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1 Types of Data

Table 1: Types of Data

Type summarized with. . .

Qualitative
Non-numerical
(Nominal/Categorial)

Binary Proportions
(“Quantal” or “All-or-None”) (and derivatives thereof)

Multicategory
(Ordered or Unordered)

vs.

Quantitative
Numerical
(“Measured”) Measures of

Location
Discrete and

Spread
Continuous

References

Moore and McCabe ( “M and M” ) – Chapter 1 page 2

Colton T, Statistics in Medicine, Chapter 2

Armitage P and Berry G : Chapter 1.4

Norman G and Streiner D: PDQ Stats Chapters 1 and 2.

They also distinguish between ‘dependent’ and ‘independent’ variables. Better
terms would be ‘response/outcome’ and ‘stimulus’ variables.

Table 2: Displaying Numerical Data

Type of display What it shows

Frequency Distr’n. Tabular Frequency Distribution of Y

Histogram Graphical Frequency Distribution of Y

Dot Diagram Individual values of Y

Stem & Leaf display Frequency Distribution with detail

Box Plot Q2, Q2, Q3: distribution split into quarters

Probability Density Limiting case of Histogram as ∆y → 0

Cumulative Distribution Graph of Proportion of values ≤ y versus y

2 Displaying Numerical Data

See Also

1. M and M, Ch. 1.1 and 1.2: “Displaying/Describing Distributions”.

2. Colton, Ch. 2, p. 21. “Histograms, Frequency Polygons and other
graphs”.

3. Freedman et al. Chapter 3: “The Histogram”.

4. Moses LE. “Graphical Methods in Statistical Analysis” pp 309-353 in
Annual Review of Public Health, Breslow L, Fielding JE, Lave LB (eds),
Volume 8, 1987. This is a very readable and helpful article.

5. Mosteller, F. “Writing about numbers”. Chapter 15 pp 305-321 in Med-
ical Uses of Statistics, Bailar, JC and Mosteller, F (Eds) NEJM Books,
Waltham, Mass 1986.

6. William S. Cleveland. The Elements of Graphing Data. [book]

7. Tufte ER. “The Visual Display of Quantitative Information”. Graph-
ics Press, Cheshire Conn, 1983. A real treat, a classic with lots
of historical examples. see “probably the best statistical graphic
ever drawn, the map by Charles Joseph Minard which portrays the
losses suffered by Napoleon’s army in the Russian campaign of 1812.
http://www.edwardtufte.com/tufte/posters.

8. Links to R (and other) graphics:- under ‘Resources.’1
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3 Data Displays (1 variable)

Interval      Freq   (%)
xx.x – yy.y    xx    xx.x
xx.x – yy.y    xx    xx.x
  ..    ..     ..     ..
  ..    ..     ..     ..

xx.x – yy.y    xx    xx.x
xx.x – yy.y    xx    xx.x

• Histogram
freq

value categories

• Dot Diagram

values

individual 
observation

• Stem and
  Leaf Plot

4|69
5|36678
6|0003344567
7|01123478
8|0358
9|00

• Box Plot

values

25% 50% 75%

• Probability Density           
& Cumulative Distrn.•

values

proportion 
per unit

• Frequency Table

1.0

0

0.5

†

Notes:

Dot Diagram: very visual: not easy if large number obsns.

Freq Table and Histogram: Watch boundaries; AREA proportional to fre-
quency so if unequal intervals, be careful;

Cumulative Distribution: useful for reading off percentiles.

Box Plot: See specific software packages for their conventions concerning ‘out-
liers’.

In R: hist/truehist boxplot plot

4 Statistical Shorthand

4.1 Variables and Subscripts

Variable Y with n sample values denoted y1, y2, . . . , yn in order of entry; The
“1”, “2”, . . . are called subscripts or indices. We use the letter i (or j) and
the range “1” to “n” to denote the n different y values, and refer to the value
of the ith y as “yi”.

4.2 Order Statistics

If the n y’s are sorted in ascending numerical order, then, y[1] is shorthand

for “the smallest y” (The 1st “order statistic”), y[i] is known as the ith “order
statistic”, and so on, up to the largest, y[n].

4.3 Summation
∑

and Product
∏

The term
∑
y (spoken: “sigma y”’ or “sum of y’s”) is used as a shorthand

for the sum

y1 + y2 + · · ·+ yn.

The Greek capital letter
∏

(Pi) is used as a shorthand for “product of ”. Thus,∏
y means

y1 × y2 × · · · × yn.

4.4 Powers, Logarithms and Anti-logarithms

The term y1/2 is shorthand for the square root of y or
√
y. Likewise, y1/n

denotes the nth root of y or n
√
y.

ln y denotes the “natural log of y” or “log of y to the base e” i.e. loge y, where
e is 2.718. . . .

Note: y must be positive; ln y ranges from −∞ to +∞.

ln 0.1 = −2.30; ln 1 = 0; ln 2 = 0.69; ln 10 = 2.30...

exp(y) is shorthand for ey or “exponential of y” or the natural anti-log of
y. y ranges from −∞ to +∞ and so exp(y) yields a positive value. eg.
exp(−1) = 0.36...; exp(0) = 1; exp(0.5) = 1.64...; exp(1) = 2.71...
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5 Summarizing Numerical Data

See Table 3.

Notes:

*Armitage and Berry, Chapter 1.5/1.6, page 30 shows calculation of median
from grouped data.

The term “skewed”: Texts don’t agree on what is “skewed to right”’. To avoid
confusion, use the terms “long left tail” and “long right tail”. Use the latter
for the following histogram distribution.

Frequency

Values

LONG RIGHT TAIL

6 Arithmetic/Geometric/Harmonic Mean (for
positive numbers)

Example: y1 = 1 y2 = 2 y3 = 3 y4 = 4 y5 = 5

ArithmeticMean = (1 + 2 + 4 + 8 + 16)/5 = 31/5 = 6.2.

GeometricMean = (1× 2× 4× 8× 16)1/5 = 4.

or, since it is difficult to keep a large product in the calculator,

exp [(ln 1 + ln 2 + ln 4 + ln 8 + ln 16)/5]

or, if all data are in powers of 2, as here,

HERE....

2{
log 2[1] + log 2[2] + log 2[4] + log 2[8] + log 2[16]

5 }

Table 3: Summarizing Numerical Data

Location

(Central Tendency)

Individual Grouped

Arithmetic Mean x̄ (Σx)
n

∑
f×xmid

Σf

Geometric Mean (
∏
x)

1
n

∑
f×xmid

Σf

or if y = ln(x) exp[ (
∑
y)
n ] exp[ (

∑
f×ymid)∑

f ]

Median (50th %− ile) (n+1)
2thx

see A and B p30∗

Mode (most popular) the x value with largest f

Spread

(Dispersion/Scatter)

Range lowest to highest

IQR 25%− ile to 75%− ile (Inter-Quartile Range)

Deviations from mean: d = x− x̄

Mean |d|
∑
|d|

(n−1)

∑
f |xmid−x̄

(
∑
f−1)

Mean d2
∑

(x−x̄)2

(n−1)

∑
f(xmid−x̄)2

(
∑
f−1)

Root Mean d2
√
Mean d2

√
Mean d2

or sx = SD(x)

Relative Spread CV = 100× ( SD
Mean )%

“Coefficient of Variation”

3
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Harmonic Mean = 1
( 1
1
+ 1

2
+ 1

4
+ 1

8
+ 1

16
)

5

= 5
( 1
1 + 1

2 + 1
4 + 1

8 + 1
16 )

= 5
31
16

=2.6

Notes:

Harmonic mean = reciprocal of mean of reciprocals

Geometric mean = inverse log of mean of logs

Harmonic mean ≤ Geometric mean ≤ Arithmetic mean

The harmonic mean will be useful later when dealing with the variability
of the odds ratio from a 2x2 table in relation to cell sizes, and also for the
variability of a weighed average.

7 “‘Standard” Deviation (écart-type; typical deviation)

SS x x− x̄ x̄ x− x̄ (x− x̄)2 x̄ (x− x̄)2

01 4.2 -1.75 5.95 3.0765 5.95
02 3.0 -2.95 5.95 8.7261 5.95
03 7.6 5.95 1.65 5.95 2.7093
04 3.8 -2.15 5.95 4.6397 5.95
05 6.4 5.95 0.45 5.95 0.1989
06 7.7 5.95 1.75 5.95 3.0485
07 9.4 5.95 3.45 5.95 11.8749
08 6.7 5.95 0.75 5.95 0.5565
09 4.2 -1.75 5.95 3.0765 5.95
10 7.7 5.95 1.75 5.95 3.0485
11 7.1 5.95 1.15 5.95 1.3133
12 5.9 -0.05 5.95 0.0029 5.95
13 3.7 -2.25 5.95 5.0805 5.95∑

77.4 -10.92 + 10.92 24.6023 + 22.7500
=0 = 47.3523

x̄ = 77.4
13 = 15 Variance:

s2 = 47.3523
12 = 3.9460

ave× (x− x̄) = 0 Std Deviation:

ave× (x− x̄) = |−10.92−10.92|
12 =

√
V ariance

= 21.84
12 =

√
3.946

= 1.92 = 1.99

Note: x = Half-life of Caffeine in n=13 healthy non-smokers

Standard Deviation is Close to Average Absolute Deviation

i.e. deviations without regard to sign .. 1.75, 2.95, ... 0.05, 2.25. Average of
these absolute deviations is very close to

√
of ave of squared deviations.

8 Why divide by n− 1 rather than n to obtain
SD?

see M and M, middle of page 53

8.1 The“wave your hands” explanation:

Because with n independent observations, we have n − 1 independent evalu-
ations of variation. We have to use one ‘degree of freedom’ to calculate the
sample mean, from which to measure the variation. The n deviations from
the sample mean are linked by 1 constraint, namely that they add to zero.
If we had only n = 1 observation, we would have no opportunity to assess
variation, if n = 2, then 1 piece of information, etc.

8.2 A more theoretical explanation:

The above explanation is a bit loose. It doesn’t explain why – for example
– we just don’t drop the redundant deviation and work with the average of
the squares of the n − 1 remaining ones. A fuller understanding comes from
recalling that we define σ2 as the average of all the possible (x− µ)2’s in our
universe of x’s. We could try to calculate (x − µ)2 for each of the x’s we
observe in our sample – IF we KNEW µ! Because we don’t, we are forced to
measure the variation of each x, not from µ, but from the “next best thing”;
x̄. If our x̄ happens to be smaller than µ, the individual x’s from which this

4
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x̄ is calculated are themselves also likely on the (same) lower side of µ. Thus∑
(x− x̄)2 tends to be too small.

This can be see by expanding the numerator of the formula for the variance,
and using some algebra to rearrange it:

∑
(x− x̄)2 =

∑
(x− µ + µ − x̄)2 =

∑
(x− µ)2 − n(x̄ − µ )2

Thus,

∑
(x − x̄)2

n
=

∑
(x − µ)2

n
− (x̄ − µ)2

Thus, over all possible samples, i.e. over all possible estimates, the average [in
statistical terms, the EXPECTATION] of the first term on the right is indeed

σ2– and the average of the second term is σ2

n , so that the average value of the
calculable estimate on the left hand side is

σ2 − σ2

n
=
n− 1

n
σ2

i.e., on average, if we used a divisor of n, we would underestimate σ2 by a
factor of 1

n .

Dividing by n−1 corrects this so that the average of all the possible
s2’s is σ2 i.e. s2 is an unbiased estimator of σ2

An example with n = 2 is given next – in a separate exercise, try estimating
the variance, σ2, “both ways” in a spreadsheet with samples of n = 2, 3, ...
observations from a distribution with a known variance σ2.

8.2.1 Empirical Demonstration of Theoretical reason: Because do-
ing so makes s2 an unbiased estimator

Example:

• IF X takes on values 1, 3, 5 with probabilities 1
3 , 1

3 & 1
3 , then µ = 3

X : 1 3 5 µ = average(X) = 3

Prob 1
3

1
3

1
3

X − µ -2 0 2

(X − µ)2 4 0 4 V ar(X) = ave[(X − µ)2] = 8
3

• Samples [x1, x2] of size n = 2 ...

9 equiprobable samples

x2

1 3 5
1 {1, 1} {1, 3} {1, 5}

x1 3 {3, 1} {3, 3} {3, 5}
5 {5, 1} {5, 3} {5, 5}

i.e., 9 equiprobable sample means:

x2

1 3 5
1 1 2 3

x1 3 2 3 4
5 3 4 5

e.g. xbar = (1 + 5)
2 = 3

i.e., 9 equiprobable variance estimates

(estimate in [ ] uses divisor of n = 2; estimate outside [ ] uses (n − 1) =
1)

x2

1 3 5 Var estimates with (n − 1) = 1

1 0[0] 2[1] 4[8] [(1 − 3)2]
1 = 8

x1 3 2[1] 0[0] 2[1]

5 4[8] 2[1] 0[0] [(1 − 3)2]
2 = 8

(Sampling) distribution of variance estimates:

5
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frequency variance estimate variance estimate
(out of 9) using divisor of n using divisor of (n − 1)

3 0 0
4 1 2
2 4 8

Average 4
3

8
3

In Pictures...

0  1  2  3  4  5  6  7  8

freq

0  1  2  3  4  5  6  7  8

variance estimate 
using divisor of n

variance 
estimate 
using n-1

true variance = 8/3

freq

8.3 Note of the usage of “±” SD

Dear Editor: ... First, all of the current calcium antagonists have peak and
trough effects. It is therefore vital that in studies where potentially additive
combinations are being looked at, the timing of the blood pressure measure-
ments following the last dose is carefully controlled and stated in the article
The efficacy of the calcium antagonists either alone or in combination will
depend on when the blood pressure was measured In the article the authors

state that the blood pressure was measured 12±2 hours after a dose. As-
suming that this is an SD, blood pressure was measured in 99% of patients
between 6 and 18 hours after taking a dose Furthermore... (excerpt from a
letter to Editor) In Reply ... The measurement of blood pressure at 12±2
hours after receiving a dose was not an SD but a commonly used protocol
requirement that BP measurements be made within 12±2 hours after dosing
and in fact 100% of the patients had these measurements at 10 to 14 hours
after taking a dose, just before the next dose

Commentary by JH: Although the above objection may be pedantic, it
does warn the user (and the reader) to be careful as to the presentation of
the standard deviation in reports. It is common to see Mean±SD in the
description of a set of observations. The use of the ± in such situations
is incorrect and misleading.

First, the SD is by definition positive (or at least, as the mathematicians say,
“non-negative”). Second, using it this way may tend to give the impression
that the data have a symmetric, or possibly even a Gaussian, distribution, and
that multiples of the SD can be used to calculate the full pattern of the data.
Most data are not symmetric, let alone Gaussian, in their distribution. The
use of “±” has a lot more justification when we are dealing with Confidence
Intervals for population parameters. The reason for this is that CI’s are
calculated from statistics (aggregates of the observations) the variation of
which are more likely, by virtue of the Central Limit Theorem, to be Gaussian
in their variation. Even then, one needs to be careful as to whether the margin
or error is 1 or 2 or some other multiple. So better to write the mean and SD
as mean(SD).

8.4 The Average and the Standard Deviation

It is difficult to understand why statisticians commonly limit their enquiries
to Averages, and do not revel in more comprehensive views. Their souls seem
as dull as to the charm of variety as that of the native of one of our flat English
counties, whose retrospect of Switzerland was that “IF ITS MOUNTAINS
COULD BE THROWN INTO ITS LAKES, TWO NUISANCES WOULD
BE GOT RID OF AT ONCE”

Sir Francis Galton 1833-1911 quoted in Freedman’s STATISTICS text

6
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9 Re-Locating and Re-Scaling Numerical Data

see M&M page 49-51 “Changing Units: Linear Transformation”

Variable X with mean µX and Std. Deviation σX
Change X to Y .
What will be the mean µY and the Std. Deviation σY of Y ?

Change What it does to
µY σY σ2

Y

Add a constant “a”
i.e. Y = X + a µX + a σX σ2

X

Multiply by constant
“b” bµX bσX b2σ2

X

i.e. Y = bX
Add a constant “a” then
Multiply by constant
“b” b(µX + a) bσX b2σ2

X

i.e. Y = bX + a
Multiply by constant “b”
then Add a constant “a” bµX + a bσX b2σ2

X

i.e. Y = bX + a

APPLICATION −−− standardized variable
Subtract a constant µ i.e. add a = −µX ... then
Divide by a constant σX i.e. multiply by b = 1

sigmaX

i.e. Y = b(X + a) b(µX + a) bσX
( 1
σX

)(µX +−µX) ( 1
σX

)σX
0 1 1

Application — C◦ = 5
9 (F ◦ − 32); F ◦ = 32◦ + 9

5C
◦

Application — computational: Use of “working units”
... cf A& B p27

10 The Gaussian(“Normal”) Distribution

What it is

• For Continuous-type data

(or data discrete enough to be “continuous”)

• (technically) Infinite range −∞ to ∞

• Symmetric “Bell-shaped” distribution

• Described fully by two parameters µ and σ (tabulated)
Shorthand X is N(µ , σ)

How it arises

• “Naturally”

Biological measurements...
e.g. height

• “Manmade”

Sampling distribution

– Binomial and Poisson as µ = nπ

– Sums (or Means) of Non-Gaussian random variables
(Central Limit Theorem)

la loi des erreurs

� Tout le monde y [la loi des erreurs] croit cependant, me disait un jour M.
Lippmann, car les expérimentateurs s’imaginent que c’est un théorème de
mathématiques, et les mathématiciens que c’est un fait expérimental �

“ Everyone believes in it [the law of errors] however, said Monsieur Lippmann
to me one day, for the experimenters fancy that it is a theorem in mathematics
and the mathematicians that it is an experimental fact. ”
H. Poincaré, Calcul des Probabilités, 2nd Ed. (Paris: Gauthier–Villars, 1912),
p. 171. quoted in text “Distribution–Free Statistical Tests” by James V
Bradley, Prentice-Hall, 1968

10.1 Using the Gaussian Tables

What % of observations would be

(What is prob that single observation would be)

7
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X → %

>?

Take advantage of the fact that no matter what the values of µ and σ are, the
% of the Gaussian distribution falling between the two values

µ + m1σ

and
µ + m2σ

where m1 and m2 are any multiples,

will remain the same. Z is a generic or context-free measure of deviation.

Using Excel instead of Table A

The Function NORMDIST(x, µ, σ, TRUE) gives the

10.2 How to use one Gaussian distribution table for all
N(µ,σ) calculations, no matter what the value of µ
and σ.

Standardization

Illustration via e.g. of an IQ score of 130 in relation to a N(100,13) distribution
of scores.

Q1: What percent or scores are above 130?

The two steps are:

1. change of location from µ = 100 to µ′ = 0

2. change of scale from σ = 13 to σ′ = 1

Combined, they become

z =
x − µ

σ
=

130 − 100

13
= 2.31 (1)

The place o 130 on the (100,130) distrn. is the same as the place of z = 2.31
on the “Standardized” N(0, 1) or “N” distribution.

Percent above X = 130 =Percent above Z = 2.31 = 1.1%

[obtained by entering Table A at z = 2.3, finding lower-tail area of 0.9896,
and subtracting it from 1 to get upper-tail area of 0.0104, or 1.04%]

130 is the 98.96th percentile – 98.96% are below 130.

Q2: Suppose we are asked the reverse question: What is the 75th %-ile of
the IQ distribution?

In this case, we reverse the sequence of calculations:

Start at a probability of 0.75 in the body of table: it corresponds to a z value
of +0.675. Since this z value refers to a N(0, 1), distribution, we need to
convert it to a score on the IQ scale. So, reversing our steps

0.675 SD′s = 0.675 × 13 = 8.8 IQ points

8.8 UQ points above µ(= 100) is 100 + 8.8 = 108.8

In this algebraic notation, what we have done is calculate

1. z × SD

2. X = µ + z × SD

which is the reverse of Equation 1 above, i.e. +0.675 = 108.8 − 100
13

10.3 Using Excel functions instead of Table A

The function NORMDIST(x, µ, σ, TRUE) gives the cumulative or lower-
tail area corresponding to a value of x on a Normal distribution with mean µ
and standard deviation σ.

The function NORMSDIST(z) gives the cumulative or lower-tail area cor-
responding to a value of z on a (“standard”) Normal distribution with mean
0 and standard deviation 1.

[Careful: NORMDIST(x, µ, σ, FALSE)gives height of the density curve]

The function NORMMINV(Prob,µ, σ) gives the reverse (INVerse) i.e. that
value of X below which lites 100 × Prob% of the Normal distribution with
mean µ and standard deviation σ.

The function NORMSINV(Prob) gives the value of Z below which lies 100 ×
Prob% of the (“Standard”) Normal distribution with mean 0 and standard

deviation 1.
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