘observation’

3 *so ........... split across 2 ‘observations’

end

glm y , family (poisson) link (identity)

e.g. In R: y=4; summary(glm(y ∼ 1,family=poisson (link=identity) ))

2.2.2 Based on log Y ' N(log[µ], σ = {1/y}1/2)

• Derivation:

Use the “Delta Method” to derive the approximate variance for the ran-
dom variable log Y , assuming that Prob[Y = 0] is negligible.

Var[log Y ] ≈ Var[Y ]× {(d log Y/dY )|Y =µY
}2 = µ× (1/µY )2 = 1/µY .

We will make a lot of use of this result, especially for the variance
of the log of a rate, and for the variance of the log of a rate ratio (i.e.,
the variance of the difference of two log rates).

(Empirical) rate ratio(rr) or id ratio (idr): λ̂2 ÷ λ̂2 = y2
PT2

÷ y1
PT1

V ar[log(rr)] = V ar[log y2 − log y1]
= V ar[log y2] + V ar[log y1]
= 1/µ2 + 1/µ1.

= 2÷ { Harmonic Mean of µ2 and µ1}

• CI:

CI: exp[log(y)∓ z × (1/y)1/2].
e.g., ...

In SAS: MODEL y = / dist = POISSON link = LOG WALFCI;

In Stata: glm y , family (poisson) link (log)

In R: summary(glm(y ∼ 1,family=poisson(link=log) ))

4
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3 Applications, and Notes

3.1 How large a count so that margin of error < 15%?

An estimate of WBC concentration can be made by manually counting enough
fields (n) until say a total of y = 200 cells have been observed. This is not
quite a Poisson distribution since y = 200 is fixed ahead of time and n is
the random variable – but the variability in the estimate 200/n is close to
Poisson-based, so as a first approximation we will treat the y as the variable
and the denominator n as fixed. The estimate has margins of error (ME) of
13% and 15% – since a total count of 200 (marked by ↑ below) could be a
high reading from a concentration which produce a µ of 173 (for the same n),
or a low reading from a concentration which produces an average of µ = 230,
i.e.

y per n: 160..170..180..190..200..210..220..230..240...

.................µL............↑..............µU.......

...................200 = 173 + 1.96× {173}1/2..............

...................200 = 230− 1.96× {230}1/2..............

3.2 Leukemia Rate Triples near Nuke Plant: Study

OTTAWA (CP)11 - Children born near a nuclear power station on Lake Huron
have 3.5 times the normal rate of leukemia, according to figures made public
yesterday. The study conducted for the Atomic Energy Control Board, found
the higher rate among children born near the Bruce generating station at
Douglas Point. But the scientist who headed the research team cautioned
that the sample size was so small that that actual result could be much lower
- or nearly four times higher.

Dr. Aileen Clarke said that while the Douglas Point results showed 3.5 cases
of leukemia where one would have been normal12, a larger sample size could
place the true figure somewhere in the range from 0.4 cases to 12.6 cases.13

11Montreal Gazette, Friday May 12, 1989.
12SIR = 3.5 = No.Observed/No.Expected. It is not O = 3.5, E = 1, since one cannot

observe a fractional number of cases): SIR = 3.5; she simply scaled the O and the E so
that E (reference “rate”) is 1

13CI = (CI derived from O)/Expected = 0.4 to 12.6 (a 31-fold range). O is an integer.
By trial and error, starting with O=1, and “trying all the CI’s on for size” until one gets
a 31-fold range, one comes to O = 2. (CI 0.242 to 7.22, range 31 fold). Dividing 2 by 3.5
gives an E of 0.57. Check: 95% CI for SIR (0.242 to 7.22) / 0.57 = 0.4 to 12.6.

Clarke will do a second study to look at leukemia rates among children aged
five to 14. The first study was on children under age 5. Clarke was asked
whether parents should worry about the possibility that childhood leukemia
rates could be over 12 times higher than normal around Douglas point. ”My
personal opinion is, not at this time,” she said. She suggested that parents
worried by the results should put them in context with other causes of death
in children.

“Accidents are by far and away the chief cause of death in children, and what
we’re talking about is a very much smaller risk than that of death due to
accidents,” she said.

The results were detailed in a report on a year-long study into leukemia rates
among children born within a 25-kilometre radius of five Ontario nuclear facil-
ities. The study was ordered after British scientists reported leukemia rates
among children born near nuclear processing plants were nine times higher
than was normal. The Ontario study was based on 795 children who died of
leukemia between 1950 and 1986 and 951 children who were diagnosed with
cancer between 1964 and 1985.

It showed a lower-than-normal rate among children born near the Chalk River
research station and only slightly higher than expected rates at Elliot Lake
and Port Hope, uranium mining and conversion facilities.

At the Pickering generating station, the ratio was slightly higher still, at 1.4
- meaning there were 1.4 cases for every expected case. But the confidence
interval - the range of reliability - for that figure set the possible range between
0.8 cases and 2.2 cases.14

Comment: It is interesting that it is the more extreme, but much less precise,
SIR of 3.5, based on O = 2, E = 0.57 that made the headline, while the less
extreme, but much more precise, SIR of 1.4, based on O = 18, E = 12.8, was
relegated to the last paragraph.

14SIR = 1.4 = O/E; CI = (CI derived from O)/E has 0.8 to 2.2. This 2./0.8= 2.75-fold
uncertainty comes from uncertainty generated by O. Examine range of 95% CI associated
with each possible value of O, until come to 10.67 to 28.45 when O = 18. Divide 18 by 1.4
to get E = 12.8. Check 95% CI 10.67 to 28.45)/12.8 = 0.8 to 2.2.
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3.3 Self-reported Percutaneous Injuries in Interns

Table 1. Rates of Percutaneous Injuries by Residency Program.15

Type of No. of No. of Rate (95% CI*)
Residency Intern- Percutaneous per
Residency Months Injuries Intern-Month
All 17003 498 0.0293 (0.0268-0.0318)
Internal medicine 3995 57 0.0143 (0.0106-0.0179)
Surgery 1730 124 0.0717 (0.0595-0.0838)
Family medicine 2008 51 0.0254 (0.0185-0.0323)
Emergency medicine 1007 40 0.0397 (0.0277-0.0518)
Pediatrics 2159 24 0.0111 (0.0067-0.0155)
Psychiatry 658 1 0.0015 (0.0000-0.0045)
Pathology 283 15 0.0530 (0.0269-0.0791)
Obstetrics/gynecology 964 94 0.0975 (0.0788-0.1160)
Other specialties 4199 92 0.0219 (0.0175-0.0263)

*Method not specified, but {498∓ 4981/2} ÷ 17003 = {0.0267, 0.0318}.

3.4 Cell Occupancy, Lotto 6/49, the Extremal Quotient,
and Geographical Variation in Surgery Rates

What do these have in common? The answer may be easier to understand
after seeing a few runs of the Excel Macro for visits to cells (in Resources).

3.5 Note: How is it that one can form a CI for µ from a
single observation y?

If we had a single realization y of a N(µ, σY ) random variable, we could not,
from this single y, estimate both µ and σY : one would have to rely on outside
information concerning σY . However, the Poisson(µ) distribution is different
in that σY = µ1/2, so we can calculate a “model-based” SE (or SE’s if use a
first principles CI) from this relationship between the mean and the variance.

Another way to understand why a SE is possible without going ”outside”
is to take advantage of the “divisibility” of a Poisson denominator, and its
corresponding numerator.

We can split up the overall sample or slice of experience into (n) small enough
sub samples so that the subcount yi in each sub sample will be either a 0 or

15Ayas NT, et al. JAMA. 2006;296:1055-1062

a 1 The (unit) variance of the observed sub counts should be p(1− p) where
p is the proportion of sub counts that are 1. Thus the estimated variance of
the total count y =

∑
i yi should be n times the unit variance, or n×p(1−p).

But if p is small, so that 1−p is near unity, then the variance of the sub count
is approximately n× p, which is simply the observed overall count y. i.e. the
variance of a Poisson variable is equal to its mean. see more under Resources.

The sum of independent Poisson r.v.’s with different expectations is still a
random variable with a Poisson distribution. The same is not true of a sum
of independent Bernoulli (or Binomial) r.v.’s with different expectations.

If you were told that Y1 ∼ Bernoulli(π1 = 0.1) and Y2 ∼ Bernoulli(π2 = 0.7),
you would not argue that the distribution of Y = Y1 + Y2 is Binomial(n =
2, π = 0.4). You can check that yes, E(Y ) = 0.8, but that P0 = 0.27, P1 =
0.66, P2 = 0.07, much more concentrated than the Binomial(2,0.4) probabili-
ties P0 = 0.36, P1 = 0.48, P2 = 0.16.

BUT, what if you were told that Y1 ∼ Poisson(µ1 = 0.1) and Y2 ∼
Poisson(µ2 = 0.7). Would you argue that the distribution of Y = Y1 + Y2 is
Poisson(µ = 0.8)? You can check that in fact it is.

In epidemiology, prevalence and other proportion-type statistics have denom-
inators made up of (indivisible) individuals; the person is the statistical atom.
However, when dealing with incidence density statistics, the denominators are
made up of an infinite number of person-moments.

3.6 CI for Rate or Incidence Density parameter, ID (λ)

So far, we have focused on inference regarding µ, the expected number
on events in the amount of experience actually studied. However,
for comparison purposes, the frequency is more often expressed as a rate,
or intensity. e.g., we convert y = 211 deaths from lung cancer in 232978
women-years (WY) in the age-group 55-60 in Quebec in 2002 into a rate of
incidence density of 211/(232,978WY) = 0.00091/WY or 91 per 100,000WY.
This makes it easier to compare the frequency with the rate in the same age
group in 1971, namely 33 lung cancer deaths in 131200WY, or 0.00025/WY
= 25 per 100,000WY.

The statistic, the empirical rate or empirical incidence density, is

rate = id = ˆID = λ̂ = y/PT.

where y is the observed number of events and PT is the amount of Population-
Time in which these events were observed. We think of id or ˆID or λ̂ as a
point estimate of the (theoretical) Incidence Density parameter, ID or λ.
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To calculate a CI for the ID parameter, we treat the PT denominator as a con-
stant, and the numerator, y, as a Poisson random variable, with expectation
E[y] = µ = λ× PT , so that

λ = µ÷ PT,

λ̂ = µ̂÷ PT = y ÷ PT,

CI for λ = {CI for µ} ÷ PT.

The y = 211 leads to a (large-sample, SE-based)

95% CI for µ : 211∓ 1.96× 2111/2 ⇒ 211∓ 28.5 ⇒ {182.5, 239.5}

95% CI for λ : {182.5, 239.5} ÷ 232, 978WY ⇒ {78.3,102} per 100, 000WY

Whereas it matters little which method – exact or approximate – to use for the
95% CI from the 2002 data, the number of deaths in 1971 is a much smaller
y = 33. Thus we will use the exact first principles CI for µ. The available
tables stop at y = 30, so we will use the Excel spreadsheet, in the Resources,
with a count of 33. It yields lower and upper limits of 22.7 and 46.3. Thus,
to accompany the point estimate of 25 per 100,000WY, we have

95% CI for λ : {22.7, 46.3} ÷ 131, 200WY ⇒ {17.3,35.3} per 100, 000WY

4 Test of H0 : µ = µ0, i.e. λ = λ0.

Evidence: P-Value = Prob[y or more extreme | H0], with ‘more extreme’
determined by whether Halt is 1-sided or 2-sided.

For formal test, at level α, compare this P-value with α.

Examples:

1. Cancers at Douglas Point:

Denote by {CY1, CY2, . . . } the numbers of Douglas Point child-years of
experience in the various age categories that were pooled over. Denote
by {λOnt

1 , λOnt
2 , . . . } the age-specific leukemia incidence rates during the

period studied. If the underlying incidence rates in Douglas Point were
the same as those in the rest of Ontario, the Expected total number of
cases of leukemia for Douglas Point would be

E = µ0 =
∑
ages

CY1 × λOnt
i = 0.57.

The actual total number of cases of leukemia Observed in Douglas Point
was

O = y =
∑
ages

Oi = 2.

So, (age-) Standardized Incidence Ratio (SIR) = O/E = 2/0.57 = 3.5.

Q: Is the y = 2 cases of leukemia observed in the Douglas Point experience
statistically significantly higher than the E = 0.57 cases “expected” for
this many child-years of observation if in fact the rates in Douglas Point
and the rest of Ontario were the same? Or, is the y = 2 observed in this
community compatible with H0 : y ∼ Poisson(µ = 0.57)?

A: Since, under H0, the age-specific numbers of leukemias {y1 = O1, y2 =
O2, . . . } in Douglas Point can be regared as independent Poisson random
variables, their sum y can be regarded as a Poisson random variable
with µ = 0.57. Thus we can calculate P = Prob[Y ≥ y | µ = 0.57] =
P [2] + P [3] + . . . , i.e.

Puppertail = 1−{P [0]+P [1]} = 1−{ exp[−0.57]× (1+0.57/1!)} = 0.11.

At the Pickering generating station, the Observed number was 18, ver-
sus an Expected of 12.8, for an SIR of 1.4. These larger numbers give
us a chance to compare the uppertail P-values obtained by the exact
method, i..e. P =

∑
y≥18 PoissonProb[y | µ0 = 12.8] with those obtained

from various approximations to the Poisson(µ0 = 12.8) distribution:-

• Exactly P = Poisson Prob[18|12.8] + P [19|12.8] + · · · = 0.099

• No (dis)-continuity correction: P = Prob[Z ≥ 18−12.8
12.81/2 ] = 0.073

• No (dis)-continuity correction: P = 1
2Prob[χ2 ≥ (18−12.8)2

12.8 ] = 0.073

• No correction: 16 P = Prob[Z ≥ log(18/12.8)/{1/12.8}1/2] = 0.111

• No correction: 17 P = Prob[Z ≥ (181/2 − 12.81/2)/0.5] = 0.092

• With the correction: P = Prob[Z ≥ |18−12.8|−0.5
12.81/2 ] = 0.094

• With the correction: P = 1
2Prob[Z ≥ (|18−12.8|−0.5)2

12.8 ] = 0.094

16Using log y ' N(log µ, σ = (1/µ)1/2).
17Using y1/2 ' N(µ1/2, σ = 1/2).
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2. “Cluster of Events” Story in Montreal Gazette in May 198918

Double Trouble in Moose Jaw School
(caption to a photograph showing 6 sets of twins)

Every morning, teachers at Prince Arthur school in Moose Jaw,
Saskatchewan see double – and its not because of what they
were up to the night before. Six pairs of identical twins attend
the school, which has an enrollment of 375. Identical births
occur once in 270 births.

What is the probability P of having 6 or more sets of twins in a school
of size n = 375, when the twinning probability is π = 1/270?

This can be obtained with the Binomial(n, π) distribution; because n
is large and π is small, the distribution can be approximated by the
Poisson(µ) distribution, where µ = n× π = 1.3.

P = P [Y ≥ 6] = 1− P [Y ≤ 5],

i.e., as

1−exp[−1.3]×{1+1.3/1!+1.32/2!+1.33/3!+1.34/4!+1.35/5!} = 0.0022.

Thus, the probability is low that this particular school would have six
or more sets. BUT, on average, in 1000 schools of this size, there will be
2.2 with this many or more. Thus, if we scan over a large number of such
schools, finding some school somewhere with this extreme a number is
not didfficult. If the newswires scanned a large number of schhols in 2007,
there is a good chance the Montreal Gazette could re-use the headline –
but they would have to change “Moose Jaw” to “Town X”, with “X” to
be filled in.

Moral: The Law of Large Numbers at play here is the same as the one in
the video display terminals and miscarriages” story. Natural “clusters” do
occur by chance alone, and distinguishing ones caused simply by chance
from ones caused by some environmental or other such factor is not an
easy task.

3. (Large-sample) Example Where does the O = 78 cases of cancer in the
“Sour Gas” community of Alberta fall relative to E = 85.9 “expected”
for “non-sour-gas” communities with the same person years of experience
and at Alberta cancer rates?

18See Hanley JA “Jumping to coincidences: defying odds in the realm of the preposter-
ous”. the American Statistician, 1992, 46(3) 197-202. – under Resources

5 Modelling Incidence Densities, or Rates,
(λ’s) via regression

Figure 5 is a simple mathematical reversal of the fundamental epidemiologic
definition of an empirical rate or incidence density (id)

rate = id = number of cases
amount of population-time that generated these cases ,

i.e.,

number of cases = rate× amount of population-time.

There is a corresponding equation for the expected number of cases, in terms
of the theoretical rate, λ:

E[number of cases] = theoretical rate × amount of population-time.

This simple re-statement has two important implications (i) in epidemi-
ology, we are students of rates and (ii) Generalized Linear Models
(GLMs) allow us to fit equations of this very type . Even though we
put the numbers of cases on the left hand side of the regression equation,
these GLMs allow us to express the theoretical rates (the focus of our investi-
gations) as functions of the determinants of interest (e.g. age, smoking, diet,
calendar time, treatment, ... etc) while treating the amounts of population
time as constants that are of no intrinsic interest. In the lung cancer mortality
dataset, we could have a (no. deaths, PT) ‘data point’ for every ‘covariate
pattern’ or x-vector.

The two most common theoretical rate models are the additive and multi-
plicative forms:-

rate [x] = βx & rate [x] = exp(βx).

More later...

6 Planning: Sample Size for CIs and Tests

6.1 Precision

Even though it is tempting to specify the ‘sample size’ in terms of the Amount
of Experience that needs to be studied to achieve this precision, ultimately
the precision is governed by the is safer to specify it it terms of the numbers
of
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Figure 5: Depiction of empirical lung cancer mortality rate in age-group 55-60
in Quebec in 2002 as the slope of the line joining the point (Y = 0 cases, PT =
0WY ) and the point (Y = 33, PT = 121300WY ). Also shown are the Poisson
Distributions, with µUPPER = 46.3 and µLOWER = 22.7 respectively, such
that Prob[Y ≥ 33 | µ = 22.7 = Prob[Y ≤ 33 | µ = 46.3 = 0.025.

POWER OF (1-sample) Poisson-based test of Ε_null versus Ε_alt
jh 2006.03.18

 supply Ε_null, alpha level, Ε_alt

n 20 Rate
Ε_null 4.5 Ratio
Ε_alt 13.5 3.00

2-sided alpha 0.050
POWER

y <- # Events in the amount of Experience studied 0.865
   ↓ critical region

↓ y Prob( y | 
E_null =4.5)

Prob( ≥ y | 
E_null =4.5)

Prob( y | E_alt = 
13.5)

Prob(≥ y | 
E_alt = 13.5)

0 0.0111 1.0000 0.0000
1 0.0500 0.9889 0.0000
2 0.1125 0.9389 -0.0001
3 0.1687 0.8264 -0.0006
4 0.1898 0.6577 -0.0019
5 0.1708 0.4679 -0.0051
6 0.1281 0.2971 -0.0115
7 0.0824 0.1689 -0.0222
8 0.0463 0.0866 -0.0375
9 0.0232 0.0403 -0.0563

* 10 0.0104 0.0171 -0.0760 0.865
* 11 0.0043 0.0067 -0.0932
* 12 0.0016 0.0024 -0.1049
* 13 0.0006 0.0008 -0.1089
* 14 0.0002 0.0003 -0.1050
* 15 0.0001 0.0001 -0.0945
* 16 0.0000 0.0000 -0.0798
* 17 0.0000 0.0000 -0.0633
* 18 0.0000 0.0000 -0.0475
* 19 0.0000 0.0000 -0.0337
* 20 0.0000 0.0000 -0.0228
* 21 0.0000 0.0000 -0.0146
* 22 0.0000 0.0000 -0.0090
* 23 0.0000 0.0000 -0.0053
* 24 0.0000 0.0000 -0.0030
* 25 0.0000 0.0000 -0.0016
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Figure 6: Using exact Poisson Probabilities

Amount of experience In order to achieve a specified Coefficient of Variation
(CV) for an estimated rate

See the example of the number of cells needed to count: approx. 200 so that
have a margin or error of 15%.

6.2 Power – to detect Rate Ratio RR = Ealt/E0

Exactly, using a spreadsheet or R:

Approximately, using a Gaussian approximations to Poisson(µ = E0) and
Poisson(µ = Ealt = RR× E0): solve

Zα/2 × {E0}1/2 + Zβ × {Ealt}1/2 = Ealt − E0.
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(1- 2 ) Confidence limits for the expectation [i.e. the 'mean' parameter] of a Poisson random variable
E.g. if observe 6 events in a certain amount of experience, then 95% CI for the µ count for this same amount of experience is (2.20, 13.06)

1−2α 0.998 0.99 0.98 1−2α 0.95 0.9 0.8

α 0.001 0.005 0.01 α 0.025 0.05 0.1

count Lower Upper Lower Upper Lower Upper count Lower Upper Lower Upper Lower Upper

0 0.00 6.91 0.00 5.30 0.00 4.61 0 0.00 3.69 0.00 3.00 0.00 2.30
1 0.00 9.23 0.01 7.43 0.01 6.64 1 0.03 5.57 0.05 4.74 0.11 3.89
2 0.05 11.23 0.10 9.27 0.15 8.41 2 0.24 7.22 0.36 6.30 0.53 5.32
3 0.19 13.06 0.34 10.98 0.44 10.05 3 0.62 8.77 0.82 7.75 1.10 6.68
4 0.43 14.79 0.67 12.59 0.82 11.60 4 1.09 10.24 1.37 9.15 1.74 7.99

5 0.74 16.45 1.08 14.15 1.28 13.11 5 1.62 11.67 1.97 10.51 2.43 9.27
6 1.11 18.06 1.54 15.66 1.79 14.57 6 2.20 13.06 2.61 11.84 3.15 10.53
7 1.52 19.63 2.04 17.13 2.33 16.00 7 2.81 14.42 3.29 13.15 3.89 11.77
8 1.97 21.16 2.57 18.58 2.91 17.40 8 3.45 15.76 3.98 14.43 4.66 12.99
9 2.45 22.66 3.13 20.00 3.51 18.78 9 4.12 17.08 4.70 15.71 5.43 14.21

10 2.96 24.13 3.72 21.40 4.13 20.14 10 4.80 18.39 5.43 16.96 6.22 15.41
11 3.49 25.59 4.32 22.78 4.77 21.49 11 5.49 19.68 6.17 18.21 7.02 16.60
12 4.04 27.03 4.94 24.14 5.43 22.82 12 6.20 20.96 6.92 19.44 7.83 17.78
13 4.61 28.45 5.58 25.50 6.10 24.14 13 6.92 22.23 7.69 20.67 8.65 18.96
14 5.20 29.85 6.23 26.84 6.78 25.45 14 7.65 23.49 8.46 21.89 9.47 20.13
15 5.79 31.24 6.89 28.16 7.48 26.74 15 8.40 24.74 9.25 23.10 10.30 21.29
16 6.41 32.62 7.57 29.48 8.18 28.03 16 9.15 25.98 10.04 24.30 11.14 22.45
17 7.03 33.99 8.25 30.79 8.89 29.31 17 9.90 27.22 10.83 25.50 11.98 23.61
18 7.66 35.35 8.94 32.09 9.62 30.58 18 10.67 28.45 11.63 26.69 12.82 24.76
19 8.31 36.70 9.64 33.38 10.35 31.85 19 11.44 29.67 12.44 27.88 13.67 25.90
20 8.96 38.04 10.35 34.67 11.08 33.10 20 12.22 30.89 13.25 29.06 14.53 27.05
21 9.62 39.37 11.07 35.95 11.83 34.35 21 13.00 32.10 14.07 30.24 15.38 28.18
22 10.29 40.70 11.79 37.22 12.57 35.60 22 13.79 33.31 14.89 31.41 16.24 29.32
23 10.96 42.02 12.52 38.48 13.33 36.84 23 14.58 34.51 15.72 32.59 17.11 30.45
24 11.65 43.33 13.26 39.74 14.09 38.08 24 15.38 35.71 16.55 33.75 17.97 31.58
25 12.34 44.64 14.00 41.00 14.85 39.31 25 16.18 36.90 17.38 34.92 18.84 32.71
26 13.03 45.94 14.74 42.25 15.62 40.53 26 16.98 38.10 18.22 36.08 19.72 33.84
27 13.73 47.23 15.49 43.50 16.40 41.76 27 17.79 39.28 19.06 37.23 20.59 34.96
28 14.44 48.52 16.25 44.74 17.17 42.98 28 18.61 40.47 19.90 38.39 21.47 36.08
29 15.15 49.80 17.00 45.98 17.96 44.19 29 19.42 41.65 20.75 39.54 22.35 37.20
30 15.87 51.08 17.77 47.21 18.74 45.40 30 20.24 42.83 21.59 40.69 23.23 38.32

• Computed from (exact) Poisson tail areas i.e. Prob(COUNT >= count | µLower) = Prob(<= count | µUpper) = α.  See also the spreadsheet "Exact confidence
limits on a Poisson parameter" on 626 website • Limits in above Table computed using exact relationship b/w Poisson and Chi-square tail areas (later).
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Figure 7: (Exact) Confidence limits for the expectation [i.e. the µ parameter]
of a Poisson random variable E.g. if observe 6 events in a certain amount of
experience, then 95% CI for the mean count for this same amount of experience
is (2.20, 13.06)
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