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 Estimation of the probability of an event as a function
 of several independent variables

 BY STROTHER H. WALKERt AND DAVID B. DUNCAN

 Johns Hopkins University

 SUMMARY

 A method for estimating the probability of occurrence of an event from dichotomous or

 polychotomous data is developed, using a recursive approach. The method in the dicho-

 tomous case is applied to the data of a 10-year prospective study of coronary disease.

 Other areas of application are briefly indicated.

 1. INTRODUCTION

 The purpose of this paper is to develop a method for estimating from dichotomous

 (quantal) or polychotomous data, the probability of occurrence of an event as a function

 of a relatively large number of independent variables. A key feature of the method is a

 recursive approach based on Kalman's work (Kalman, 1960 and unpublished report)

 in linear dynamic filtering and prediction, derivable also from the work of Swerling (1959),

 which provides an example of many other possible uses of recursive techniques in non-
 linear estimation and in related areas.

 The problem that motivated the investigation is a central one in the epidemiology of
 coronary heart disease, and it will be used to fix ideas and illustrate the method. Some
 indication of the range of applications will be given in the conclusion.

 2. THE EPIDEMIOLOGICAL PROBLEM: PREVIOUS METHODS OF ANALYSIS

 Clinical and epidemiological studies had by 1950 identified a long list of factors as pos-
 sibly, or probably, associated with the occurrence of coronary heart disease. To gather

 data on such associations, four large, long-term prospective studies were established in

 the United States between 1948 and 1957. These may be identified briefly, in the order of

 initiation, as the Framingham (Dawber, Meadors & Moore, 1951), Los Angeles (Chapman

 et al. 1957), Albany (Hilleboe, James & Doyle, 1954) and Chicago (Paul et al. 1963) studies.

 These studies have now followed samples of from 1800 men, in round numbers, to 5000

 men and women, for up to 10 years. Examinations are given annually or biennially to the

 study participants and their status with respect to coronary disease is recorded. The re-

 ferences cited describe the methods and objectives of these studies in detail and review
 the previous literature on factors suspected of association with occurrence of the disease.

 The method of analysis generally used in these studies has been simply tabulation and

 cross-tabulation of incidence on one, two, or rarely, three of the factors under study, by

 sex and by age interval. Results obtained thereby have been extensively reported, e.g.

 t Now at the University of Colorado Medical Center, Denver, Colorado.
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 168 STROTHER H. WALKER AND DAVID B. DUNCAN

 for Framingham, by Kannel et al. (1961, 1962, 1964), Kannel (1964) and Kagan et al.
 (1963); for Los Angeles, by Chapman & Massey (1964); for Albany, by Doyle et al. (1959);
 and for Chicago, by Paul et al. (1963).

 The limitations of this approach in a problem involving so many variables have been
 recognized. Cornfield (1962) pointed them out, concluding that 'The use of a mathematical
 model which summarizes the observations in a small number of disposable parameters
 seems to offer the only present hope of obtaining quantitative answers to questions of
 interest'.

 Cornfield and his co-workers (Cornfield, Gordon & Smith, 1961) had shown that under
 certain assumptions the probability of occurrence of the disease can be represented as ap
 logistic function whose argument is a linear function of the independent variables, provided
 that both coronary and non-coronary populations are characterized by multivariate
 normal frequency functions in the independent variables. Estimates of the linear coeffi-
 cients are then obtained as simple functions of the estimated parameters of the underlying
 normal distributions. Cornfield (1962) carried out such a fit for log1o cholesterol and log1o,
 (systolic blood pressure - 75) in the data of the Framingham study.

 Previously Gertler and associates (Gertler et al. 1959), in collaboration with the Mathe-
 matics Center at New York University, had applied discriminant analysis to essentially
 the same problem, in a relatively small sample of 61 coronary cases and 135 normal controls.
 This is equivalent to fitting a hyperplane to the zero-one observations corresponding ta
 occurrence or non-occurrence of the disease.

 3. THE DICHOTOMOUS MODEL

 Our own approach has grown out of ideas developed in a series of unpublished reports.
 for the U.S. Navy; see Duncan & Rhodes (1952). It also follows naturally from closely
 similar independent ideas developed by Cox (1958, 1966).

 We assume a sample of N individuals free of coronary heart disease, measured or cate-

 gorized with respect to each of s independent variables, followed for a period of years
 thereafter, and identified as having developed the disease by the end of that period, or not.
 In the dichotomous model, so-called because it assumes two possible states of the individual
 subject, the observed values of the dependent variable pn(n = 1, ..., N) will be one or zero,,
 corresponding to occurrence or non-occurrence of the disease in the nth individual within
 the given period. We regard the observations as realizations of the individual probability
 of disease within the given time period.

 Designate the vector of independent variables for the nth individual in the sample as.
 xi,, where xi = (xn0, xn1, *.., xns)

 The 'dummy' regressor xn0 1 (n = 1, ..., N) is included to provide for estimation of an
 intercept. We will also define the N x (s + 1) matrix of independent variables for the sample

 as _10 X1 xis1

 X= x20 x21 X2s

 XNO XN1 ... XANS

 It is clear that a linear model for the expected values of the observations, Pn = E(pn),.
 would not be reasonable. If it be assumed that the probability P (suppressing the subscript

This content downloaded from 142.157.165.21 on Thu, 31 Aug 2017 19:26:03 UTC
All use subject to http://about.jstor.org/terms



 Estimation of the probability of an event 169

 n) is some function of the independent variables and of a vector 0 of the unknown parameters,

 or P = g(x1, ..., x *; 0,, ..., 07,), then the biological facts suggest that P will be near zero over a
 certain part of the domain of g, near one over another part, and will increase from near
 zero to near one over an intermediate part of the domain.

 Exact determination of the function g does not seem possible, and in view of the known

 complexity of the underlying relations, such afunctionisnot likelyto be useful for estimation.

 In the light of present medical knowledge a reasonable assumption is that P follows a

 symmetric sigmoid curve; according to the model in an unpublished report by Duncan

 or Cox (1958) we take the argument as the linear function x'p of the independent variables
 and of a vector a of s + 1 unknown coefficients; we then seek an estimate of f3 which will

 provide a satisfactory fit of the observations p to such a symmetric sigmoid curve, which is

 itself adequately represented by the logistic function

 P = (1 + e-x'P)-l. (3.1)

 Restriction to a symmetric curve is not essential. A skew curve, involving the estimation
 of an additional parameter, could be fitted by the methods that follow.

 By analogy with probit analysis, an alternative choice for P would be the normal function

 1 ox'P
 Je-ZV2dz;

 but the logistic is more tractable mathematically and better suited to computer operations.
 Even in the case of bioassay, where the model assumptions (e.g. normal distribution of
 tolerances in the population) are more restrictive, Finney (1964, p. 460) finds that'... the

 logistic distribution is scarcely distinguishable from the normal between response rates

 of 0*01 and 0 99, ... the choice [may be] made primarily on the score of convenience'.

 4. ESTIMATION OF THE PARAMETERS IN THE DICHOTOMOUS CASE

 In general, we will approach estimating through a least-squares argument using esti-
 mated weights. Specifically, the model assumes that the nth individual in the sample

 acquires the disease within the follow-up period of the study with probability P, or fails

 to do so with probability Qn = 1- Pn. Writing

 Pn- =f(Xn ,P) = {1?exp( x'n)}-

 in conformity with (3X1), we can start from the representation

 Pn = f (Xn P) + 6n)

 E('6n)=Ox V('6n) =PnQn (n =1, ............. ,N). .(4.1)

 Expanding in a Taylor series around some initial guessed value of f3, 3, and writing f'(xn, p)
 for af(xn, P)/l, at "-, , we obtain

 Pn-f(xnr )+ f'(xn, 3) p 6 + , n2

 or Yn- f (Xn3)+n (4-2)

 where the 'working observation'

 Yn= Pn -f(Xn? P) + f'(xn, 53) f3 (4.3)
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 170 STROTHER H. WALKER AND DAVID B. DUNCAN

 Noting that the vector of derivatives is

 f (Xn = where Pn= {+exp(-x ,)}-1, Qn1=

 defining x* = Pn Qnxn and writing X* for the matrix having x*' as its nth row, the system

 (4.2) can be rewritten in the usual linear form as

 y * , +c, (4 4)
 where ye and e are the N x 1 vectors of the ye and en.

 Equation (4.4) is in a form suited to the application of weighted iterative non-linear

 least-squares procedures, using a diagonal weight matrix W determined as the inverse of

 the variance matrix of the vector c. The weights, as well as the derivatives, must be esti-

 mated from the data.

 The normal equations are

 X*'WX*P = X*'Wy*. (4.5)

 But, from a unique property of the logistic function (Garwood, 1941) X* = W-1X so that

 X*'WX* = X'W-1X and (4.5) may be rewritten as

 X'W-'Xp = X'W-1y, (4.6)

 where y is the vector of rescaled working observations,

 y = Wy*. (4.7)

 The normal equations may thus be regarded as based on the working observations

 Yn with weights Wn = 1/(PnQn) from (4.5), or as based on the rescaled observations yn
 with variances 1/(P nQn) and hence with weights Pn Qn (4 6). The equations (4 5) and (4 6),
 as is well known, are identical with those which would be obtained by the method of maxi-
 mum likelihood.

 Proceeding from (4.6), an estimate b of ,B is now available in the form

 b = (X'W-1X)- X'W-y. (4.8)

 Iterative solution of (4.8) by the usual method, essentially the Newton-Raphson method,
 would depend critically on the quality of initial estimates Pn. With several independent
 variables these estimates are more difficult to obtain than, for instance, in bioassay, where

 only simple regression is involved. Each observation will, in general, lie at a different point
 in s-dimensional space. Standard initial estimates are one's and zeros, based on single

 occurrences, and, as such, cannot be used to start the iterations.

 Useful solutions to this problem are ones proposed by Duncan & Rhodes (1952) and
 by Cox (1966). Initial estimates are obtained by fitting a discriminant function. Conver-
 gence in the initial iterations is accelerated by the use of centre-interval approximations
 to the sigmoid function being fitted.

 The recent recursive methods due to Swerling (1959) and Kalman (1960), provide an
 alternative and often more useful approach, permitting the estimates to be 'updated' at

 the addition of each new item (Pn, x') of data. We now develop this in ? 5.
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 Estimation of the probability of an event 171

 5. DERIVATION OF THE RECURSIVE ESTIMATION PROCEDURE

 Let bn be the estimate of , based on the first n observations. Then

 = V(b%) - (X' W X%) -1 - (XW1 Xn) -1, (5v1)
 where X*, Wn, Xn and later Yn are comprised of the first n observations.

 Letting wn = 1/(PnQn) (the form of the estimate Pn will be specified below at (5.6)),
 we have

 = (Vn-l +XWnx*') (5.2)

 = n-1-V1xn(xn'Vn_lxnw )n )Xn Vn-1

 where x* = PnQffxn and xn is the vector of values of the independent variables for the nth
 observation. The first step is obvious and the second, yielding a recursive expression for
 Vn in terms of Vn_, is proved by multiplication to obtain the identity matrix.

 A similar recursive expression for bn is given by

 =b *- y - ) 1 (5.3) bn = n-l +Vn-1 xn n n ( n-n bn-1) (

 where d= xn' Vn- X*+w-I

 This may be obtained as follows:

 bn= Vn(Xn'WnYn)

 = (V (Xtl Wfl Yn-i + xnwy Yn)
 =b V Xdl*b*-( n_-1 n1 n xnd- n bn-1 + Vn-1 Xn n- (n n-x , Vn-lXn*Wn) Yn*

 which is the result (5 3) since dnwn-Xn'Vn-1 xnWn = 1.
 The recursive equations (5.2) and (5.3) are simple to program for a computer, and can

 be made still more convenient by rewriting in terms of the original data. Recalling that
 X* = W-1X and noting that, on evaluation of the derivatives in terms of which it was de-
 fined at (4.3) (with b_1 used as the estimate of 13) ye = P-Pn + xe'bn-,we obtain:

 = - _V x c x VI (5.4) Vn = n-1- n-1 Xn Cn Xn vn-P

 where Cn = (Wn+Xn Vn-1Xn)_ 5

 and bn = bn1 +Vn_1XnCnwn(Pn-P) (5.5)

 The term Pn is the estimate of Pn based on bn-1 given by

 Pn = Pnn-1= {+exp(-x' b )}-1 (5.6)

 It is of interest to note that Vn, usually thought of as the inverse of an (s + 1) x (s + 1)
 matrix, is obtained in (5 4) by application of a simple correction to Vn-1
 The recursive method appears to offer advantages both in more rapid convergence and

 in easier starting. Experience to date has borne this out.

 In the usual methods the whole sample is used, with weights determined by initial esti-
 mates, to obtain the first iterative estimate; with the new weights thus determined the
 whole sample is again employed, and so on. Under recursion the estimate of ,3 and hence
 of the weights is changed with each observation, which allows convergence within the span
 of the usual iteration. The number of computations per iteration is larger for the recursive
 method but the increase is surprisingly small in view of the additional output available.
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 172 STROTHER H. WALKER AND DAVID B. DUNCAN

 The extra time required per iteration can vary from none at all up to 50 or 100 % depending
 on the data read-in technique and on the dimensions of the problem. In the examples to be
 presented convergence is essentially accomplished within the first iteration, a second being
 used only for minor adjustment and final confirmation.

 Thanks to rapid convergence within iterations, the need for good initial estimates is

 considerably relaxed. This fact, together with another Bayes-like feature of the more
 general Kalman methods, can be used to solve the starting problem. Any rough initial

 estimate bo can be ascribed a prior variance matrix VO, the two providing a starting point
 for the recursive process based on actual observations. Now letting b* and V* denote the

 recursive estimates based on bo, VO and the first k items of data, the contributions of bo
 and VO to b* and V* can be removed, for all practical purposes, by taking

 Vk= (yk 1y-1)(7)

 and bk = Vk(V 1b*-V-i1bo). (5.8)

 Equations (5.7) and (5.8) follow from the fact that b* is effectively the weighted combina-

 tion of bo and bk with weights Vo' and V- 1, where bk and its variance Vk are based on the
 data alone. Finally, the recursive process continues to completion through the remaining

 n - k items of data, starting with bk and Vk.
 On consideration it is evident that the successful performance of the recursions can be

 affected by the order of presentation of the individual records. This is not a serious problem.
 However, any special ordering of the records which would introduce obvious autocorrela-
 tion between successive records should be avoided.

 6. THE TRICHOTOMOUS MODEL

 In situations to which our model is adapted, it often happens that more than two states

 of the subjects are reported in the data. For example, in the Framingham study of coronary
 heart disease, the data permit classification of the subjects as having suffered myocardial
 infarction (MI), angina pectoris (AP), or as being free of coronary heart disease (CHD).
 It is desirable to use this additional information.

 One hypothesis treats MI and AP as distinct, although presumably correlated, disease
 entities. Another treats MI as a more, and AP as a less severe form of coronary heart disease.
 There is evidential support for each of these hypotheses. A model for the second will be
 developed in this section.

 The discussion of the polychotomous model for a vector independent variable by Duncan
 (unpublished report) is the basis of our treatment here. The polychotomous model in
 bioassay has been discussed by Aitchison & Silvey (1951), Ashford (1959), Gurland, Lee &
 Dahm (1960) and Cox (1966). Gurland et al. worked out the problem for the bioassay situa-
 tion with scalar independent variable, using the minimum logit chi-square method.

 We will define the observations for a given individual in the sample as follows:

 observed proportion MI = Pi = 0, MI not present

 = 1, MI present,

 observed proportion AP = P2 = 0, AP not present

 = 1, AP present,

 observed proportion CHD = p3 = 1 - Pl- P2'
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 E8timation of the probability of an event 173

 Now we may put P2= E(P= )

 P1 = E(pl) =fi = f(alz, , x) = {1 + exp (- c1- x'P)}-1 (6.1)

 and E(p1 +P2) = P1 + P2 = f2 = f(c22, , x) = {1 + exp (-_c2-x')}-1. (6.2)

 Also p3 = 1-P1-P2

 and Qi=1-PI (i=1,2,3).

 Considered separately (6.1) and (6.2) involve just the same assumptions as those dis-

 cussed above for the dichotomous case. Considered jointly they involve the further assump-

 tion that the state of an individual described by the vector x, which is sufficient to entail

 the more severe form MI, is certainly sufficient to entail the less severe form AP. If MI and

 AP are in reality grades of severity of coronary disease, this assumption will hold at least

 approximately. If on the other hand these are distinct, even though closely related diseases,
 it is not likely to hold.

 The mathematical reflexion of this assumption is seen in the fact that P1 + P2 > PI,
 which holds if and only if the 'slope' coefficient 3 is identical in (6.1) and (6 2), as is easily
 shown.

 The definitions and assumptions given yield the model:

 Pln = f(?1, P x) + e1n, (6.3)

 Pln +P2n = fP?2, Px) + 62n (n = 1, ... , N). (6.4)

 It is seen that the errors are correlated in pairs. Defining

 en = (6lw62n)' Pn = (Pln P2nY

 Pn = (Plns I2n)

 and K [= ],

 and noting that Pn may be taken as a trinomial variate (which corresponds to the assumption
 of binomial errors in the dichotomous case), so that

 LPlnQln-P1nP2n
 V(Pn)=J

 PI ln P2n 2n Q2nJ

 it follows that

 V(En) = V(Kpn) = KV(pn) K' = [Pin Qin nP3n] (6.5)
 Pln 3n 3n Q3n

 Since now det V(cn) =PlnnPUI

 l Q3n_1

 V-1 (en) = (6.6)
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 174 STROTHER H. WALKER AND DAVID B. DUNCAN

 The model (6.3), (6.4) is now approximately linearized by Taylor series expansion of the

 functions fi, f2 around some guessed initial values oc1, O 3. Proceeding as in the dicho-
 tomous case, working variables are defined by

 Yln Pin f(, 3, xn) + +
 p, xn) + 'xi ~~~~~~~~~~(6.7)

 Y2n = Pln+ P2n-f(a2) b (n) +-Oax -2+ a, , x (7

 Since af1 - PinQln OA= P3n Q3n

 = Pin Qlnbjn / P3nQ3nXjn (

 we obtain finally

 = Yln] Pin -f(Pi) P, Xn) + PinQin ~i + Pin Qin Xn 1 n- *n FY*n - Pl-(lpx)PnQnlPnlx (n i= .. N). (6 8)
 [2nJ Pin +P2n -f(F2) P Xn) + P3n Q3n ?(2 + P3n 3nx , N

 The system (6.8) of 2N equations provides a multiple regression model, where PrnQrn are
 to be estimated from the data, and where the errors are correlated in pairs. We wish to solve

 it by the recursive method, weighting inversely as the estimated variances. To this end, it is
 convenient to write the system (6.8) as the matrix equation

 y* = X*O + c, X* = AX, (6.9)

 which can be done on appropriate definition of the several factors. Let

 Yll c

 Y2*1 I 2

 Y*= =3 YiiNxi

 I I0[ell XII. X12 ..= Xu

 o Xl1 xi2 ***xis1 6111

 L 1 Xll X12 ... Xls 621

 o O XNi XN2 v XNS 61N

 O 1 XNI XN2 ... XNSJ L62NJ

 A1 0 PinQin 0
 A= A2 ], where AnI

 AN [O3n Q3nj
 We also note that

 1 0 Xnl ... Xns]
 n Lo 1 nl ... Xns

 and x*' = AnXn. Then X* is just the matrix having x*' as its nth row.
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 Estimation of the probability of an event 175

 The variance of the vector e can now conveniently be written as a diagonal matrix of

 2 x 2 submatrices of the form (6.5) and hence the estimated weights for regression are given
 by the diagonal matrix W with the 2 x 2 elements:

 [Q3n 1

 W- V'(F-n) I -
 P2n1 Ql

 L P 3n
 Now the desired estimators are available through iterative or, as we propose, recursive

 solution to yield - = (X*'WX*)-] X*'Wy*;

 also V(b) = (X*'WX*)- = (X'AWAX)-1

 since here A + W-Q.
 Now the derivation of the recursive equations goes through in a series of steps formally

 identical with those used in ?5, leading to:

 VnV_-Vn-l x*Dn-l1x* Vn-1

 and bn - + V1x* D-1 (yn -xn' bn_),

 where Dn = x+

 On rewriting in terms of the data,

 Vn =Vn- - Vn-1 xn n n ln nf n-I 6.0

 and b =bn_1+Vn_x nAnD D PlIn+J(Pln + (6.11)

 Here Vn is obtained by inverting the 2 x 2 matrix Dn = AnXnVnxnAn + W; l, the
 corresponding factor dn in the dichotomous case having been a scalar.

 The advantage of this model over the dichotomous one is in the additional information

 being used to estimate P. GCurland et al. (1960) showed, as one would expect intuitively,
 that for the bioassay situation 'If the response.. .is polychotomous, it is more efficient to
 use this information explicitly.. .rather than pool certain outcomes in order to make the
 response dichotomous'.

 The same ideas readily extend to a recursive analysis with a k-chotomous response,

 k > 3. The errors are correlated in groups of k - 1. Recursive expressions for bn and Vn
 are obtained, similar to (6.10) and (6.11). In particular the matrix which must be inverted

 to obtain Vn is now (ki- 1) x (k- 1).

 7. NUMERICAL ILLUSTRATION IN THE DICHOTOMOUS CASE

 To illustrate the method, a program to implement the dichotomous model on a digital

 computer was written and applied to the records of 5209 participants in the Framingham
 Study. Between 4 and 8 min. are required on the IBM 7094 computer to estimate any given

 set of parameters (up to 19, the largest number tried so far), using two iterations.

 Table 1 shows the computational results for a particular subset of all the regressors
 available in the Framingham data (independent variables will be characterized as 'regres-

 sors' here, previous sections having made the sense of this term clear). The dependent or
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 176 STROTHER H. WALKER AND DAVID B. DUNCAN

 Table 1. Computational results for one set of regressors

 1 a. Brief definition of regressors:

 Intercept (INT); Systolic blood pressure (SYS): in mg. Hg;
 Sex: coded 1 (male), 2 (female); Diastolic blood pressure (DIA): in mg. Hg;
 Age: in years and hundredths; Serum cholesterol (SCH): in mg. per ml.;
 Height (HT): in inches and hundredths; Electrocardiographic abnormalities (ECG):

 coded 0 (absent), 1 (present);

 Framingham relative weight (FWT): weight (lb.) divided by median weight (lb.) of sex-height
 group, as a percentage;

 Alcohol consumption (ALC) (oz./month):

 Code Oz. (men) Oz. (women)

 0 None None
 1 <4 < 1

 2 5-14 1-9

 3 15-39 10-24
 4 40-69 25-39
 5 70-99 40-999

 6 100-999

 1 b. Estimated coefficients and associated values of t

 j Regressor bj X j Regressor bj tj

 0 INT -5X3695 5 DIA 0 005493 0X81
 1 Sex -1X5883 -9X12 6 SCR 0006631 5-41
 2 Age 0-08095 1015 7 ECG 0-8543 4.99
 3 HT -0-05279 -2*28 8 FWT 1*3586 3.77
 4 SYS 0*009116 2*50 9 ALC -0*05873 -1*60

 le. Analysis of variance (adjusted for the mean)

 Source D.F. S.S. M.S. F

 Regression 9 343 15 38 1277 41V65
 Error 4661 4267 14 09155

 (Theoretical error oo 4661-00 1.00)

 Total 4670 4610-29

 response variable, as in all cases discussed in this section, is coronary heart disease, coded
 zero if absent and one if present, as determined by well-defined diagnostic criteria approxi-

 mately 10 years from the date of determination of the regressor values for the given in-
 dividual.

 In addition to the estimated regression coefficients bj, Table 1 shows the values t1 = bjlsbj
 of their sizes relative to their standard deviations. The overall analysis of variance is also

 exhibited in the table. With the sample size involved this may be interpreted as though

 based on a normally distributed dependent variable, with an expected error mean square
 of unity. The evidence of overall regression (F = 41-65) is strong as is that for several of

 the individual regressors.

 Table 2 shows t and F values for nine other similar analyses with different combinations

 of regressors in the Framingham data. The structure of the regression equations in each
 case provides information of considerable interest about the disease and the factors with

 which the risk of its occurrence is associated and lays a foundation for more detailed in-

 vestigations.
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 TABLE 2. Values of t and F for nine different combinations of regressors

 2a. Brief definition of regressor not defined in Table 1 a:

 Cigarettes smoked (CIG); coded

 0 if none
 1 if < 1 pack/day

 2 if 1 pack/day

 3 if > 1 pack/day

 2b. Values of t and F:

 t

 Regressor -- - >

 Sex -9-85 -10-44 -10-68 -9.91 -10-95 -9-47 -9-66 -9-12 -6-21
 Age 13-45 12-68 11-56 11-06 11-54 10-79 10-79 10-15 9 21

 HT - - -2-78 --2-85 -2-64 -2*28 -1-83

 SYS - 2*94 2-78 2-66 2-04 1-68 2-50 055
 DIA 8*12 7-32 2-03 1-16 1-41 2-30 1-55 0-81 2-04
 SCH - 6*05 6-01 6-02 6-17 6-01 6-13 5-41 3-85
 ECG - 5-91 5-60 499 4-69

 FWT - 3*48 3*43 3-77 3-69
 ALC - - -1-60 -2-14

 CIG - - - 5-44

 N* 5195 5074 5074 5068 5036 5068 5036 4671 2687
 F 133-23 100*87 81-10 68-10 65-38 62-73 52-47 4165 24-39

 * Sample size after removal of observations with missing values of one or more regressors.

 8. CONCLUSION; RANGE OF APPLICATIONS

 In this paper we have proposed a method of data analysis two features of which seem

 worth stressing. The first is the utility of a symmetric sigmoid transform, such as the logit,

 in analyzing the dependence of zero-one data on a relatively large number of independent

 variables (Cox, 1966). By effecting a workable linearization such a transform submits the

 zero-one data not only to the techniques of multiple regression, but to its extensions, such

 as analysis of variance and analysis of covariance.

 The second is the effectiveness of the recursive technique in estimating the regression

 coefficients. This is a method widely applicable in non-linear estimation. By allowing con-

 vergence within each of the usual iterations, the method is less dependent on initial

 approximations and converges more rapidly.

 We developed the method especially for analysis of the data of large, long-term pro-

 spective studies in epidemiology, but there are indications that it will have a broader range

 of applications. Much of the data in modern biomedical research is of a zero-one or poly-

 chotomous character, involving relatively large numbers of independent variables, and the

 method is usually applicable in such cases. It is now being applied in several other areas,

 by investigators using our program or variants of it. These include: estimation of proba-

 bilities from meteorological data; a marketing problem, involving estimation of the proba-

 bility of a purchase, given the values of the independent variables characterizing the cus-

 tomers; and a politico-social problem, involving the probability of certain actions by a

 citizen, given his social, political and economic status. Application to a military problem

 where the data are hits, near-misses and misses against certain types of targets, is being
 considered.

 I2 Biom. 54
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