
Course BIOS601: Concepts involved in Occurrence Measures in Epidemiology Fall 2010

1 Definitions

• State1 vs. Event2 [the transition (rapid) from one state to another] 3

• Population An aggregate of people, defined by a membership-defining...

– event → “cohort” ( closed population i.e., closed for exit)
or

– state – one is a member just for duration of state→ Open population
(open for exit) / dynamic / turnover

1Google: The way something is with respect to its main attributes; “the current state of
knowledge”; “his state of health”; “in a weak financial state”. State of matter: (chemistry)
the three traditional states of matter are solids (...) liquids (...) and gases (...).

2Most of the definitions below are adapted from the glossary in the textbook Theoretical
Epidemiology: Principles of Occurrence Research in Medicine by O.S. Miettinen (Wiley
1985).
Google: something that happens at a given place and time | a phenomenon located at a single
point in space-time; the fundamental observational entity in relativity theory | In the Unified
Modeling Language, an event is a notable occurrence at a particular point in time. Events
can, but do not necessarily, cause state transitions from one state to another ... | An event in
computer software is an action which can be initiated either by the user, a device such as a
timer or Keyboard (computing), or even by the operating system. | In probability theory, an
event is a set of outcomes and a subset of the sample space where a probability is assigned.
Typically, when the sample space is finite, any subset of the sample space is an event (i.e. all
elements of the power set of the sample space are defined as events). | An occurrence. | A
runtime condition or change of state within a system. | A thing which happens, like a button
is pressed. Events can by low-level (such as button or keyboard events), or they can be high
level (such as when a new dataset is available for processing). | A means by which the server
notifies clients of changes of state. An event may be a side effect of a client request, or it
may have a completely asynchronous cause, such as the user’s pressing a key or moving the
pointer. In addition, a client may send an event, via the server, to another client.

3In epidemiology, some authors reserve the word “occur” for an event (Google: happen;
take place; come to pass; “Nothing occurred that seemed important”) But, both in epidemi-
ology and in lay use, it is and can also be used for a state ( to be found to exist; “sexism
occurs in many workplaces”; “precious stones occur in a large area in Brazil”). Miettinen
[European J of Epi. (2005) 20: 11-15] makes this point in his reply to one of the several
authors who commented on his article Epidemiology: Quo vadis? ibid, 2004; 19: 713718.

Walker’s commentary was devoted to teaching me that the concept of occurrence
has to do with outcome events only; that it thus does not encompass outcome
states; and that etiologic occurrence research therefore does not encompass the
important study of causal prevalence functions. As I now consult The New
Oxford Dictionary of English (1998 edn), I find as the meanings of occurrence
(as a mass noun) these: ‘the fact or frequency of something happening’ and ‘the
fact of something existing or being found . . .,’ as in ‘the occurrence of natural
gas fields.’ And in my Perspective article I find ’state’ or ’prevalence’ occurring
as many as eight times, ‘event’ or ‘incidence’ no more than nine times. The verb
‘occur,’ I might need to add, means ‘happen; take place; exist or to be found to
be present . . . ,’ as in ‘radon occurs naturally in rocks . . . ’ [italics added by
JH]

• Prevalence (of a state) : The existence (as opposed to the inception or
termination) of a particular state among the members of the population.

• Prevalence Rate: the proportion of a population that is in a particular
state.

• Population-time: The amount of population experience in terms of the
integral of population size over the period of observation.

• Incidence: The appearance of events of a particular kind in a population
(of candidates over time)

– Incidence density (ID): The ratio of the number of events to the
corresponding population time (candidate time). If we subdivide time
into very short spans, ID becomes a function of time, ID(t); otherwise
ID refers to the average over the entire span of time.

– Hazard : limiting case of ID as we narrow the span of time. More
commonly used w.r.t. closed population, with a natural “t0.”

– Force of morbidity/mortality (Demography).

• Case: Medicine – episode of illness, (“a case of gonorrhea”). Epidemiology
– a person representing a case (in medical sense) of some state or event.4

• Incident cases: Cases that appear (as against those that exist or prevail).

• Cumulative Incidence (CI): The proportion of a cohort (of candidates)
experiencing the event at issue over a particular risk period if time-specific
incidence density is considered to operate over that period.

– The relation between ID and CI can be expressed mathematically as

CIT = CI0→T = 1− exp
{
−
∫ T

0

ID(t)dt
}
.

– As a function of t, the complement, 1−CI0→t is called the “Survival”
function, S(t), since it is the proportion of the cohort that, at time t,
remains (continues, “survives”) in the initial state.

• Risk: The probability that an event (untoward) will occur.

• Case Fatality Rate: (Rothman 1986, p31) The cumulative incidence of
death among those who develop an [acute] illness [e.g., SARS, influenza].
The time period for measuring the case fatality rate is often unstated.

4 Google: an occurrence or instance of something; “a case of bad judgment”’; “another instance

occurred yesterday”; Merriam-Webster: noun, Middle English cas, from Anglo-French, from Latin

casus fall, chance, from cadere to fall. 1 a: a set of circumstances or conditions b (1): a situation

requiring investigation or action 6 a: an instance of disease or injury <a case of pneumonia> .

1



Course BIOS601: Concepts involved in Occurrence Measures in Epidemiology Fall 2010

2 Link between ID and CI

2.1 Version adapted from Rothman 1986, pp 29-31.

Despite the interpretation that can be given to incidence rate, it is
occasionally more convenient to use a more readily interpretable mea-
sure of disease occurrence. Such a measure is the cumulative inci-
dence, which may be defined as the proportion of a fixed population
that becomes diseased in a stated period of time. If risk is defined
as the probability of an individual developing disease in a specified
time interval, then cumulative incidence is a measure of average risk.
Like any proportion, the value of cumulative incidence ranges from
zero to 1 and is dimensionless. It is uninterpretable, however, with-
out specification of the time period to which it applies. A cumulative
incidence of death of 3 percent may be low if it refers to a 40-year
period, whereas it-would be high if it applies to a 40-day period. It
is possible to derive estimates of cumulative incidence from incidence
rate. Consider a fixed population. The figure shows the size of this
fixed population, by time, indicating a small decrement at time t

Time

P0

Pt

0 t

Population Size

∆∆t

∆∆P}

At time t, CIt = (P0 − Pt)/P0; in words, the cumulative incidence at
time t equals the number of people who have exited the fixed popu-
lation by time t because of disease (P0 − Pt), divided by the initial
number of people in the population. The incidence rate at time t is
the ratio of new cases to the person-time observation experience; thus

It =
∆P
Pt∆t

, i.e., in calculus notation, It =
−dP
Ptdt

; −Itdt =
dP

Pt
.

(The minus sign is used because the change in P is negative in re-
lation to t; without the minus sign, the incidence measure would be
negative.) Integrating both sides, −

∫ T

0
Itdt = ln(PT )−ln(P0). Taking

antilogs, exp{−
∫ T

0
Itdt = PT /P0. And, since CIT = (P0 − PT )/P0,

we have

CI0→T = 1− exp
{
−
∫ T

0

Itdt

}
.

This is estimated as

CI0→T = 1− exp{−
∑

Ii∆ti},

where the summation of the index, i, is over categories of time covering
the interval [0, T.]

For a constant incidence rate,

CI0→T = 1− exp{−I × T}.

Because exp{x} ≈ 1 + x for |x| < about 0.1, a good approximation
for a small cumulative incidence (less than 0.1) is

CI0→T ≈
∑

Ii∆ti.

or
CI0→T ≈ I × T.

if the rate is constant with time. Thus, to estimate small risks, one
can simply multiply the incidence rate by the time period. The above
approximation offers another interpretation for the incidence rate; it
can be viewed as the ratio of a short-term risk to the time period for
the risk as the duration of the time period approaches zero.

The cumulative incidence measure is premised on the assumption that
there are no competing risks of death. Thus, if an individual at age
40 faces a cumulative incidence, or risk, of 35 percent in 30 years for
cardiovascular death, this is interpreted as the probability of dying
from cardiovascular disease given that the individual is free from other
risks of death. Because no one is actually free from competing risks,
the cumulative incidence measure for any outcome other than death
from all causes is a hypothetical measure. In principle, cumulative
incidence for lengthy periods is unobservable and must be inferred
because of the influence of competing risks.
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2.2 Link between ID and CI – other derivations

Many epidemiologic textbooks give the mathematical expression that links the
cumulative incidence (CI) or “risk” function, or its complement the “survival”
function, with the integral of the incidence density (ID) function. Of the 15
modern texts JH has examined, only Rothman 1986 derives the relationship.
Unfortunately, the formal geometric and calculus-based derivation used does
not provide any insight into ‘why’ or ‘how’ the exp function comes into it, so
epidemiologists are forced to accept it as a mere mathematical ‘fact.

In his simpler 2002 book, in pp 33-38, he uses heuristic arguments, but does not
show the formula itself. Below I derive the formula heuristically. By working
through a simple example, I try to make clear the difference between rate and
risk, and the units involved, and when one is numerically close to the other.

a. Simplest case

I begin with an exercise which, unless explicitly given in the context of this
formula, tends to perplex many first year epidemiology trainees. I base it on
data from Ayas et al (2006). In a large study, the observed rate of reported
percutaneous injuries (PIs) among residents/interns in obstetrics/gynecology
(ob/gyn) programs was 94 injuries in 964 intern-months, or (to the first 2 signif-
icant digits) 0.10 injuries per intern-month. I ask students to assume uniform
250-work-hours each month, with injury rates of 0.1 per intern-month that are
constant, both within and across the hours and months in question. I then ask
them to “calculate the probability that an average-risk ob/gyn resident would
suffer at least one PI by the end of 1, 6 and 12 months of experience.” I do not
explicitly describe each of the probabilities as a ‘cumulative incidence’ or ‘risk,
but I do tell them that if they prefer, they may calculate the (complementary)
probability of ‘surviving ’ these lengths of work-time without a PI.

Many students readily volunteer answers of 0.1× 1 = 0.1 = 10% and 0.1× 6 =
0.6 = 60% for the 1- and 6-month risks, before realizing when they try to
calculate the 12-month risk that it cannot be 0.1 × 12 = 1.2 = 120%. And
while they are unable to now give an exact 12-month risk, many are confident
that the 1-month risk is indeed 0.1 or 10%.

They have all been taught very early on how ‘person-time’ rates are calculated,
and that a rate (or ID), which has dimension events/person-time, is entirely
different conceptually from a risk, which is a (dimensionless) proportion. It
is interesting to try to understand why there is such difficulty going back and
forth between the two, in appreciating whether the one-month risk is less than
or more than 10%, and in estimating how much less than 120% the 12-month
risk is!

b. More generally

[Note: This section was written a few years ago, before JH came across Ed-
mond’s definition of force of mortality – in the Appendix to the article on the
Bridge of Life, Turner & Hanley re-use this analogy of computers acting as
servers.]

One heuristic way to begin might be to imagine a physical or human system
consisting of say 100 workstations, each one in continuous operation. The
Figure overleaf shows the 12-month log for a system in which the physical
devices (humans) failed (were injured), independently of each other and of the
duration they had been operating, and where, if such events occurred, they
were immediately replaced. The expected failure rate (incidence or incidence
density) is the expected number of events (120) per 1200 device-months or
person-months, 0.1 per device-month or person-month, or 1.2 per device-year
or person-year of operation.

As we will show below, one would expect approximately 70 of the 100 initial
devices or operators to fail before the end of the year, so that the one-year risk
is in fact considerably less than 100%. The 120 failures or injuries in that first
year of the system occur in an average of 70 of the 100 first generation members,
and in 34 of their 70 replacements, and in 12 of their 34 replacements, and so
on. In all, it takes an average of 220 different (100 initial, plus 120 replacement)
devices or humans to keep the 100 workstations in continuous operation for 1
year.

Some of the reasons for the disconnect is our propensity to think in terms of
individual devices rather than the continuous device-time or person-time needed
to maintain the service. In effect, the device-moments or person-moments are
entirely interchangeable. We tend to draw person time as separete parallel
lines, as if a station belonged to a device or person, but the ‘up-time’ can be
generated by having some replacement devices or persons use the same stations
as others.

1-month Risk (CI)

If one understands the Poisson distribution, and how exactly it is derived,
it is easy to move from a failure rate (ID) to a 1-month or x-month risk :
the number of device failures in a period of 1 device-month of operation (up-
time) is a Poisson random variable, with possible values 0, 1, 2, .. , and the
expected (mean) number of failures is µ = 0.1. Thus the probability of no
(zero) PI injuries or failures is P [0] = exp(−0.1) = 0.90484, so the 1-month
risk or cumulative incidence is 1 − 0.90484 = 0.09516 or 9.516%; the x-month
risk is obtained similarly, using µ = 0.1 × 6 = 0.6, to arrive at a risk of
1− P [0] = exp(−0.6) = 1− 0.54881 = 0.45118 = 45.115%.
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However, just as with the relationship between incidence density (failure rates)
and risk, the Poisson distribution is seldom well explained in introductory or
epidemiology biostatistics texts, and so many would not be further enlightened
by this ‘explanation.’

Figure Legend: 12-month log for a computer system (workplace) consisting of 100 work-

stations, represented by 100 horizontal white lines. The dots – if applicable – for a station

represent the times at which the devices at that station failed (workers at that station were

injured). Failed devices (injured workers) were immediately replaced, so that each station

remained in continuous operation. Devices failed (workers were injured) independently of

each other and of the duration they had been operating. On average, some 120 failures

(injuries) occurred in 1200 operator-months of operation. Thus, the failure(injury) rate was

0.1/operator-month, or 1.2/operator-year.

The key to understanding how the exp function is involved in the transition
from PI rate to PI risk is to express the injury rate not as 0.1 per intern-month,
but as 0.0004 injuries/intern-hour, or an average of 1 injury per 2500 intern-
hours. (we could equally use the rate of failures of the physical devices). The
number of events in such a small time unit is again a random variable with
possible values 0, 1, 2, . . . but because one intern-hour is so small, the chance of
1 event in that amount of experience is already very small, and the chance of 2
or more is less than 1 in 10 million. Thus, one can very accurately regard the
1-hour risk as 0.1× 0.004 = 0.1/250 = 0.0004, and its complement, the 1-hour
‘survival’ probability, as 1 − 0.1/250 = 0.9996. Thus, the 1-month survival
probability can be approximated by (1−0.1/250)250 = 0.90482 = 90.482% and
its complement, the risk or cumulative incidence, by 9.518%.

An even more accurate approximation to the survival probability can be
obtained by further dividing the 250 hours into 15000 minutes, so that
the injury rate is 0.1 per 15000 intern-minutes, and calculating (1 −
(0.1/15000)15000 = 9.484% so that the 1-month risk is 9.516%. Subdivid-
ing the time units further does not change these decimal places; the function
(1 − 0.1/LargeNumber)LargeNumber converges to a constant which is solely
a function of the 0.1. The function is the exp function. Indeed, one formal
definition of exp x is that it is the limit,

lim
N→∞

(1 + x/N)N .

In our example, x = −0.1, and the exact survival probability, to 6 decimal
places, is exp (−0.1) = 0.904837.

6-month and 12-month Risk (CI)

As in standard survival calculations, the 6-month survival probability S0→6 is
the product of 6 conditional probabilities:

S0→6 = S0→1 × S1→2 × S2→3 × S3→4 × S4→5S5 → 6.

In our example the constant PI rate implies that each St→(t+1) equals
exp[−0.1× 1] and so the 6-month survival probability is

S0→6 = exp[−0.1× 1]× · · · × exp[−0.1× 1] = exp[−0.6] = 0.548 = 54.8%,

so that the 6-month risk is 100− 54.8 = 45.2%.
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Had the PI rate varied over the period at risk, say as an (equal-) step-function,
starting at 0.05 PI/intern-month in month 1 and rising to 0.10 PI/intern-month
in month 6, then the 6-month survival probability is again obtained by sum-
ming the area under the ID curve to obtain

∫ 6

t=0
ID[t] dt = 0.45, and by then

calculating

S0→6 = exp
[
−
∫ 6

t=0

ID[t] dt]
]

= exp[−0.45] = 0.64

If, as appears to be the case, the injury rate is closer to 0.16 PI/intern-month
when working an extended shift, and 0.08 PI/intern-month when working reg-
ular shifts, then the risk for a resident over 3 months of extended shift is
1 − exp[−(0.16 × 3)] = 38%. The corresponding PI risk for the 9 months on
regular shifts is 1− exp[−(0.08×9)] = 51%. The chance of escaping injury-free
for the entire 12 months is exp[−{(0.16× 3) + (0.08× 9)] = exp[−1.2].

The above calculations further illustrate the ‘interchangeability ’ of the contri-
butions to the integral involved in the cumulative incidence (CI), and the fact
that the CI only depends on the integral itself: the overall 6- or 12-month risk
is the same whether the higher- and lower-risk blocks of time are interspersed
or contiguous: the overall risk is determined by the integral, also called the
cumulative hazard H[T ] =

∫ t=T

t=0
h[t] dt.

You can think of H[T ], the integral of ID(t) over the time
span in question, as the expected number of events, µ, if there
was always 1 (not necessarily the same) individual at risk
for the full time span involved in the integral. It is
easier to think of the continuous time at risk in the context of
a work station where whenever the machine/individual fails, it
is immediately replaced by another one. Then, the CI is 1 mi-
nus the Poisson probability of 0 events in [0, T ] when µ = H[T ], i.e.

CI = 1− exp{−µ} = 1− exp{−H[T ]} = 1− exp
{
−
∫ t=T

t=0

h[t]
}
.

This exponential formula for S[.] is the same as the one for the deprecia-
tion/appreciation of a financial fund, where At=0 is the amount at t = 0,
and δ(t) / α(t) is the rate of depreciation/appreciation, expressed as a smooth
function.

Depreciation: At=T = A0 × exp[−
∫ t=T

t=0
δ[t] dt].

Appreciation: At=T = A0 × exp[
∫ t=T

t=0
α[t] dt].

2.3 Approximation to CI

The fact that the risk function is a 1:1 function of the integral of the incidence-
density function has implications for when one can obtain acceptably accurate
approximations to the risk. The 1− exp[−H] function can be closely approxi-
mated by H over the range H = 0 to H = 0.1, but this approximation becomes
less accurate thereafter. As is shown by the following table

H: 0.05 0.10 0.20 0.30 0.50 1.00 1.50
(1− exp[−H]) : 0.049 0.095 0.181 0.259 0.393 0.632 0.777

% over 3 5 10 16 27 58 93

The percentage over-estimation by using CIapprox = H, rather than CIexact =
1− exp[−H], is close to 50×H.

Large values of H can arise from a low rate operating over a longer time-interval,
or higher ones over a shorter one.

2.4 T.R. Edmonds’ definition of the force of mortality
using the concept of a ‘person-year ’. (taken from
Appendix of Turner-Hanley article on Bridge of Life

We use a modern example involving the ‘blue screen of death’ for our own
depiction of a person-year, and couple this with the Poisson distribution to
provide an alternative derivation of the formula linking the hazard (force of
mortality) function and the survival function:

Whatever the magnitude or pattern of h(u) over that range, the complement of
S(t) is a proportion – epidemiologists call it a ‘risk’ or ‘cumulative incidence.’

In his 1832 book, Edmonds begins his theoretical treatment of the link with
the words (emphasis ours)

The force of mortality at any age is measured by the number of deaths
in a given time, out of a given number constantly living. The given
time has been here assumed to be one year, and the given number
living to be one person; consequently, the algebraic sign for the force
of mortality represents—the quantity of death in one year for a unit of
life at the assumed age; or rather (since the force is changing contin-
ually) represents—the quantity of death on a unit of life which would
occur by the action of this force continued uniform for the space of
one year.

In his example, the ‘given number constantly living’ is a number of person-years
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(1 p-y in his calculations). Heuristically, imagine a setup in which one of a large
number of personal computers, all of the same model and age, acted as a server
for the others. In order to maintain virtually continuous server operation, a
server that fails is immediately replaced by another available computer. Let
h(u) be the hazard function, which can be influenced only by the age (u) of the
computer. If over the first year h(u) is – in the simplest case – assumed to be
independent of age, and constant at say h = 0.1 failures per computer-month
of operation, then of 100 such servers, one would expect approximately 70%
of the 100 initial machines, 34 of their replacements, 12 of their replacements,
and so on, to fail before the end of the year. In all, it would take an average
of 2.2 different computers to keep a server in virtually continuous operation
for 1 year, and the expected number of failures is 0.1 events/server-month ×
12 months = 1.20 events in a server-year of operation. The chance that the year
of operation is accomplished with a single computer is the Poisson probability
of 0 failures when µ =

∫ t

0
h(u)du = 1.2 are expected, namely exp[−1.2] = 0.30.

The complement of this is the one year ‘risk’ or ‘cumulative incidence’ of 0.70.

Since the computers were assumed to be exchangeable, this example emphasizes
that the 1 year of virtually continuous ‘server-time’ (‘up-time’) – and observed
number of failures – could equally well have been accomplished by having a
different computer be the server for different days, or months, or randomly
selected periods. As Edmonds would put it, “the failure rate is measured by the
number of failures in a given time (here 1 year), out of a given number of servers
(here, 1) constantly serving for that time.” Thus for human populations,
we can think of the integral of h(u) over the time span in question as
the expected number of events if there was always 1 (not necessarily
the same) individual at risk for the full time span involved in the
integral. And even if h(u) varies over the time span – as it realistically would
– we can still use the integral in the risk / cumulative incidence formula as
the expected value of a Poisson random variable. We can do so because of
the seldom-emphasized ‘closure under addition’ property of the Poisson family:
the sum of independently distributed Poisson random variables with different
expected values is again a Poisson random variable with expected value equal
to the sum of these expected values.

3 Relationship between Prevalence, Incidence,
and Duration in a State

In a steady state situation,

Prevalence = Incidence×Average Duration.

Two of the clearest examples of this are admissions to and stays in hospital, and
in graduate programs, assuming no change over time in the admission rates, or
in the durations in the state they are admitted to.

If the average number of hospital admissions is 55 per day, and the average
stay is 10 days, then the average number of beds occupied is 550 beds. Note
the units

Average Prevalence = 550 beds occupied =
55 beds
1 day

× 10 days.

If the average number of admissions to a program is 10 students per year, and
the average stay is 3 years, then

Average Prevalence = 30 students =
10 students

1 year
× 3 years.

Example:

Although no free-living population is likely to meet the steady state
criteria, the qualitative relation embodied in the preceding equation
applies widely. A study of HLA types (a class of genetic markers)
among children with acute lymphocytic leukemia (ALL) who attended
an oncology clinic found that the prevalence of type A2 was higher
than that in the general population.9 The observation raised consider-
able interest, implying as it did that susceptibility to acute leukemia
might be mediated by genetic factors. A follow-up study of a series
of newly diagnosed leukemics found identical prevalences of the “high
risk” type A2 in patients and in the general population.10 The dis-
cordance between the two findings was due to an effect of HLA type
on the mean duration of ALL. Far from being at high risk of ALL,
children with HLA type A2 were at no increased risk, responded bet-
ter to chemotherapy, had longer survivals, and were therefore over-
represented in the (prevalent) clinic population. The lesson is that
if you want to study the determinants of incidence rate, you need
incident rather than prevalent cases of disease.
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9. Rogentine GN et al. HLA antigens and disease: acute lymphocytic
leukemia: J Clin Invest. 1972;61:2420-8. 10. Rogentine GN et al.
HLA antigens and acute lymphocytic leukemia: the nature of the
association. Tissue Antigens 1978;3:470-6.

Alexander Walker, Observation and Inference, pp 11-12.

4 Length-biased sampling

See the “Length Bias” entry, written by Mei-Cheng Wang, in the 2005 Encyclopedia of

Biostatistics. The Encyclopedia is available online as an eBook through the McGill Libraries.

4.1 Definition

Consider a non-negative5 random variable Y that – for illustration, but without
loss of generality – takes on the integer values y = 0, 1, . . . , has a probability
distribution with a probability mass function p0, p1, . . . , and has expected
value µ =

∑
y × py and variance σ2 =

∑
(y − µ)2 × py. Denote the coefficient

of variation, σ/µ, by “CV.”

We can estimate µ by taking a simple random sample {y1, . . . , yn} and calcu-
lating µ̂ = ȳ = (1/n)

∑
yi. Since Prob[yi = y] = py, it is easy to show that

E[ȳ] = µ.

Length-Bias Sampling refers to a form of sampling where the probability
of selecting a unit with Y = y is not py, but rather py × y. Thus, larger Y
values will be over-represented in the sample. One of the early instances of this
sampling was in the sampling of strands of wool in the textile industry, where
longer strands has a higher chance of being selected – thus the name length
bias.

4.2 Examples

Some examples are:

5Most texts restrict attention to positive random variables. JH included non-negative
r.v.’s to highlight examples, such as those in rows 2 and 7 of the table, where even though
there is a non-zero probability mass at Y = 0, there would no instances of Y = 0 in the
sample used to estimate µ.

Units Y Method of Selecting Units
Words in a text # letters Random locations on pages
Homes in a town # children in elem. sch. S.R.S. of children in the school
Hospital Admissions Length of Stay Pts. in hospital on random day(s)
PhD Students # Years to Obtain PhD Cross-sectional/Prevalence survey
Pts. c̄ Alzheimer’s Disease Duration Cross-sectional/Prevalence survey
Cancers Dur’n of Pre-clinical Phase Screening with Imaging Test
Outpatients # visits to facility S.R.S. of all visits
BRCA1 Carriers Lifetime risk of Breast Ca. Case proband studies
Inter-event Intervals Length Randomly selected time ∈ Interval

4.3 Length-bias, illustrated

Imagine the horizontal lines below are the lengths of stay of patients in 20
hospital rooms over a 30 day period, or the length and locations of words
in 20 lines of text, or the duration of dementia, from onset until death, for
patients with dementia. Imagine selecting a sample of units (admissions, words,
dementia patients) by drawing a vertical (cross-sectional) line and selecting
those admissions or words or patients that this vertical line intersects. Clearly,
the line has a higher chance of selecting longer stays or words or durations.
The data were generated from the distribution of word-lengths.6

Unit #

Time / Location
0

0

5

5

10

10

15

15

20

20

25

25

30

30

1 ● ● ● ●
● ● ●

● ● ● ●
● ● ● ●

● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ●
● ●

2 ● ● ● ● ● ● ●
● ● ●

● ● ●
● ● ●

● ●
● ● ● ● ● ●

● ●
● ● ●

● ● ●
● ●

3 ●
● ● ● ●

●
● ● ● ●

● ● ● ●
● ● ● ●

● ● ●
● ● ● ● ● ●

● ●
● ● ● ● ●

4 ●
● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ●

● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ● ●

5 ●
● ● ● ● ●

● ●
● ● ● ●

● ●
●

● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ●
●

6 ● ● ●
● ● ●

● ● ● ● ● ● ● ● ●
● ● ●

● ● ● ●
● ● ● ● ●

● ●
● ● ● ● ●

7 ● ● ● ● ●
● ● ●

● ● ●
● ● ● ●

● ●
● ●

● ● ● ●
● ●

● ● ● ●
● ●

● ● ●

8 ● ●
● ● ●

● ●
● ● ● ●

● ● ●
●

● ●
● ● ● ●

●
● ● ●

● ● ● ●
● ● ●

● ●

9 ● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ●

● ● ● ●
● ●

● ● ● ● ● ● ● ● ●

10 ● ● ● ● ● ●
● ● ●

● ● ● ● ● ● ●
● ● ●

● ●
●

● ● ● ● ● ● ● ● ● ●
● ●

11 ● ● ●
● ● ●

● ● ●
● ● ●

● ● ●
● ● ●

● ● ●
● ● ●

● ● ●
● ● ● ● ●

● ●

12 ● ●
● ● ●

● ●
● ● ● ●

● ● ● ●
● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

13 ● ● ●
● ● ●

● ●
● ●

● ●
● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

● ● ●
●

14 ● ● ● ●
● ● ● ● ● ● ●

● ●
● ● ● ●

● ● ● ●
● ● ● ● ●

● ● ● ● ● ●
● ●

15 ●
● ● ● ● ● ●

● ● ● ● ● ● ●
● ●

● ●
● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ●

16 ● ● ●
● ● ●

● ● ● ● ● ●
● ● ● ● ● ●

● ●
● ● ●

● ● ●
● ● ● ● ●

● ● ●

17 ● ● ● ●
● ● ●

● ● ●
● ● ● ● ●

● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

18 ●
● ● ●

● ● ●
● ● ● ●

● ● ●
● ● ●

● ● ● ● ● ● ●
● ● ●

● ● ● ●
● ●

●

19 ● ●
● ● ●

●
● ● ●

● ● ●
● ● ●

● ●
● ● ● ● ●

● ● ●
● ● ● ● ● ● ●

● ●

20 ● ● ● ● ● ● ● ● ●
● ● ● ●

● ●
● ●

● ● ● ● ● ●
● ● ● ● ●

● ● ● ● ●
●

6In the Book of Genesis, readily available online.
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4.4 Magnitude of the Bias

Let Yl.b. be the random variable representing the value of Y in a unit selected
by Length-Biased Sampling. One can easily show that

E[Yl.b.] =
µ2 + σ2

µ
= µ× (1 + CV 2).

Thus, the greater the relative variation, the greater the over-estimation of µ.

So, if the average word length is µ = 4.5 letters, and the SD is σ = 2.25, or
50% of the mean, the expected number of letters in words selected by sticking
pins at random in the text is 4.5× (1 + 0.52), i.e., 25% higher.

In the number of children per household example, say that 50% of house-
holds have Y = 0 school-age children, that 30% have Y = 1, and 20% have
Y = 2. Thus µ = 0× 0.5 + 1× 0.3 + 2× 0.2 = 0.7 children per household, with
σ2 = (0− 0.7)2 × 0.5 + (1− 0.7)2 × 0.3 + (2− 0.7)2 × 0.2 = 0.61. In a sample
of 70 schoolchildren, one would expect 30 to be singletons and to answer that
there is 1 school-age child in their house, and 40 to answer that there are 2
school-age children in their house; thus the mean in this length-biased sample
is (1× 30 + 2× 40)/70 = 11/7. This agrees with the 0.7× (1 + 0.61/0.49) given
by the formula above.

Suppose that the inter-arrival intervals of buses on a certain route during
a particular portion of the day are highly variable from day to day, say µ = 15
min and σ = 15 min. Under these conditions, the average wait for the next bus
by a person who arrives at the bus-stop each day at a randomly selected time
during that portion of the day will be (1/2) × 15 × (1 + 12) = 15 mins. One
distribution that has a mean of 15 and a SD of 15 is one where 1/2 the intervals
are 30 minutes, and 1/2 are 0, i.e., where two buses show up together every 30
minutes! Another distribution with this same is if one shows up at a random
time and waits for radio-active disintegrations whose inter-event intervals have
an exponential distribution with mean µ and σ = µ. Here again, the average
wait until the next event is again (1/2) × µ × (1 + 1) = µ. On the other
hand, if there is no variation, as in the Metro during certain hours, when each
inter-arrival interval is say µ minutes, with σ2 = 0, one can obtain an unbiased
estimate of µ by entering the station at random times, averaging the waiting
times until the next Metro train, and doubling the mean of these “forward
recurrence times.”

In the (N Engl J Med 2001;344:1111-1116.) article “A reevaluation of the
duration of survival after the onset of dementia ,” Christina Wolfson
et al. used follow-up data from the Canadian [cross-sectional i.e., Prevalence]
Study of Health and Aging to estimate survival from the onset of symptoms of

dementia...

In the 821 subjects, the unadjusted median survival was 6.6 years (95
percent confidence interval, 6.2 to 7.1). After adjustment for length
bias, the estimated median survival was 3.3 years (95 percent confi-
dence interval, 2.7 to 4.0).

Median survival after the onset of dementia is much shorter than has
previously been estimated.

4.5 Correcting for the Length-Bias

One option is to, in the design of the study, only select ‘new’ admissions or
onsets, i.e., select an ‘inception’ sample or cohort.

But what if the data have already been collected by length-biased sampling?
Some options at the data-analysis stage include:

• Throw away the data. This was the action taken by a research group
at the community health department associated with the MGH in the
1980’s, after they realized that their survey of use of outpatient facilities by
psychiatric patients over-represented those with greater use. The sampling
was from a file-drawer where each patient-visit had generated one card.
The investigators simply took a systematic sample of the cards in the
drawer. JH only found out about this solution in the 1990’s, long after the
answers would have been of any value.

• Re-weight the data. This was the action suggested by JH to a research
group in the 1990s. They had used a cross-sectional survey to estimate
how many days (Y ) patients on i.v. medications had to spend in hospital
just because there was no outpatient facility that could have managed
them – i.e., the patients were well enough to be discharged by day X but
had to wait in hospital until day (X + Y ) when their i.v. line could be
removed. The sample of patients was assembled by having a nurse visit
the hospital on randomly selected days, and select those for whom the
physician considered that they had already been there for > X days.

The procedure re-weights the observed frequency, fl.b.[y], of patients with
Y = y days in the length-biased sample to the frequency of Y = y one
would expect in an (unbiased) inception sample, i.e. funbiased[y] = fl.b.[y]÷
y.7

7This will not work if one of the possible values of Y is 0, as in the number of school-age
children per household example. The problem becomes even more acute at the smaller Y
values when the data values are recorded on a ‘continuous,’ rather than discrete scale.
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• Use only the data from the inception sample. Unfortunately, this wastes
a lot of the data.

• Use parametric models for the distribution of Y .

• (For censored survival-type data, as in the dementia study which got them
interested) consult with statisticians in McGill’s Department of Mathemat-
ics and Statistics.

• ...

5 Lexis Diagram - 2 time axes

The following is excerpted/adapted from the entry “Lexis Diagram” by N. Kei-
ding in the Encyclopedia of Biostatistics.

A Lexis8 diagram is a (time, age) coordinate system, representing
individual lives by line segments of unit slope, joining (time, age) of
birth and death (see Table and Figure).

A Lexis diagram representing the five lives in the Table.

1920 1940 1960 1980 2000

0
20

40
60

80

Time

A
ge

Born Died Age at death
1918 1966 48
1926 1944 18
1934 1992 58
1944 1978 34
1954 1968 14

The Lexis diagram is an important descriptive tool in epidemiology and de-
mography. However, it also has several applications in survival analysis and
analytical epidemiology as a tool for several classes of statistical models, as
surveyed by Keiding [ref.]. These uses of the Lexis diagram are less common
and it is the aim of this article to indicate some recent developments. [ ... ]
Despite its long history, the Lexis diagram is still being rediscovered among
statisticians, cf. Goldman, A.I. (1992, Eventcharts: Visualizing survival and
other timed-events data, American Statistician 46, 13-18) for the standard
Lexis diagram.

Applications of the Lexis Diagram in Survival Analysis and Analyt-
ical Epidemiology

Clinical Trials with Staggered Entry / Disease Incidence Studies / Prevalent
Cohort Studies

Statistical Inference in the Lexis Diagram

Piecewise Constant Intensity Models / Point Processes, Continuous Time

8Lexis, W. (1875). Einleitung in die Theorie der Bevölkerungsstatistik. Trübner, Strass-
burg.
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The following is excerpted/adapted from Breslow & Day Volume I, section 2.2.

The basic feature of cohort studies that distinguishes them from cross-sectional,
case-control or other types of investigation is that, at least in principle, each
subject is kept under continuous surveillance for a defined interval of time.
If the study endpoint is death, we assume that each subject is ‘at risk’ of
death during the entire interval from his entry into the study until his exit.
This means that the study period should contain no interval during which
the subject is known to be alive as a condition of cohort membership. If the
cohort is defined to consist of all workers with at least five years of employment
in a certain factory, therefore, the first five years of their employment history
would be excluded from the observation period. A second critical assumption is
that any death that actually occurs during the study period will be recorded.
For cohorts defined on the basis of past records, this implies that adequate
mechanisms exist for tracing individuals from their date of entry into the study
until death or until the study’s closing date. If no record exists of someone’s
whereabouts after a certain point in time, he should generally be considered as
having left the study at that point. Obvious problems of selection bias exist if
such losses are at all frequent, since the causes of and ages at death for ‘lost-to-
follow-up’ subjects may well differ from those for persons who are successfully
traced.

The basic method used to estimate age-time-specific mortality rates is to deter-
mine each individual the amount of observation time contributed to a given age
× calendar period category and to sum up those contributions for all cohort
members so as to obtain the total number of person-years of observation in
that category. These person-years form the denominators of rates the numera-
tors of which are simply the numbers of deaths due to a given disease, likewise
classified by age and calendar year of death.

In some applications, particularly when the observation period is relatively
short, the calendar-year axis is ignored and the rates are determined by age
interval alone. Computer programs for performing the calculations have been
developed by Hill (1972), Monson (1974), Waxweiler et al. (1983), Gilbert
and Buchanan (1984) and Coleman et al, (1986), among others, Sometimes the
exact dates of birth and of entry and exit from study, which are needed to draw
the Figure, will not be available. Then, approximate numbers of standardized
person-years may be calculated as shown in the right-hand column of the Table,
using the three integer variables, age at entry, year of entry and year of exit.
The approximation is based on the notion that a person aged 43 in 1956 will be
44 in 1957, 45 in 1958 and 54 in 1967. He contributes 0.5 years of observation
time to the calendar year of entry (1956), 0.5 years to the year of exit (1967),
and a full 1.0 year to each intervening year. There would be a single 0.25-year
contribution for someone who enters and leaves the study in the same calendar

year. The discrepancies between the exact and approximate figures tend to
be averaged out when cumulated over individuals, so that the approximate
method is sufficiently accurate for most practical purposes.

1950 1955 1960 1965 1970

40
45

50
55

Calendar year of follow−up

A
ge

 a
t f
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lo

w
−

up
 [y

ea
rs

]

●

●

●

●

●

●

A
B

C

D

E

F

1.29

2.68

2.32

2.68

2.15Schema showing the
follow−up of one person

in a cohort study

Quinquin−
quennium

(5 x 5)

The process is illustrated in the Figure

[Lexis Diagram], which shows schemati-

cally the course of one worker who was en-

tered on study (point A) at age 43.71 in

year 1956.03 and left 11.12 years later (F).

He contributed observation time to five sep-

arate cells, boundary crossings being made

at points B through E. The duration of time

spent in each cell is easily determined, as

shown in the Table below.

Table. Calculation of exact and approximate age- and year-specific
person-years at risk

Point Coordinates Quinquinquennium Person-years
(See Fig.)

(Cal. year, age) Year Age Exact Approx.

A (1956.03, 43.71)
1955-1959 40-44 1.29 1.50

B (1957.32, 45.00)
1955-1959 45-49 2.68 2.00

C (1960.00, 47.68)
1960-1964 45-49 2.32 3.00

D (1962.32, 50.00)
1960-1964 50-54 2.68 2.00

E (1965.00, 52.68)
1966-1969 50-54 2.15 2.50

F (1967.15, 54.83)
Total 11.12 11.00

Cause-specific national death rates are typically published by five-year intervals
of age and calendar year. Such ‘quinquinquennia ’ are widely used in cancer
epidemiology, and our example of the calculation of age- and calendar period-
specific rates illustrates this standard breakdown. Analogous methods may be
used if the age/time intervals are longer or shorter than five years.
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6 Appendix 1. Rate Measures of Occurrence

Miettinen, O.S. Theoretical Epidemiology: Principles of Occurrence Research in Medicine.

A.1.1. PREVALENCE RATE

Prevalence is a phenomenon in populations only, not in individuals. It has to
do with occurrence in the sense of the existence of individuals with some par-
ticular state (condition or trait). It is quantified in terms of a prevalence rate,
which is the proportion of individuals (in the population at issue) who are in
that state. Examples of prevalence rate thus include the proportions of people
who have bloodtype AB, “hypertension,” or a congenital malformation, respec-
tively, and the proportion of patients with “hypertension” who have manifested
complications of it. As a proportion, prevalence rate is a dimensionless quality,
a “pure number.”

In the context of a prevalent belief to the contrary, it may be helpful to note
that a prevalence rate is not inherently momentary, any more than velocity is in
physics. Of course, the prevalences of many conditions or traits are functions
of time (age or other), as are incidence and velocity. When prevalence is a
function of time, one may still address the average prevalence (expressly) or
even ignore this dependence (along with many others, known and unknown).

[...] More to the point, one need, and should, not insist on a latter day math-
ematician’s definition of “rate.” The original Latin word takes direct manifes-
tation in today’s “unemployment rate,” “tax rate,” and so on.

A.1.2. INCIDENCE RATES

Incidence is not as singularly a population phenomenon as prevalence, because
it refers to changes within individuals (prevalence has to do with differences
among them). Thus, an incidence rate could, in principle at least, character-
ize the intraindividual frequency of some recurrent event (seizure, arrhythmia,
infection, intoxication, etc.). It is, however, characteristic of the epidemio-
logic outlook to make a sharp distinction between individual and population
characterizations (cf. Examples 1. 1 1. 4), and in this spirit the recurrence
pattern within individuals is viewed as an aspect of the condition itself, a basis
for quantification of severity perhaps, and the incidence concept is confined to
events that occur among individuals.

Because the concept of incidence is divorced from that of recurrence, it generally
refers to first events only, but there is subtlety to this. The first event may
be first only in the sense of first new event or first recurrence (of heart attack,
for example). For individuals with one previous event, the first new event

(first recurrence) is obviously the second event overall, and the occurrence of a
possible third event would be ignored in the incidence rate. Similarly, for those
who have already had two events, one considers the incidence of the third event,
ignoring any potential subsequent recurrences. The point is that no more than
one event (new) is properly tallied for any given individual toward an incidence
measure for a population.

Although individuals who have had an event are candidates for a subsequent
event, those who have had a first (kth) event are no longer candidates for a
first (kth) event (ever). To say in the latter case that the incidence is zero is
not to express knowledge about reality; it is, instead, a statement that involves
an absurd mental construct. To avoid such problems, incidence is defined only
for populations of candidates for the event individuals who could experience
the event in principle (as a matter of logic). Thus

1. Incidence of cervical cancer for those who have had this disease but do not
have it any more is defined.

2. Incidence of cervical cancer for men and for women without a cervix is
defined. (Indeed, even its magnitude is known a priori, not by mere logic
but through substantive insight into the prerequisites for its occurrence.)

3. Incidence of cervical cancer for those who have this disease is not defined
(as only noncases are logically candidates for it).

4. Incidence of cervical cancer is not defined for a mixture of cases and non-
cases (because it is undefined for the cases).

5. The incidence of death among the dead is not defined. (Only the living are
logically candidates for death, by the very nature of the concept of death,
that is, death is construed to occur among the living only.)

It should be noted that for incidence to be defined, that is, for a population
to be one of candidates, the population need not be “at risk” in the sense of
having a nonzero incidence (just as velocity need not be nonzero for it to be
defined). Thus it is consonant with proper conceptualization of incidence to say
that the incidence of cervical cancer in men is zero. For a candidate population
to manifest incidence (events) it must move over time. In this regard, there
is a need to distinguish between two basic types of population experience over
time:

1. Cohort experience (Section 3.2. 1. 1), in which an enumerable set of
individuals, all candidates initially (at T = to), moves over the risk period
(Section 3.3) at issue. Dynamic population experience (Section 3.2.1.2), in
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which a population of a given size but with turnover of membership moves
over calendar time, with all members being candidates throughout (so that
the event at issue is among the mechanisms of removal of individuals from
the candidate population).

These two types of population experience may be viewed in terms of different
types of incidence rate.

The availability of a cohort experience may suggest its direct characterization
in terms of cohort, or cumulative, incidence rate. This type of incidence rate is
a proportion, the proportion of the population of candidates, defined as of some
zero time (T = t0), who experience the event during the risk period at issue. It
is an attractive direct measure of observed occurrence predominantly, though
not exclusively, in situations in which each member of the cohort is followed up
to the event at issue or to the end of the risk period, without attrition of the
cohort due to loss to follow up or extraneous mortality. This type of incidence
rate is often of theoretical and practical interest as well.

The definition of the risk period to which a cohort (cumulative) incidence rate
(an incidence proportion) refers is either substantive (and variable) or arbitrary
(and fixed). Examples of the former type of incidence rate in epidemiology
include the following:

1. “Hospital mortality” in myocardial infarction (proportion of patients en-
tering a hospital who die before discharge).

2. “Fetal death rate” (proportion of youngest fetuses dying any time in the
prenatal period).

3. “Life time incidence” of breast cancer (proportion of young people who
will ever develop breast cancer).

4. “Incidence” of postpartum depression (proportion of deliveries followed by
maternal depression attributable to the delivery).

5. “Incidence” of venereal disease in subsequent contacts of active cases, or
“secondary attack rate” (proportion of contacts who develop the disease
from the contact).

The cohort type incidence rate with an arbitrary, fixed risk period is exemplified
by the following:

1. “Neonatal death rate” (proportion of live born babies dying within 28
days).

2. “Five year mortality” among survivors of first myocardial infarction (pro-
portion of cases of first, nonfatal infarction dying within 5 years).

Cohort incidence rates of this latter type translate immediately to fractiles of
the precurrence period (waiting time) to the event. For example, if 35- and
75-year incidence rates of death for a birth cohort are 5 and 50%, respectively,
these ages represent the 5th and 50th centiles of the waiting time (at birth) to
death, that is, of the duration of death’s precurrence period (life).

Whereas the amount of experience in an empirical cohort incidence rate (for
a given span of time) is characterized in terms of the size (S) of the cohort,
dynamic population experience is measured in terms of time (T) or more specifi-
cally candidate time, which is the integral of the size of the (dynamic) candidate
population over the observation period.

For an experience of this latter type, with a certain number c of events oc-
curring in it (cases “emitted” from it), the incidence rate is, naturally, that
number divided by the candidate time, c/T. This rate is not a proportion, as
the numerator is not a subset of the denominator. Rather, it is of the form
of denisty measures in general. The dimensionality of this particular measure
– incidence density – is inverse time. For example, if 15 cases arose from an
experience of 5000 candidate years, the incidence density was 3/(103yr).

There is a direct relation between incidence density (ID) and cohort (cumula-
tive) incidence (CI) of the second type. Specifically, incidence density deter-
mines for a cohort (defined at T = t0) the proportion which in the absence of
attrition experiences the event before some common, quantitatively (nonsub-
stantively) defined subsequent point in the time (T = t1). With IDt the ID
at T = t, the CI for the interval t0 to t1 is (Chiang, 1968), Miettinen 1976a)

CIt0,t1 = 1− exp
[
−
∫ t1

t0

(IDt)dt
]
.

If the incidence density is known for categories of time (e.g., age categories)
in the interval at issue, the cohort (cumulative) incidence may be derived as
follows:

CIt0,t1 = 1− exp
[
−
∑

i

(IDi)di

]
,

where the summation is over the categories in the interval (t0 to t1), and di is
the duration of the ith interval.

It should be noted that this relation does not obtain between ID and CI
referring to a substantively defined period of time. The latter depends not
only on IDt but also on the distribution of the risk period among individuals,
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that is, on the density of risk-time terminations for reasons unrelated to the
event at issue.

A.1.3. RISK

The concept of risk is related to that of incidence proportion. It is the proba-
bility of a particular event, especially an untoward one, such as the inception of
a particular illness. Thus, the risk of an (adverse) event is akin to its incidence
in the sense that it has to do with its inception. As a probability, however, risk
is inherently a theoretical, nonempirical entity, whereas incidence can be either
theoretical or empirical. Moreover, it refers to individuals (of a given kind),
whereas incidence characterizes populations. Thus, in a given kind of surgical
situation, an empirical incidence of operative death among a series of patients
serves as an estimate of the theoretical incidence among patients of that kind,
operated on in that manner. By the same token, it serves as an estimate of
the risk for a patient of that kind, not otherwise specified, to die after being
operated on in that manner. The individual risk of operative death, a theo-
retical value, estimated from all the relevant experience, is not revealed by the
actual, empirical outcome of the operation. Thus, if the risk was 5% before the
operation, it remains 5% even in light of and regardless of the outcome.

Analogously with incidence, risk is not a singular parameter of nature. Its
value depends on the specifications of the situation, on determinants of risk.
In a further analogy, such a conditional risk remains quantitatively nebulous,
because it depends on yet other, unspecified determinants.
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