
Course BIOS601: Comparisons of 2 Intensities λ2 vs. λ1: - models / (frequentist) inference / planning

1. Comparison of 2 Poisson Counts

2. Comparison of 2 Rates

3. Power/Precision: sample sizes

4. Extra-Poisson Variation

5. CI and test of λ1 − λ2, and λ1/λ2, by Poisson regression

1 Comparison of two counts:

• Note from JH: 1

A & B also use the letter µ for the mean (or expected) number of events
in the amount of experience actually studied (e.g., PT if it is an amount
of Population-T ime. Say y (or c, for ‘cases’) is the observed number of
events. With this notation, we can use λ and λ as the theoretical and
empirical/observed rate or incidence density, i.e., λ = µ/PT, λ̂ = y/PT.
Some textbooks use λ where A & B , and JH, would use µ.

The excerpts below (indended) are from A & B; however JH has changed
the realizations to y1 and y2 rather than the x1 and x2 used by them. He
did this to emphasize that when we come to Poisson (or other) regression
models, the counts will be the dependent (“y”) variable.

• From A & B, p 156 (See also Pocock SJ. BMJ. 2006;332(7552):1256-8)

Suppose that y1 is a count which can be assumed to follow a
Poisson distribution with mean µ1. Similarly let y2 be a count
independently following a Poisson distribution with mean µ2.
How might we test the null hypothesis that µ1 = µ2?

Note (JH): A & B deal with the simplest comparative situation, where
the amounts of experience (denominators) are equal, i.e. PT1 = PT2,
and so a test of λ1 = λ2 is equivalent to a test of µ1 = µ2 = µ.

One approach would be to use the fact that the variance of
y1 − y2 is µ1 + µ2. The best estimate of µ1 + µ2 on the basis
of the available information is y1 + y2. On the null hypothesis
E(y1 − y2) = µ1 − µ2 = 0, and y1 − y2 can be taken to be

1From Armitage & Berry, Ch 5.2. van Belle, ch. 6.5 deals only with 1-sample problems.

approximately normally distributed unless µ1 and µ2 are very
small. Hence,

z =
y1 − y2

(y1 + y2)1/2

can be taken as approximately a standardized normal deviate.

This is a large-sample method: z = (µ̂1 − µ̂2)/{V ar0[µ̂1 − µ̂2]}1/2,
with V ar0[µ̂1 − µ̂2] estimated, under the null, i.e., as

V ar0[µ̂1 − µ̂2] = µ̂+ µ̂ = (1/2)(y1 + y2) + (1/2)(y1 + y2) = y1 + y2,

so that z = (y1 − y2)/{y1 + y2}1/2.

A second approach has already been indicated in the test for
the comparison of proportions in paired samples (section 4.5).
Of the total frequency y1 + y2, a portion y1 is observed in the
first sample. Writing r = y1 and n = y1 + y2 in (4.17) we have

z =
y1 − (1/2)(y1 + y2)
(1/2)(y1 + y2)1/2

=
y1 − y2

(y1 + y2)1/2

as in the first approach. The two approaches thus lead to ex-
actly the same test procedure.

This is a large-sample approximation to a conditional test, based on fact
(Casella & Berger, p194, ex. 4.15) that if y = y1 + y2, where y1 and y2
are independent Poisson r.v.’s, then y1 | y ∼ Binomial(y, 0.5).

y1 as a proportion of y = (y1 + y2), tested against a Binomial(y, 0.5).

A & B only give the large-sample version of this test. Also possible, (and
easy in 2007!) to evaluate the p-value using exact Binomial distribution.

A third approach uses a rather different application of the X2

test from that described for the 2×2 table in section 4.5, the to-
tal frequency of yl+y2 now being divided into two components
rather than four. Corresponding to each observed frequency we
can consider the expected frequency, on the null hypothesis, to
be (1/2)(y1 + y2) = ȳ, say.

Observed: y1 y2
Expected: (1/2)(y1 + y2) (1/2)(y1 + y2)

Applying the usual formula (4.30) for a X2 statistic, we have

X2 = (y1 − ȳ)2/ȳ + (y2 − ȳ)2/ȳ = (y1 − y2)2/(y1 + y2).

This is aX2 statistic from a “2×1” table i.e., 2 samples, finite numerators,
infinite person-moments of experience. Note that X2 = z2.
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2 Rate Difference λ1−λ2 and Rate Ratio λ1÷λ2

A & B cover only the case where PT1 = PT2. We deal with the more general
case of inference re the difference between 2 rates λ1 and λ2, i.e., when PT1 6=
PT2, i.e. where a naive comparison of the two numerators makes no sense.

2.1 Test of H0 : λ1 = λ2, or λ1/λ2 = 1

Again, three equivalent ways to test this:

1. z = (λ̂1 − λ̂2)/{V ar0[λ̂1 − λ̂2]}1/2,
with V ar0[λ̂1 − λ̂2] estimated, under the null, i.e., as...

V ar0[λ̂1 − λ̂2] = µ̂1/PT
2
1 + µ̂2/PT

2
2 ,

where, under H0, µ̂1 = λ̂× PT1 and µ̂2 = λ̂× PT2, and

λ̂ = (y1 + y2)/(PT1 + PT2). (rate based on ‘pooled’ data)

2. y1 as a proportion of y = (y1 +y2), tested against a Binomial(y, π), where
π = PT1/(PT1 + PT2). Can use Normal approximation to Binomial, or
calculate tail-areas exactly from the (asymmetric) Binomial distribution.

3. X2 statistic from a “2×1” table i.e., 2 samples, finite numerators, infinite
– but unequal – person-moments of experience:

X2 = (y1 − E[y1])2/E[y1] + (y2 − E[y2])2/E[y2].

Under the null, E[y1] = y × π, E[y2] = y × (1− π).

2.2 CIs for Rate Difference λ1 − λ2 and Ratio λ1 ÷ λ2

2.2.1 Large-sample methods

Rate Difference: λ̂1 − λ̂2 ∓ z × SE[λ̂1 − λ̂2],

with SE = ( ˆV ar[y1]/PT 2
1 + ˆV ar[y2]/PT 2

2 )1/2 = (y1/PT 2
1 + y2/PT

2
2 )1/2.

Rate Ratio: (a) (λ̂1 ÷ λ̂2) ÷ /× (exp[ME]),

where ME = z × SE[log(λ̂1 ÷ λ̂2)] = z × (1/y1 + 1/y2)1/2.

Note that with log-symmetric CI’s, the familiar −/+ is replaced by ÷/× :

we speak of an ‘x-fold’ (‘x-fois’) uncertainty range, from θLOWER to θUPPER.

(b) Test-based CI for λ1 ÷ λ2 : (λ̂1 ÷ λ̂2) to power of (1∓ z/X).

2.2.2 Small-sample methods

Rate Difference:

See references for small-sample inference re differences in proportions. Use
PT’s as binomial denominators. If yi > PTi, then express PT in smaller units,
e.g., in person-days rather than person-years, so that, numerically, yi >> PTi.

Rate Ratio θ = λ1 ÷ λ2 :

We ‘condition out’ the nuisance parameter, so as to focus on θ = λ1 ÷ λ2.
To do so, we again rely on the fact that if y1 and y2 are independent Poisson
r.v.’s with means (expectations) µ1 and µ2, then

y1 | (y1 + y2 = y) ∼ binomial[ y, Π = µ1/(µ1 + µ2) ].

Thus the observed proportion y1 ÷ (y1 + y2) is a binomial-based estimator of
the theoretical proportion

Π =
µ1

µ1 + µ2
=

λ1 × PT1

λ1 × PT1 + λ2 × PT2
=

θ × PT1

θ × PT1 + PT2
.

In addition, the corresponding binomial-based CI, (ΠLOWER, ΠUPPER), for
the corresponding theoretical proportion is a CI for the theoretical quantity
(θ × PT1)/(θ × PT1 + PT2). Since the CI is calculable from y1 and y, and
since PT1 and PT2 are known, we can back-calculate from

Π =
θ × PT1

θ × PT1 + PT2
,

to obtain

{θLOWER, θUPPER} =
{

ΠLOWER

1−ΠLOWER
,

ΠUPPER

1−ΠUPPER

}
÷ PT1

PT2
.

Example 5.4 from A & B.

“Equal volumes [V1 = V2 = V ] of two bacterial cultures are spread on nutrient
media and after incubation the numbers of colonies growing on the two plates
are 13 and 31. We require confidence limits for the ratio of concentrations of
the two cultures.

The estimated ratio is (13/V ) ÷ (31/V ) = 0.4194. From the Geigy tables
a binomial sample with 13 successes out of 44 provides the following 95%
confidence limits for Π: 0.1676 and 0.4520. Calculating Π÷ (1− Π) for each
of these limits gives the following 95% confidence limits for the concentration
ratio: 0.1676/0.8324 = 0.2013 and 0.4520/0.5480 = 0.8248.
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The normal approximations described in section 4.4 can, of course, be used
to obtain the CI for Π when the frequencies are not too small.”

Example Breast cancer cases and person years of observation for women with
tuberculosis repeatedly exposed to multiple x-ray fluoroscopies, and women
with tuberculosis not so exposed [Boice and Monson, 1977]2

Radiation exposure
Yes No Total

Breast cancers 41 15 56
Person-years 28,010 19,017 47,027

Point estimate of Rate Ratio: θ̂ = (41/28, 010)÷ (15/19, 017) = 1.86

The observed proportion of exposed cases is 41/56 = 0.732, with accompany-
ing 95% binomial CI (0.596, 0.842). Thus,

{RRLOWER , RRUPPER} =
{

0.596
0.404

,
0.842
0.158

}
÷ 28, 010

19, 017
= {1.00, 3.61}.

Example: Risk3 of Motor Vehicle Crashes after Extended Shifts (24 hr) .4

Extended Shifts Nonextended Shifts
No. reported crashes 58 73

No. of commutes 54,121 180,289
Rate (per 1000 commutes) 1.07 0.40
RR: Rate ratio (95% CI•) 2.65 (1.87 to 3.74) 1.0

• 95% CI for RR (unmatched analysis):
2.65÷ /× exp[1.96× (1/58 + 1/73)1/2] = 2.7÷ /× 1.41 = 1.87 to 3.74.

Other methods:

• X2 = (58− 30.25)2/30.25 + (73− 100.75)2/100.75 = 33.11, so X = 5.75.
95% test-based CI: 2.651∓1.96/5.75 = 1.90 to 3.69.

• Based on conditional approach: from 58/131, CI for Π: 0.3488 to 0.5245, so

RRLOWER, RRUPPER} =
{

0.3488
0.6512

,
0.5245
0.4755

}
÷ 54, 121

180, 289
= 1.78 to 3.67.

2Example 11-1 from Rothman 1986, pp 156, Ch 11.
3Point- and interval-estimates in article are based on within-person comparisons.
4table 1. N Engl J Med 352;2 www.nejm.org january 13, 2005

Example: Efficacy Analyses of a Human Papillomavirus Type 16 L1 Virus-
like-Particle Vaccine.5

• In the ‘Primary per-protocol efficacy analysis,’ there were 0 persistent infec-
tions in 1084.0 w-y of vaccinated follow-up, versus 41 in 1076.9 w-y of placebo
follow-up.

95% CI for proportion based on 0/41: 0 to 0.086.

{RRLOWER, RRUPPER} =
{

0.0000
1.0000

,
0.086
0.914

}
÷ 1084.0

1076.9
= 0 to 0.093.

{Efficacyupper, Efficacylower} = 100% to 90.7%

Article gave point est. of 100 percent, 95% CI of 90 percent to 100 percent.

• In the ‘secondary efficacy analysis,’ there were 6 and 68 ‘transient or per-
sistent’ infections.

95% CI for proportion based on 6/74: 0.0304 to 0.1681.

{RRLOWER, RRUPPER} =
{

0.0304
0.9696

,
0.1681
0.8319

}
÷ 1084.0

1076.9
= 0.0311 to 0.2007.

{Efficacyupper, Efficacylower} = 96.89% to 79.93%

Article reported 97% to 80%.

The Statistical Analysis in the article stated (italics by JH ):

For all efficacy analyses, a point estimate of vaccine efficacy and the
95 percent confidence interval were calculated on the basis of the
observed case split between vaccine and placebo recipients and the
accrued person-time. The statistical criterion for success required
that the lower bound of the two-sided 95 percent confidence interval
for vaccine efficacy exceed 0 percent. For the primary analysis, this
corresponds to a test (two-sided α = 0.05) of the null hypothesis
that the vaccine efficacy equals 0 percent. An exact conditional pro-
cedure, which assumes that the numbers of cases in the vaccine and
placebo groups are independent Poisson random variables, was used
to evaluate vaccine efficacy.

5Koutsky LA, N Engl J Med 2002;347:1645-51.
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3 Sample Size Requirements for Comparison
of Rates

3.1 Expected numbers of events required in Group 1 to
give specified power, α = 0.05

Expected events in Group 1
Relative to yield power of ...
Rate* 80% 90% 95%

0.1 10.6 14.3 17.6
0.2 14.7 19.7 24.3
0.3 20.8 27.9 34.4
0.4 30.5 40.8 50.4
0.5 47.0 63.0 77.8
0.6 78.4 105.0 129.6
0.7 148.1 198.3 244.8
0.8 352.8 472.4 583.2
0.9 1489.6 1994.5 2462.4

1.1 1646.4 2204.5 2721.6
1.2 431.2 577.4 712.8
1.4 117.6 157.5 194.4
1.6 56.6 75.8 93.6
1.8 34.3 45.9 56.7
2.0 23.5 31.5 38.9
2.5 12.2 16.3 20.2
3.0 7.8 10.5 13.0
5.0 2.9 3.9 4.9

* Ratio of incidence rate in Group 2 to incidence rate in Group 1.

Using a two-sided significance test with α = 0.05.

The two groups are assumed to be of equal size (Breslow & Day more general)

Numbers taken from Table 3.2 in Chapter 3 “Study Size” in “Methods for
Field Trials of Interventions against Tropical Diseases: A Toolbox” Edited by
P.G. Smith and Richard H. Morrow. Oxford University Press Oxford 1991.
(on behalf of the UNDP/World Bank/WHO Special Programme for Research
and Training in Tropical Diseases). See Resources.

Note that roles of Group 1 and 2 above are reversed from in Smith & Morrow
text; See also Breslow NE and Day NE Vol II, Section 7.3.

3.2 Formulae for calculating study size requirements for
comparison of rates using two groups of equal size:

From Table 3.4 of Morrow and Smith, with role of groups 1 & 2 reversed.

• Choosing study size to achieve adequate precision (§3.2 in text)

e1 = (1.96/ log f)2 × {(RR+ 1)/RR}

e1 = Expected no. of events in group 1
RR = (Rate in group 2) ÷ (Rate in group 1)

Gives 95% CI from RR÷ f to RR× f

• Choosing study size to achieve adequate power (§4.2 in text)

P-T = (zα/2 + zβ)2 × (R2 +R1) / (R2 −R1)2

P-T = Person-time in each group
Ri = Rate in group i

zα/2 = 1.96 for α = 0.05 (2-sided)

Power: 80% 90% 95%
zβ : 0.84 1.28 1.64
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4 Extra-Poisson Variation

4.1 e.g.: Daylight Savings Time & Traffic Accidents

To the Editor6: It has become increasingly clear that insufficient sleep and
disrupted circadian rhythms are a major public health problem. For instance,
in 1988 the cost of sleep-related accidents exceeded $56 billion and included
24,318 deaths and 2,474,430 disabling injuries.[1] Major disasters, including
the nuclear accident at Chernobyl, the Exxon Valdez oil spill, and the destruc-
tion of the space shuttle Challenger, have been linked to insufficient sleep,
disrupted circadian rhythms, or both on the part of involved supervisors and
staff.[2,3] It has been suggested that as a society we are chronically sleepde-
prived[4] and that small additional losses of sleep may have consequences for
public and individual safety.[2]

We can use noninvasive techniques to examine the effects of minor disruptions
of circadian rhythms on normal activities if we take advantage of annual shifts
in time keeping. More than 25 countries shift to daylight savings time each
spring and return to standard time in the fall. The spring shift results in the
loss of one hour of sleep time (the equivalent in terms of jet lag of traveling
one time zone to the east), whereas the fall shift permits an additional hour
of sleep (the equivalent of traveling one time zone to the west). Although
one hour’s change may seem like a minor disruption in the cycle of sleep and
wakefulness, measurable changes in sleep pattern persist for up to five days
after each time shift.[5] This leads to the prediction that the spring shift,
involving a loss of an hour’s sleep, might lead to an increased number of
“microsleeps,” or lapses of attention, during daily activities and thus might
cause an increase in the probability of accidents, especially in traffic. The
additional hour of sleep gained in the fall might then lead conversely to a
reduction in accident rates.

We used data from a tabulation of all traffic accidents in Canada as they were
reported to the Canadian Ministry of Transport for the years 1991 and 1992
by all 10 provinces. A total of 1,398,784 accidents were coded according to the
date of occurrence. Data for analysis were restricted to the Monday
preceding the week of the change due to daylight savings time, the
Monday immediately after, and the Monday one week after the
change, for both spring and fall time shifts. Data from the province
of Saskatchewan were excluded because it does not observe daylight savings
time. The analysis of the spring shift included 9593 accidents and that of the
fall shift 12,010. The resulting data are shown in Figure 1.

6Correspondence: New Engl. J of Medicine: Vol. 334:924-925 April 4, 1996.

The loss of one hour’s sleep associated with the spring shift to daylight savings
time increased the risk of accidents. The Monday immediately after the shift
showed a relative risk of 1.086 (95 percent confidence interval, 1.029 to 1.145;
χ2 = 9.01, 1 df; P<0.01). As compared with the accident rate a week later, the
relative risk for the Monday immediately after the shift was 1.070 (95 percent
confidence interval, 1.015 to 1.129; χ2 = 6.19, 1 df; P<0.05). Conversely,
there was a reduction in the risk of traffic accidents after the fall shift from
daylight savings time when an hour of sleep was gained. In the fall, the
relative risk on the Monday of the change was 0.937 (95 percent confidence
interval, 0.897 to 0.980; χ2 = 8.07, 1 df; P<0.01) when compared with the
preceding Monday and 0.896 (95 percent confidence interval, 0.858 to 0.937;
χ2 = 23.69; P<0.001) when compared with the Monday one week later. Thus,
the spring shift to daylight savings time, and the concomitant loss of
one hour of sleep, resulted in an average increase in traffic accidents
of approximately 8 percent, whereas the fall shift resulted in a decrease
in accidents of approximately the same magnitude immediately after the time
shift.

Return to Article Add to Personal Archive PowerPoint Help

Figure 1. Numbers of Traffic Accidents on the Mondays before and after the Shifts to and from Daylight
Savings Time for the Years 1991 and 1992.

There is an increase in accidents after the spring shift (when an hour of sleep is lost) and a decrease in the
fall (when an hour of sleep is gained).

Figure 1. Numbers of Traffic Accidents on the Mondays before and after the
Shifts to and from Daylight Savings Time for the Years 1991 and 1992. There
is an increase in accidents after the spring shift (when an hour of sleep is lost)
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and a decrease in the fall (when an hour of sleep is gained).

These data show that small changes in the amount of sleep that people get
can have major consequences in everyday activities. The loss of merely one
hour of sleep can increase the risk of traffic accidents. It is likely that the
effects are due to sleep loss rather than a nonspecific disruption in circadian
rhythm, since gaining an additional hour of sleep at the fall time shift seems
to decrease the risk of accidents.

Stanley Coren, Ph.D.
University of British Columbia
Vancouver, BC V6T 1Z4, Canada

References:
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* * * * * * *

NEJM Volume 339:1167-1168 October 15, 1998

Effects of Daylight Savings Time on Collision Rates

To the Editor: The results of a recent Canadian study call into question
Coren’s findings that motor vehicle crashes increase by 8 percent following the
change to daylight savings time and decrease by 7 percent after the change to
standard time.[1] The study extended Coren’s analysis, using the same data
source. First, data from the days between the Monday preceding the time
change and the Monday one week afterward were analyzed. Second, Coren’s
hypothesis was statistically tested with data from the years 1984 to 1993, to
evaluate the significance of any differences obtained.

A graphical analysis (Figure 1) indicated that there were no peaks on the
Mondays after the (Spring) change to daylight savings time or troughs
on the Mondays after the return to standard time, and no corresponding
return to base-line values after each transition. The results of a paired t-test
with pooled national data failed to reach significance (P=0.5), with a mean
rate of 129.8 for the Monday one week before and for the Monday immediately
after the change to daylight savings time (95 percent confidence interval for
the difference between the means, -12.12 to +12.43). An analogous paired

t-test with pooled national data found no difference, with the mean rate one
week following the change equal to 130.1 (95 percent confidence interval for
the difference between the means, -13.12 to +13.84).

Next, the mean motor vehicle crash rates for the Monday one week before the
(Fall) change to standard time were compared with those for the Mon-
day immediately after the change and showed a significant increase (160.8
vs. 188.5; 95 percent confidence interval for the difference between the means,
6.6 to 48.4; t=2.66; P<0.01). This result is inconsistent with Coren’s hy-
pothesis. A paired t-test showed that the mean rate of 188.5 for the Monday
immediately after the change was not significantly different from the mean
rate of 186.5 for the Monday one week after the change (95 percent confi-
dence interval for the difference between the means, 14.6 to +12.7; t=0.16;
P=0.4).

Return to Article Add to Personal Archive PowerPoint Help

Figure 1. Effect of the Change to or from Daylight Savings Time (DST) on the Mean (+SE) Collision
Rates.
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Figure 1. Effect of the Change to (solid circles) or from (open circles)
Daylight Savings Time (DST) on the Mean (+SE) Collision Rates.

Thus, the results of both a graphical analysis and the variability estimation
of 10 years of data failed, as had an earlier study,[2] to support Coren’s hy-
pothesis. The effects reported by Coren may stem from the increased number
of vehicles on the road and the increased number of kilometers traveled in the
extra daylight hour in the spring, rather than from the minor disruption in
circadian rhythm induced by the loss of one hour of sleep.

Alex Vincent, Ph.D.
Transport Canada
Montreal, QC H3B 1X9, Canada

References

1. Coren S. Daylight savings time and traffic accidents. N Engl J Med 1996;334:924- 924.

[Free Full Text] 2. Stewart DE. The implications of an early return to day-light saving

time in Canada: impact on road safety. Technical memorandum. Road Safety and Motor

Vehicle Regulation TMSE 8503. Ottawa, Ont.: Transport Canada, 1985.

——–

Dr. Coren replies:

To the Editor: In my study of the effects of daylight savings time on traffic
accidents, I found increased accident rates on the Monday after the spring shift
in time and decreased rates in the fall. I interpreted this in terms of sleep
time lost or gained. Vincent uses a larger data base than that available to me
and fails to replicate these results. Unfortunately, Vincent’s analyses are
based on t-tests of annual counts, rather than more sensitive7 pooled
relative-risk measures. More important, analysis of recent data from larger
data banks gives me reason still to believe that the shift to daylight savings
time in the spring is associated with an increased risk of accidents, although
the rebound reduction in accidents in the fall may be more problematic.

In an extension of the original study, I obtained data from the National High-
way Traffic Safety Administration on all (366,910) deaths in the United States
due to traffic accidents for the years 1986 through August 1995.[1] Data were
cumulated over the 10-year period. Contrasting traffic fatalities for the Mon-
day immediately after the spring shift to daylight savings time with the pooled
frequency for the Mondays preceding and following that date shows the ex-
pected significant increase, with a relative risk of 1.17 (95 percent confidence
interval, 1.07 to 1.29; χ2 = 10.83, 1 df; P<0.001). The magnitude of this shift

7Coren’s method is too sensitive. His ‘too small SE’ is based on a ‘homogeneous
Poisson’ model that does not fit the data.

is larger than in my first study, amounting to 17.2 percent. The fall time shift,
however, was associated with an insignificant reduction in traffic deaths (2.6
percent), with a relative risk of 0.97 (95 percent confidence interval, 0.89 to
1.07; χ2 = 0.29, 1 df; P not significant).

This result is similar to that of studies based on accidental deaths not related
to traffic accidents.[2,3] For example, I looked at every accidental death in the
United States that was reported to the National Center for Health Statistics
for the years 1986 through 1988.[4] Since over 80 percent of accident-related
deaths occur within four days after the accident, data for the analysis were
restricted to the first four workdays immediately following the change to day-
light savings time and the first four workdays in the week preceding and the
week after the change. There were 8429 accidental deaths in the spring-shift
analysis and 8771 in the fall. The interval immediately following the spring
shift showed a 6.6 percent increase in accidental deaths (relative risk, 1.07;
95 percent confidence interval, 1.01 to 1.11; χ2 = 5.52, 1 df; P<0.05). The
fall shift, however, was associated with a nonsignificant 1.5 percent decrease
(relative risk, 0.99; 95 percent confidence interval, 0.922 to 1.021; χ2 = 1.34,
1 df; P not significant). These data are consistent with the hypothesis that a
small decrease in the duration of sleep can increase one’s susceptibility to ac-
cidents. Although work schedules accentuate the loss of sleep after the spring
shift to daylight savings time, the absence of a reduction in accidents in the
fall may reflect the fact that many people do not take advantage of the hour
gained to extend their sleep.

Stanley Coren, Ph.D.
University of British Columbia
Vancouver, BC V6T 1Z4, Canada
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4.2 Extra-Poisson variation: Notes by JH

The variability uncovered by Vincent is an example of “extra-Poisson” (i.e.,
“larger than Poisson”) variation.

The derivation of the Poisson distribution assumes that there is the same
infinitely small probability of an event for each person-moment, or that
we are dealing with the sum of a very large – but fixed number (distri-
bution) – of Bernoulli r.v.’s, each with its own very small (but unknown
to us) probability of being positive, i.e., both

∑i=105

i=1 Bernoulli(µ/105)

and {
∑i=5×104

i=1 Bernoulli(2µ/105) +
∑i=5×104

i=1 Bernoulli(0)} will have a
Poisson(µ) distribution, provided µ << 105. As an example, we could use
the same Poisson(µ = 151.5) distribution to describe year to year variation
in the numbers of new breast cancers, whether they arise from a combined
sample of

• 0.5×105 65 year old men, in whom the average incidence is 3/105py, and
0.5× 105 65 year old women in whom it is 300/105py, 8

• 0.9925×105 45 year old women, in whom the average incidence is 1505py,
and 0.0075× 105 75 year old women in whom it is 350/105py,

• 1× 105 46 year old women, in whom the average incidence is 151.55py,

• 0.5 × 105 46 year old lower-risk women, in whom the average incidence
is 75.755py, and 0.5 × 105 46 year old higher-risk women in whom it is
303/105py.

The yearly numbers emanating from a Poisson(µ = 151.5) series would stay
mainly within the range 125 to 175. The key is the ‘fixed portfolio.’

The above input rates are based on rates seen recently in the UK. But now,
imagine that the observed number of cases for one year was derived from the
U.K, for the next year were from the U.S.A, the next from Japan, the next
from Equador, etc... but that you did not know that. For example, suppose
that a not very careful data-processor reported on a different random source
each year without telling you, or mixed up breast cancer and colon cancer,
or used data on new cases of influenza instead, or used numbers of persons
dying in small plane crashes, or reported on a case series where there was large
turnover in, and little supervision of, the persons who coded the diagnosis.

All of these would lead to considerably more year to year (or unit to unit)
variation than would be predicted by the Poisson model.

8from http://info.cancerresearchuk.org/cancerstats/types/breast/incidence/

We refer to this extra variation as “extra-Poisson” variation. It is usually
caused by external factors, often unknown. Sometimes, we might be able
to understand why it occurred, and possibly collect some (but probably not
all) the variables responsible. For example, the yearly fluctuations in the
recorded numbers of traffic accidents could be caused by such things as yearly
(or sudden) variations in (a) the numbers of kilometers driven, which might
be a function of the cost of gasoline, or the strength of the economy, or the
price of a Metro pass (b) the degree of police surveillance and enforcement
(c) weather (d) coding and data-processing practices, etc etc.. Similarly one
would see considerably greater than Poisson variation in the numbers of cases
of diseases that (i) are contagious (ii) can be screened for (ii) receive increased
attention or publicity (eg new cases of attention deficit disorder, autism, erec-
tile dysfunction...). And of course, the numbers who are truly at risk can
change too – for many behaviors, such as motor-cycle – or helmet, or pro-
tective ski equipment – use, it is not easy to document changes in the yearly
denominators.

JH suspects that weather was one of the major reasons for the considerably
greater than Poisson yearly variations uncovered by Vincent is the weather.
This affects both the denominator (the number of cars on the road) and the
crash probability per car. It turns out that in Coren’s 2 years, the Monday
before the “Spring ahead” weekend in 1991 was Monday April 1, which was
also Easter Monday, a holiday for many people. It was not that there was
a greater number of accidents on Monday April 8th (just after the switch to
DST; rather it was that there were fewer on Easter Monday. Whereas Coren
was probably aware of this, to the regular reader, this was an unknown source
of variation.

Clinical trial context: several events per person

Clinical trials of interventions for chronic diseases such as asthma, COPD, and
MS often use the number (y) of attacks – or exacerbations or hospitalizations
– a patient experiences over a fixed amount of follow-up time (PT ) as the
‘response’ variable.

Unfortunately, some data-analysts then pool all of the follow-up time in the
one arm (with say n patients) to get PT =

∑
PTi, pool all of the events in

that arm to get c =
∑
yi, and treat this total number (c) of events or ‘cases’

as a Poisson random variable.

If we were dealing with very few events per person (if most y’s were 0, a few
were 1, even fewer were 2, etc , as with the needlestick injuries or car crashes
examples), the implications of such an approach would not be serious. But
when there is considerable variability in the event rates across persons, and
many of the y’s are in the double digits, c has far more variability (from one
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possible sample of n to another) that would be predicted by treating it as
Poisson variable.

To see this, think of the count yi for the ith randomly selected person in the
study as arising from a 2-stage process. This person was chosen for the study
from a pool of persons. Each person in the pool has his/her own expected
rate λ, and thus his/her own expected number of events over the follow-up
period in question (for simplicity, we pretend that all study subjects will be
followed for the same amount of time: we take it be 1 PT unit). Thus, the
observed number yi of events experienced by person i is governed by his/her
λi. Say that the distribution of λ’s in the pool has an overall mean µλ and
variance σ2

λ

What then is the expected value, and variance, of the random variable yi?

We need to take these over the two stages, the selection of the λi and the
possible realizations given λi.

The expectation is E[yi] = E[ E[yi | λi] ] = E[ λi ] = µλ

The variance is in two parts

V ar[yi] = E[ V ar[yi | λi] ] + V ar[ E[yi | λi] ] = E[ λi ] + V ar[ λi ] = µλ + σ2
λ

Thus, the ‘unit variance’ is larger than the Poisson variance whenever there
is heterogeneity in the λ’s, i.e. when σ2

λ > 0.

This two stage (or hierarchical) model is often written as

λi ∼ ?( ),

yi | λi ∼ Poisson(λi).

How is it that the variation from say year to year in the breast
cancer example might be governed by the Poisson law, but the
variation in the c from one possible sample of n to other sample of
n is not?

The answer lies in whether the ‘portfolio’ is fixed or random.

In the breast cancer example, it was fixed; in the selection of a sample for an
rct, it is random. Even without any effect of the intervention, the possible
variation of the c in each treatment arm from n × µλ could be much greater
than that suggested by assuming c ∼ Poisson(

∑
µλ = n× µλ).

Same concept: “extra-Binomial” variation

The same issues apply to “extra-Binomial” variations. For example, while one
would expect the numbers of left-handers in a class of 30 to vary according
to a Binomial with a reasonably steady π, we would not expect the same
regularity in the numbers wearing jeans, or beards, or dyed hair, or sporting
iPods. For some of these behaviours, it might be possible to document smooth
trends over time, or as a function of the age/sex distribution, but for others
we might have very few explanations for the extra-binomial variation.

A classic example of “extra-Binomial” variation is in the context of cluster
sampling or cluster-randomized trials: for example, in the rubella-protection
prevalence study, the proportions of persons who dropped out of exercise
classes, etc. Cochran has a nice example in his sampling textbook: the propor-
tion of persons who have visited a physician visits in the last year, estimated
from a household survey.

Not all non-Poisson or non-Binomial variation is ‘extra.’ [most is!]

There are a small number of situations where there is less than the model-
based variation. For example, if McDonald’s puts an average of µ = 16 olives
per pizza, one would expect McDonald’s uniformity to result in a SD, from
pizza to pizza, of far less than the σ = µ1/2 = 4 predicted by the Poisson
model. Likewise, whereas the proportion (π) of males in the population can
be estimated from a household survey, the distribution of the number (y)
of males in households of say n = 4 persons is considerably less than the
σy = {4× π × (1− π)}1/2 predicted by the Binomial.
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What to do about extra-Poisson and extra-Binomial variation?

• It is likely to exist. Check for it.

• Model it (and thus remove some of it) using the explanatory variables at
hand.

• If considerable extra variation persists, despite the attempts to under-
stand it via the available covariates, do not use the (too narrow) model-
based SEs; instead use empirical SEs that reflect the observed, not the
model-predicted, unit variation. In effect, that’s what Vincent did for the
with-year differences in accident rates. Or use parametric models that
allow extra variation. For Poisson-like counts, but with extra-Poisson
variation, one ‘next model up’ is the negative binomial probability distri-
bution: it has two parameters rather than the one that governs the bino-
mial. Another (should be equivalent) to model the counts as a mixture
of Poisson random variables, where the µ’s have a gamma distribution.
In principle, more complex mixing distributions could be used to handle
the additional variance.

POISSON, Siméon Denis 1781-1840

http://www.york.ac.uk/depts/maths/histstat/people/sources.htm#p
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