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ON THE ERROR OF COUNTING WITH
A HAEMACYTOMETER.

By STUDENT.

WHEN counting yeast cells or blood corpuscles with a hemacytometer there
are two main sources of error: (1) the drop taken may not be representative of
the bulk of the liquid ; (2) the distribution of the cells or corpuscles over the area
- which is examined is never absolutely uniform, so that there is an “error of
random sampling.”

With the first source of error we are concerned only to this extent ; that when
the probable error of random sampling is known we can tell whether the various
drops taken show significant differences. What follows is concerned with the
distribution of particles throughout & liquid, as shewn by spreading it in a thin
layer over a measured surface and counting the particles per unit area.

Theoretical Consideration.

Suppose the whole liquid to have been well mixed and spread out in a thin
layer over N units of area (in the hemacytometer the usual thickness is ‘01 mm.
and the unit of area ;};sq. mm.).

Let the particles subside and let there be on an average m particles per unit
area, that is N'm altogether. Then assuming the liquid has been properly mixed
a given particle will have an equal chance of falling on any unit area.

i.e. the chance of its falling in a given unit area is 1/N and of its not doing so
1—1/N. '

Consequently considering‘ all the mN particles the chances of 0, 1, 2, 3 ...
particles falling on a given area are given by the terms of the binomial

mN .
{(1 —1—1\7) +%} , and if M unit areas be considered the distribution of unit
mN
areas containing 0, 1, 2, 8... particles is given by M {(1 - %) +%} .
Now in practice N is to be measured in millions and may be taken as
infinite,
45—2
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Let us find the limit when N is infinite of the general term of this expansion.
The (r + 1)th term is: '
1 ,l)”‘N"‘ (_1_)” mN (mN—-1)(mN—-2)...(mN—r+1)
( "N v

r!

N r!
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But when we proceed to the limit VN and YN N
are all negligeably small compared to m so that the expression reduces to
ms m" m’
(1 m+2—‘-— .+(—1)8‘s—!...))(/r—!=e—m>(ﬁ.

That is to say that the expansion is equal to

21

Hence it is this distribution with which we are concerned.

*'"{1+m+ +. + + }

The 1st moment about the origin, O, taken at zero number of particles is

2m’ 3m3 rm’
—m
e {’””21 3'+ Tt }
g mr1
O N I

=m x total frequency.

Hence the mean is at m.

The 2nd moment about the point O is

. 2m? 3Pmd r’mr
e m{m-l— 2' +—§'!—+...+ 1 +...}
2m®  3md rm’
= —m —_— ———
€ {m+ 1T + 91 + "'+(r—1)!+ }
- m? 2m? (r-1)m
= M 2 4 Y ki .
e {m-l— +. (r 1), R TRt +( 1 +..}

= (m + m?) x total frequency.
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Hence the second moment-coefficient about the mean
Ma=m + m? —m?=m,.

By similar* methods the moment-coefficients up to u; were obtained, as
follows :

' =m.

g =M.

Mg = M.

Ms= 3m? + m.

s =10m? 4+ m.

Mg = 15m? 4 25m? + m.

1
Hence | B = m
o M 1
and '82:/,'_}_3-'-,”—1/'

It will be observed that the limit to which this distribution approaches as m
becomes infinite is the normal curve with its 8,, Bs, Bs, ete., all equal to 0, and
B:=38, B,=15, ete.

Further, any binomidl (p +¢)* can be put into the form (p 4+ ¢)"?, and
if ¢ be small and ng not large it approaches the distribution just given.

Thus if 1000 (£% + t35)™ be expanded the greatest difference between any

"2 r
of its terms and the corresponding term of 1000 e~* (1 +5+ -2?—'+ v % + )

* The evaluation of the moments about the point O will be found to depend on the expansion of 7*
in the form
(r-1)!
(r-n-2)!

+a

1"‘=r{ (r-1)! (r-1! (r~1)1$

(r-—n—-l)!+a’ (r—~n)l+"'+a""‘1 (-1

—! 1 & a Pnt1 } _

U (rerryey ¥ Rl ey 1Y Rl e s R et B 11 L U
) Then if we form the series for n+1 from this it will be found that the following relations hold
_between a,, ay, a; ete. and the corresponding coefficients for n+1, 4,, 4,, 4, ete.

4, =a,+n,
A2 =a,2+(n— 1) ay,
dp=ap+(n-p+1)ay,.
From these equations we can write down any number of moments about the point O in turn, and
from these may be found the moments about the mean by the ordinary formulae.
The moments may also be deduced from the point binomial (p +¢)*%? when ¢ is small and n large
and ng=m, i.e. p=1, ¢=0, ng=m. We have
m'=ng=m,
g =npq=m,
pg =npg (p-g)=m,
g =npg {1+3(n-2)pg}=m(1+3m)=3m?+m.
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5

is never as much as 1, being about ‘8 for the term 1000 ¢~® % which is 1755

against 1763 from the binomial.

52 R
Diagram I compares 1000 ¢~* (1 +5+ % + ...+ 707'— + ) with the binomial

1000 (43 + 5%5)® which of course differ, but not by very much.
Diagram I. Comparison of the exponential and binomial expansions.
Firm line represents 1000e5 gl"+5+‘..+75.—:+ etc.% .
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In applying this to actual cases it must be noted that we have not taken into
account any “interference” between the particles; there has been supposed the
same chance of a particle falling on an area which already has several particles as
on one altogether unoccupied. Clearly if m be large this will not be the case, but

with the dilutions usually employed this is not of any importance.

It will be shewn that the actual distributions which were tested do not diverge
widely from this law, so we will consider the probable error of random sampling on
the supposition that they follow it.

We have seen that u,=m.
Hence the standard deviation = y/m..
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So that if we have counted M unit areas the probable error of our mean (m) is

LY A m
67449 , /.

If we are working with a heemacytometer in which the volume over each square
is qodpp mm. there will be 40,000,000 m particles per c.c. and the probable error

will be 40,000,000 x 67449 x \/ 4

Suppose now that we dilute the liquid to ¢ times its bulk, we shall then have
%npa,rticles per square, and if we count M squares as before, our probable error

for the number of particles per c.c. in the original solution will be 40,000,000
. m 1 . . mq
x 61849 x g/ % xjg That is 40,000,000 x 67449 , /7.

That is we shall have to count gM squares in order to be as accurate as before. -

So that the same accuracy is obtained by counting the same number of
particles whatever the dilution, or, to look at it from a slightly different point of
view, whatever be the size of the unit of area adopted.

Hence the most accurate way is to dilute the solution to the point at which
the particles may be counted most rapidly, and to count as many as time permits:

then the probable error of the mean is "67449 «/ % where m is the mean and M

is the number of unit areas counted over, squares, columns of squares, microscope
fields, or whatever unit be selected.

But owing to the difficulty of obtaining a drop representative of the bulk of
the liquid the larger errors will probably be due to this cause, and it is usual to
take several drops: if two of these differ in their means by a significant amount

compared with the probable error (which is 67449 «/ m‘;}m’ where m,, m, are

the means and M the number of unit areas counted), it is probable that one at
least of the drops does not represent the bulk of the solution.

Experimental Work.

This theoretical work was tested on four distributions * which had been counted
over the whole 400 squares of the h@macytometer. The particles counted were
yeast cells which were killed by adding a little mercuric chloride to the water in
which they had been shaken up. A small quantity of this was mixed with a
10 °/, solution of gelatine, and after being well stirred up drops were put on the
hemacytometer. This was then put on a plate of glass kept at a temperature just
above the setting point of gelatine and allowed to cool slowly till the gelatine had
set. Four different concentrations were used.

* One of these is given in Table I.
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In this way it was possible to count at leisure without fear of the cells straying
from one square to another owing to accidental vibrations. A few cells stuck here
and there to the cover glass, but as they appeared to be fairly uniformly distributed
and were very few compared with those that sank to the bottom they were
neglected: had the object of the experiment been to find the number of cells
present they would have been counted by microscope fields, and correction made
for them ; but in our case they were considered to belong to a different “population ”
to those which sank:

Those cells which touched the bottom and right-hand lines of a square were
considered to belong to the square ; a convention of this kind is necessary as the
cells have a tendency to settle on the lines.

There was some difficulty owing to the buds of some cells remaining undetached
in spite of much shaking. In such cases an obvious bud was not counted, but
sometimes, no doubt, a bud was counted as a separate cell, which slightly increases
the number of squares with large numbers in them.

In order to test whether there was any local lack of homogeneity the correlation
was determined between the number of cells on a square and the number of cells
on each of the four squares nearest it ; if from any cause there had been a tendency
to lie closer together in some parts than in others thls correlation would have been
significantly positive.

Distributions 3 and 4 were tested in this way (Table II), with the result.that
the correlation coefficients were + 016 + ‘037 and ‘015 + ‘037. This is satisfactory
as shewing that there is no very great difficulty in putting the drop on to the
slide so as to be able to count at any point and in any order; as good a result may
be expected from counting a column as from' counting the same number of squares
at random. ‘

The actual distributions of cells are given below, and compared with those
calculated on the supposition that they are random samples from a population
following the law which we have investigated: the probability P of a worse fit
occurring by chance is then found.

I. Mean ='6825 : u;="8117 : u3=1-0876.

Containing 0 1 2 3 4 5 cells
Actual 213 128 37 18 3 1
Calculated 202 138 47 11 184 -24

2

Whence x?=992 and P=04.
Best fitting binomial (1:1893 — *1893)—3:005¢ 400 for which P="52.
II. Mean =1'3225 : puy=12835 u, : =1-3574.
' 0 1 2 3 4 5 6

Actual 103 143 98 42 8 4
Calculated 106 141 93 41 14 4 1

Whence x2=398 and P='68.
Best fitting binomial ("97051 4--02949)%-2084 % 400 for which P="72.

(L]
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III. Mean =180 : py=196 : pu3=2529.
0. 1 2 3 4 5 6 7 8 9
Actual 75 103 121 54 30 13 2 1 0 1

Calculated 66 119 107 64 29 10 3
Whence x?=903 and P='25.
Best fitting binomial (1-0889 — +0889)~20-2473x 400 for which P='37.

IV. Mean =4'68 : uy=4'46 : u3=498.
0 1 2 3 4 5 6 7 8 9 10 11 12
Actual 0 20 43 53 86 70 54 37 18 10 5 2
Calculated 4 17 41 63 74 70 54 36 21 11 5 2 1
Whence x?=972 and P='64.
Best fitting binomial ("9525+ '0475)%-53 x 400 for which P="68.

[

These results are given graphically in Diagram II. on the next page.

It is possible to fit a point binomial from the mean and the 2nd moment
according to the two equations w' =ng, p, = npg and these point binomials fit
the observations better than the exponentml series, but the constants have no
physical meaning except that ng=m. And since the exponential series is a
particular form of the point binomial and is fitted from one constant, while two
are used for the “ad hoc” binomial, this better fit was only to be expected.

It will be noticed that in both I and III the 2nd moment is greater than the
mean, due to an excess over the calculated among the high numbers in the tail of
the distribution. As was pointed out before, the budding of the yeast cell increases
these high numbers, and there is also probably a tendency to stick together in
groups which was not altogether abolished even by vigorous shaking.

In any case, the probabilities ‘04, ‘68, ‘25 and ‘64, though not particularly high,
are not at all unlikely in four trials, supposing our theoretical law to hold, and we
are not likely to be very far wrong in assuming it to do so. :

Let us now apply it to a practical problem: for some purposes it is customary
to estimate the concentration of cells and then dilute so that each two drops of the
liquid contain on an average one cell. Different flasks are then seeded with one
drop of the liquid in each, and then “most of those flasks which show growths are
~ pure cultures.”

The exact distribution is given by
- (1})"‘ @)
et (1 rgr i+ P,
which is

No. of Yeast cells : 0 ‘ 1 2 3 4

30-33 758 126 | 16

Percentage Frequency 6065

or approximately three-quarters of those which show growth are pure cultures.

Biometrika v . 46
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Conclusions.

We have seen that the distribution of small particles in a liquid follows the law

mr
e‘m{1+m+2,+ + + }

where m is the mean number of particles per unit volume * and the various terms
in the series give the chances that a given unit volume contains 0,1,2, ... 7, ...
particles. We have also seen that this series represents the limit to which
any point binomial (p +¢)* approaches when ¢ is small, insomuch that even

(33 + 95)"® x 1000 is represented by e (1 + 5+ 25 it 5 i+ ) x 1000 with
a maximum error of about 45 in 180.

For the rough calculation of odds with n small compared to % the exponential
series may be used instead of the binomial as being less laborious.

Finally, we have found that the standard deviation of the mean number of
particles per unit volume is ﬂ where m is the mean number and M the number

of unit volumes counted, so that the criterion of whether two solutions contain
different numbers of cells is whether m,—m, is significant compared with

m, m2
67449 \/ A
TABLE I

Distribution of Yeast Cells over 1 sq. mm. divided into 400 squares.
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* The prism standing on unit area.
) 46—2



860  On the Error of Counting with a Haemacytometer

It must be noted, however, that the probable error will always be .greater
than that calculated on this formula when for any reason the organisms occur

as aggregates of varying size.

In conclusion, I should like to thank Prof, Adrian J. Brown, of Birmingham
University, for his valuable advice and assistance in carrying out the experimental

part of the enquiry.

TABLE II.
“Centre ” Squares.

1| 2| 8| 4| & 6 7 |8 t 9 |10 11| 12] Totals

w 1 6 6 9 15 15 9 4 3 2| — | — | — 69
4 2 1 6| 14| 17| 31| 24| 17| 10| 5| 6| 2| 1] 1 134
3 3 | 8 15| 25| 32| 37| 20| 15| 7| 7] 1| 4| — 171
g, 4 | 18| 34| 33| 45| 48| 41| 22| 7| 5| 4] 1| —1 9258
()] 5 15| 24| 37| 47| 39| 37| 18|12 |11] 4| 1| 2 247
- 6 9| 17| 25| 39| 34| 32| 14| 8| 2| 4| 1|1 186
- 7 5| 12| 14| 21| 19| 16 9| 7| 3| —|—|— 106
3 8 ) s8| 5| 7| 8| 12| 8| 671 1| 3| 4| —|— 57
8 9 2 6 7 5| 10 2 2| 3| —| 1| —|— 38
= 10 | — 1 1 4| 4| 4| — | 8|—|1]—=|—= 18
< | 11 |— 1 4 1 1 1| — | —|—|=|—| — 8
B 2 | — 1 1] — 1 1| — | —|— | —=|— 4
Totals] 72 | 136 | 180 | 248 [ 244 | 188 | 100 | 56 | 40 | 20 | 8 | 4. ] 1296

Mean of “Centre” Squares, 4'6821; S.D., 2139.

Mean of “Adjacent” Squares, 4'7014 ; S. D;, 21186,

7= +'016+-037.

Correlation table between the number of ‘cells in a square and the numbers of cells in the
four adjacent squares taken all over Table I.




