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 one could investigate statistically, via a likelihood ratio
 test or otherwise, the validity of the assumption qi q.
 With the type of data available to Wald, such an option
 is not open because of the lack of identiflability of larger
 models. Wald cautioned his readers that the solution he
 provides should be used only "if it is known a priori that

 q, = q2 = = qn." How and whether such a priori
 knowledge could be garnered is open to debate. Wald
 does provide an option for those who are more conser-
 vative. The lower bounds for Qi may be considered con-
 servative estimates of survival probabilities, although
 they might often be too small to be useful. The dilemma
 one encounters with the foregoing three assumptions
 mentioned is similar to that faced in competing risks
 methodology, where considerable recent work has fo-
 cused on identifiability and bounds for survival proba-
 bilities (see Tsiatis 1975 and Peterson 1976).

 Viewing Wald's work on aircraft survivability in light
 of the state of the art at the time it was done, it seems to
 us to be a remarkable piece of work. While the field of
 statistics has grown considerably since the early 1940's,
 Wald's work on this problem is difficult to improve upon.
 Much of the work appears to be ad hoc-there are few
 allusions to modeling and no reference to classical sta-
 tistical approaches or results. By the sheer power of his
 intuition, Wald was led to subtle structural relationships

 (e.g., Equations (3.3) and (3.24)), and was able to deal
 with both structural and inferential questions in a defin-
 itive way.

 [Received May 1981. Revised March 1983.]
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 Comment
 JAMES 0. BERGER*

 The authors are to be congratulated on a fine paper.
 They have distilled the key ideas in Wald's work on air-

 craft survivability, and have successfully related the ideas
 to standard statistical methods. The bulk of this discus-
 sion will be concerned with this relationship of the work
 to standard statistical methods, particularly the use of
 statistical models to describe the situation. Some atten-
 tion will also be given to decision-theoretic issues.

 1. STATISTICAL MODELING

 As indicated in the paper, the primary quantities stud-
 ied can be considered

 Pi, = P (i hits and survival)

 = Qi At,

 * James Berger is Professor of Statistics, Department of Statistics,
 Purdue University, West Lafayette, IN 47907. Research was supported
 by the National Science Foundation Grant MCS-8101670A1.

 where

 Qi = P (survival I i hits),

 xi = P (i hits),

 and

 PO* = P (not surviving) = 1 - E Pi1.
 i=O

 If the observations can be assumed to be independent,
 and out of a total of n missions the data are

 Xi, = the number of aircraft that receive i hits
 and survive,
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 XO n - , Xi, = the number that do not
 i=O

 survive,

 then the likelihood function for P = (Po*, PI 1, P21, )
 is proportional to

 L(P) = (fPixi,) (po*)xO*
 i=O

 i- 00 ix*
 = I| (Qi. ki)xt I - E Qi' Xi] *(1)
 i=O i=O

 In this framework, which is more or less that given in
 Section 3 of Mangel and Samaniego, Wald's model can
 be described by the following assumptions:

 (i) Qi = qi (i.e., iid survival of each hit);

 (ii) Pi, = 0 for i - 6 (or, more generally, for i for
 which X1, = 0).

 We will return to the crucial assumption (i) later, but for
 now will accept it. Assumption (ii) leaves an obvious un-
 comfortable feeling, but probably makes no great differ-
 ence for the type of data expected. A third assumption,
 actually a lack of an assumption, is also a possible cause
 for concern: Wald effectively leaves the Xi (the proba-
 bility of i hits) completely unrestricted, whereas it would
 seem more natural to restrict the parameter space to con-
 sist only of decreasing Xi. (Actually, the Xi are never even
 mentioned in Wald's work, an omission of some concern,
 as we shall see.)

 As mentioned in the paper, Wald's analysis effectively
 corresponds to a maximum likelihood analysis using (1)
 and assumptions (i) and (ii). The results of this analysis

 for the given data are q = .851 and Xi = Xi, /[400 (.85 l)i].
 The values of the Xi for the data are given in Table 1, and
 indeed they are not decreasing (AX > X4. The possible
 difference here seems minor but, as a theoretical point,
 it seems desirable to ensure monotonicity of the Xi in the
 analysis. (Perhaps the most straightforward way of in-
 corporating monotonicity is simply to put the (noninfor-
 mative) uniform prior distribution on

 A = [(A0, W. . , A): aXi= 1, Ao >_ A I . 5. ,

 a uniform prior on q (in [0, 1), and calculate the posterior
 means, providing the numerical integration problem is
 feasible.)

 The most significant question that can be raised con-

 Table 1. Model Fit

 xi xi1~~~~~~~~~~i

 0 .8000 .8000 320.0 320
 1 .0928 .0940 31.5 32
 2 .0640 .0690 18.5 20
 3 .0295 .0162 7.2 4
 4 .0102 .0095 2.1 2
 5 .0028 .0t112 0.5 2

 cerning Wald's analysis is that of overparameterization.
 The parameters are (q, Ao, . . . , X5), seven parameters
 for the seven data values (Xo*, Xol, . . . , X51). Wald
 attempts a model robustness study by finding lower and
 upper bounds for the Pi, (actually, for the Qi), but these
 bounds are too disparate to be of much use (more on this
 in Section 3). The best way to investigate model robust-
 ness is usually just to try other possible models. What
 follows is a minimally parameterized model, which is ac-
 tually the model we produced when challenged in the
 paper at the end of the Section 1.2 to analyze the data
 before reading further. (For fear of overparameterization,
 it is often helpful to start out by trying very small models.)

 Consider the following assumptions:

 (i) Qi = q';

 (ii) Xi = (1 - Xo) -y' e-"/[(1 - e-I) i!] for i ? 1.

 Note that this is a three-parameter model, the parameters
 being 0 - q c 1, 0 < Xo < 1, and -y > 0. Our thoughts
 in choosing this model were (a) independence of effect
 of hits is a reasonable starting point, and (b) the number
 of hits might be approximately Poisson, except that some
 planes may never come under effective fire (for a variety
 of reasons), so that extra mass at zero hits is to be an-
 ticipated. Thus Xo was left unrestricted, while the re-
 maining Xi were given the truncated Poisson distribution.
 Of course, these assumptions can also be criticized, but
 they seemed to be a plausible starting point. Note that
 these assumptions bypass the need to make Wald's as-
 sumption (ii), and also will automatically result in de-
 creasing Xi (except possibly for Ko, which seemed so
 likely to be large that monotonization would probably be
 unnecessary).

 Using the fact that

 00

 qi -y'li! = eqy _ I,
 i = I

 the likelihood function (1) can be written (under our as-
 sumptions and after some algebra) as

 L(q, Xo, y) = XoXoI(( - XO)nf-Xo (e' y 1)(Xoi-n)

 X (qoy)xXiI (e - eq-Y)(n - XiI )

 A routine maximum likelihood analysis for the given data
 yields Xo = .8, qc = .85, and j' = 1.38. How well this
 model fits the data can be seen in Table 1, which presents
 the estimated Xi under this model, namely Xo* = .8 and

 A= (1 - Xo*) A i e-Y/[(l - e-9) i!], ij 1,

 along with the expected observations,
 A A

 Xi, = n * Pi, = n q

 and the actual observations, Xi,. For comparison pur-
 poses, the unmodeled estimates X: for the X, are also
 given.

 The low-parameter model seems to fit the data ex-
 tremely well. Of course, one would expect to be able to
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 fit seven decreasing data points well with some three-
 parameter model, but not necessarily this well and not
 necessarily with a model incorporating separate and very
 specialized structures for the Qi and the Xi. In any case,
 the main feature of interest here is that the answers ob-
 tained with this plausible three-parameter model are vir-
 tually identical to those of Wald's analysis (especially the
 qi), so that one can feel somewhat confident about the
 model robustness of the answers.

 Before moving on, it is worthwhile commenting that,
 instead of the maximum likelihood analysis, a noninfor-
 mative prior Bayesian analysis could have been per-
 formed, using (say) a constant (generalized) prior on the
 set

 -{(q, Xo, y): O s q '1, Xo ? Xi, y > O}.

 The advantages of this would be (a) the constraint Xo ?
 X l is automatically built in; (b) one does not have to worry
 about having found only local maxima of the likelihood
 function; and (c) with essentially no extra effort, the pos-
 terior variances can be found, yielding good small-sample
 variance estimates (an attractive alternative to the clas-
 sical need to resort to large-sample theory).

 2. ANALYSIS OF VULNERABILITY AREAS

 It is in this aspect of the problem that statistical mod-
 eling can reap greater rewards than Wald's approach.
 Wald needed to assume that the effects of hits on a given
 area of the aircraft were independent (an assumption that
 seemed to work reasonably well for the entire aircraft),
 but this is unlikely to be true for certain vulnerable areas
 of the aircraft. One obvious example is the important en-
 gine area: A multi-engine aircraft might well be able to
 fly with one engine out, so that the effect of the first hit
 to the engine area would be inconsequential, while a sec-
 ond hit (to a different engine) could be fatal. It is not hard
 to think up appropriate models for this situation, and no
 identifiability problems arise as long as one also makes
 some effort to model the probability of i hits to a given
 area (combining, say, the ideas discussed earlier about
 modeling Xi with Wald's ideas concerning the probability
 that a single hit strikes a given area).

 3. LOWER BOUNDS ON SURVIVABILITY

 A large portion of Wald's analysis is concerned with
 obtaining lower bounds, Qi*, on Qi, the probability of
 surviving i hits. One possible use of this would be to allow
 the aircraft commander to abort a mission if the risk of
 subsequent hits is too high, but common sense would
 argue that the relevant factor in such a decision is not
 how many hits have been sustained (which may even be
 hard to determine during combat), but rather the amount

 of actual damage (say, fuel lost or engines destroyed) that
 can be determined. Data allowing analysis of such oc-
 currences would be hard to come by, and any such anal-
 ysis would almost certainly involve detailed knowledge
 about the workings of the aircraft.

 A second possible use of the Qj* would be in bounding
 the overall probability of mission survival, presumably
 for logistic purposes. Clearly

 T P (survival)

 = E Qi .i
 i=O

 E Qi* xi
 i=O

 The difficulty with this use of the Qj* is that Wald de-
 termined Qi* as Qi* = mindp Qi, where 9P is the set of
 probability structures such that Po*, Po,, . . . , P51 are
 equal to the sample proportions. Besides the lack of at-
 tention to the effect of sampling error on the analysis,
 there is the more basic problem that each Qi is minimized
 separately over 9?, and each minimum is attained at a
 different probability structure. Thus

 min T > ,Qi* xi,
 91 i=O,

 so that one can get a better lower bound by simply min-
 imizing T directly over 2?. Of course, this will be com-
 putationally more difficult, which could well explain
 Wald's use of the Qi*, but today the additional compu-
 tation would pose no serious problem.

 As a final point, the use of lower bounds at all is prob-
 ably unwise. Providing one can arrive at model-robust
 estimates of survivability, use of the estimates discussed
 in the previous paragraph will generally prove more val-
 uable than use of lower bounds.

 4. CONCLUSIONS

 All nitpicking aside, the authors seem correct in their
 conclusion that the answers Wald obtained could not be
 greatly improved upon today. It can be argued, however,
 that the methodology employed by Wald was much more
 difficult and far less flexible than standard methodology
 involving statistical modeling. Of course, Wald was work-
 ing under computational limitations (although use of sim-
 ple statistical models and maximum likelihood methods
 would not necessarily have been harder computation-
 ally), and could perhaps have been writing for a special
 (nonstatistical) audience. Whatever the reasons for his
 approach, we can admire his ingenuity while being thank-
 ful for the availability of more powerful methods today.
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 Rejoinder
 MARC MANGEL and FRANCISCO J. SAMANIEGO

 1. INTRODUCTION

 In this rejoinder we reply to the published remarks of
 Berger, respond to questions and comments that were

 raised at the American Statistical Association annual

 meeting in Toronto in August, 1983, and comment briefly

 on our recently completed Monte Carlo study on the ro-

 bustness of Wald's methods.

 2. REMARKS ON BERGER'S DISCUSSION

 We thank Berger for his thoughtful and thought-pro-
 voking commentary on Wald's paper and ours. We are

 in general agreement with Berger on the main issues he

 has raised: (a) careful modeling can produce an excellent

 fit of Wald's data, and the related statistical computations
 are not that imposing; (b) some of Wald's assumptions
 are more troublesome than others; and (c) the lower
 bounds produced by Wald are mathematically interesting
 but of limited use in decision making. In spite of the con-
 sonance of our views with Berger's, there are one or two
 points on which we differ.

 In our Section 3, we described Wald's first data set as
 an incomplete sample from a multinomial distribution.
 Berger criticized Wald's assumption that the probability
 of receiving more than five hits is zero. Actually, the
 assumption is inconsequential in a multinomial model,
 since every cell probability associated with an empty cell
 would be estimated as zero. Thus, Wald's estimator of
 the parameter q surfaces as the MLE with or without

 Wald's assumption.
 Berger's three-parameter model for Wald's first data

 set is intriguing. We also tinkered with the Poisson model
 a bit, but found the fit unacceptable. Berger's idea and
 rationale for separating the events {O hits} and {at least
 one hit} are appealing; it is the kind of idea that seems
 obvious as soon as it is mentioned, but it is to Berger's
 credit that he thought of it. Berger mistakenly claims that
 his model yields decreasing probabilities for 1, 2, 3, . . .
 hits. Actually, the positive Poisson model with parameter

 y has mode M = max([,y], 1), where [-] is the greatest
 integer function. Thus, these probabilities increase up to
 M and decrease thereafter. With Wald's data, y is esti-
 mated to be 1.38, so that XI > X2 > X3 > K4 > A5 in this
 particular application. However, Berger's model does not
 guarantee this monotonicity. Furthermore, although the
 Bayesian approach that Berger proposes in order to en-

 sure the inequality Xo > XI can be expanded to cover Xi
 > yi+, for all i, one should not underestimate the diffi-
 culties involved in implementing such an approach in a
 reasonable manner.

 Having pointed out the lack of guaranteed monoton-
 icity of the Xi's, we hasten to add that, in our view, Ber-
 ger's model nonetheless has substantial merit. Consider

 the proposition that XA > K2, that is, that an aircraft is

 more likely to receive one hit than it is to receive two
 hits. It seems to us that this proposition is not an inviol-
 able imperative. Indeed, the expected number of hits de-
 pends quite crucially on the density of fire. Suppose all
 400 planes in Wald's first problem were sent on a mission
 in which intense fire was anticipated. It might well be
 true that virtually no aircraft would receive only one hit.
 In fact, it might be that aircraft would be more likely to
 receive 10 or 12 hits than only one. Berger's model will
 accommodate such situations, and it should be useful in
 problems in which the number of hits (to aircraft receiving
 at least one hit) is expected to have a unimodal distri-
 bution. It is interesting that data analysis with the three-
 parameter model yields the same estimate of q that Wald
 obtained, which imparts a certain model robustness to
 Wald's results. One could also interpret this coincidence
 as speaking to the model robustness of the approach Ber-
 ger has taken. We are in agreement with the limitations
 of Wald's results, as discussed by Berger in his Sections
 2 and 3.

 Motivated in part by Berger's comments on robustness,
 we conducted our own study on the robustness of Wald's
 methods. Although the complete details are presented
 elsewhere (Mangel and Samaniego 1984), we wish to de-
 scribe our results briefly. We studied two questions: (a)
 If the assumption that qj q for all j is violated, how
 badly does one do in estimating the Pi2 using Wald's

 method? and (b) In the case of unequal qj, what are the
 behavior and proper interpretation of Wald's estimator

 q? To answer these questions, we carried out a Monte
 Carlo study in which data in (4.1) were repeatedly gen-
 erated using a multinomial experiment with parameters

 {pij} chosen so that the qj were unequal but had the av-
 erage q = .851, as in Wald's data. Our base case involved
 equal qj. We measured departure from the true proba-
 bilities Pi2 via a x2-like statistic. We found that Wald's
 model worked very well in a fairly generous neighbor-
 hood of the central value q = .851, and that the fit was

 a monotonic function of the dispersion in the set {q 1,.
 q5}. We also discovered that Wald's estimator q is an
 excellent estimator of the average q, regardless of the
 dispersion.

 3. COMMENTS AND QUESTIONS
 RAISED IN TORONTO

 A discussant took exception to Wald's derivations and

 proposed the following alternative analysis. Retaining the

 ? Journal of the American Statistical Association
 June 1984, Volume 79, Number 386
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 notation of Section 4 of our article, let

 PjI = P{receive exactly j hits and survive}

 Pj2 = P{receive exactlyj hits and go down}.

 It follows that

 pOl - (Pjl + Pj2) (R.1)
 J= 1

 The following modeling assumption was then introduced
 (apparently after Wald):

 P121Pj1I = (1 - q)lq, j = 1, 2,.... (R.2)

 Using (R.2) in (R.1) yields

 pj( + Pj20 1=1 E \ pj!

 = 1 E pu'. (R.3)

 Thus

 I 00

 q = 1 p Pi, (R.4)
 1-pOI1j=1

 leading to the estimator

 q = 1 E aj (R.5)
 1 aoj=l

 for q. For Wald's data, one obtains q = .75, which differs
 from the estimate of .851 obtained by Wald. Further dis-
 cussion failed to shed any light on the comparative merits
 of the two estimators.

 The confusion during the discussion at Toronto was due
 in part to blind acceptance of the faulty premise that the
 two estimators were estimating the same parameter. The
 proper resolution of this apparent anomaly is that these
 estimators are not competing against each other, but in-
 stead are valid estimators of parameters in different
 models. Modeling assumption (R.2) is equivalent to

 Pjll(Pjl + Pj2) = q, j = 1, 2, . . . , n, (R.6)
 which differs from the modeling assumption

 Pj'/(Pji + Pi2) = qJ, j = 1, 2, . . . , n (R.7)

 made by Wald. Indeed, if fi, . . , fn are continuous,
 increasing functions mapping (0, 1) onto itself, then the
 modeling assumption

 Pjl/(Pjl + Pj2) = fj(q), j = 1, 2, . . ., n (R.8)

 for the multinomial data in (4.1) gives rise to a unique

 MLE that can be obtained as the solution of the equation

 . ( = 1 - ao. (R.9)

 Each such model has a parameter q, but the estimator of
 q in one model has no meaning as an estimator of q in
 another model.

 It remains to comment on the modeling assumptions
 (R.6) and (R.7). Equations (R.6) constitute the assump-

 tion that the chance of surviving another hit, given sur-
 vival thus far, is always the same. On the other hand,
 equations (R.7) assert that the conditional probability of
 surviving another hit, given survival thus far, depends on
 the number of hits sustained thus far. Wald's general
 model, with

 J

 = fl qj, j=1,..* n, (R.10)
 P3 + Pj2 i=1

 stipulates that these conditional probabilities are decreas-
 ing. Wald's assumption (R.7) asserts that these proba-
 bilities decrease geometrically. It is thus clear that the
 choice we have discussed is between two models rather
 than between two estimators. Applications undoubtedly
 exist in which either one of these models is more appro-
 priate than the other.

 A number of people have asked whether Wald's work
 has actually been used. We do not know whether it was
 used during World War II, although it was produced early
 enough in the war to have been available. We do know
 that during the Vietnam War, analysts at the Operations
 Evaluation Group of the Center for Naval Analyses used
 Wald's techniques to study the survivability of the A-4
 aircraft. Their analysis led to structural modifications that
 improved the A-4's survivability. Wald's methods were
 also used by analysts at Wright Patterson Air Force Base
 in studying ways of improving the B-52's survivability.
 Cunningham and Hynd (1946) also provided perspective
 on the use of statistical analysis during World War II.

 One tactical use of this kind of work is the development
 of rules for exiting from combat. The most important case
 is the one in which different survival probabilities are
 estimated (that is, where the qi are not constant). For
 example, consider the result presented in Table 1 of our
 article. The change in the exact value of the probability
 of surviving i hits as i increases from 1 to 2 is .130, from
 2 to 3 is .204, and from 3 to 4 is .235. When confronted
 with such data, aviators could develop rules of thumb
 such as, "Stay in combat with up to three hits, but leave
 after the fourth." Similarly, having an estimate for the
 survival probabilities would provide the mission planner
 with one more piece of information that could be used to
 determine the number of aircraft to send into a particular
 combat mission.

 One factor that Wald did not take into account, but that
 is quite important, is the crew of the aircraft. Studies done
 during World War II showed that the crew was an im-
 portant consideration in determining survivability. For
 example, crews that had already survived three missions
 had a much higher probability of continued survival
 (Morse 1977 discusses this point in more detail).
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PART I

AN EQUATION SATISFIED BY THE PROBABILITIES THAT A
PLANE WILL BE DOWNED BY i HITS1

INTRODUCTION

Denote by P. (i = 1,2,..., ad inf.) the probability that a plane
will be downed by i hits. Denote by p. the conditional prob-
ability that a plane will be downed by the i-th hit knowing that
the first i - 1 hits did not down the plane. Let Q. = 1 - P. and
q. = 1 - p. (i = 1,2,..., ad inf.). It is clear that

Qi ^

and

Suppose that p. and P. (i = 1,2,...) are unknown and our infor-
mation consists only of the following data concerning planes
participating in combat:

• The total number N of planes participating in combat.

• For any integer i (i = 0,1,2,...) the number A. of
planes that received exactly i hits but have not been
downed, i.e., have returned from combat.

A.
-^

proportion of planes lost. Then we have
Denote the ratio - by a. (i = 0,1,2,...) and let L be the

a. = 1 - L. (3)
i = 0

-1-This part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo 85 and
AMP memo 76.1.
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The purpose of this memorandum is to draw inferences concerning
the unknown probabilities p^ and P^ on the basis of the known
quantities a , a.. , a.,,..., etc.

To simplify the discussion, we shall neglect sampling errors,
i.e., we shall assume that N is infinity. Furthermore, we shall
assume that

0 < p . < l (i = 1, 2, . . . , ad in f. ) . (4)

From equation 4 it follows that

0 < P^ < I (i = 1,2,..., ad inf.). (5)

We shall assume that there exists a non-negative integer n such
that an > 0 but a.̂  = 0 for i > n.

We shall also assume that there exists a positive integer m such
that the probability is zero that the number of hits received by
a plane is greater than or equal to m. Let m1 be the smallest
integer with the property that the probability is zero that the
number of hits received by a plane is greater than or equal to
m1. Then the probability that the plane receives exactly m1 - 1
hits is positive. We shall prove that m' = n + 1. Since an > 0,
it is clear that m1 must be greater than n. To show that m'
cannot be greater than n + 1, let y be the proportion of planes
that received exactly m1 - 1 hits. Then y > 0 and
y(l - P̂ )̂ = am'_i« Since y > 0 and 1 - Pmi_1 > 0, we have
a , , > 0. Since a. = 0 for i > n, we see that m1 - 1 < n,m — 1 i —
i.e., m'< n + 1. Hence, m1 = n + 1 must hold.

Denote by x- (i = 1,2,...) the ratio of the number of planes
downed by the i-th hit to the total number of planes
participating in combat. Since m' = n + 1, we obviously have
x. = 0 for i > n. It is clear that

n
y x. = L = 1 - a -a, - ... - a . (6)
£l 1 o 1 n

-2-



CALCULATION OF x. IN TERMS OF a , a - , , . . . , a , p ,...,p
•I. \J _L 11 J. II

Since the proportion of planes that received at least one hit is
equal to 1 - a , we have

(7)

The proportion of planes that received at least two hits and the
first hit did not down the plane is obviously equal to
1 - a - a, - x,. Hence,

x2 = p2(l - (8)

In general, we obtain

ct . , ~"X, *™*X,, *•• ^ X - i
1-1 1 2 1-1

(i = 2,3, ... ,n) (9)

Putting

ci = -1 ~ ao ~ al ~ *

equation 9 can be written

Substituting i - 1 for i, v/e obtain from equation 11

"• + Xi-2} - Pi

Dividing by p _ , , v/e obtain

(11)

x .
-^± + (x, + ... + x. ) = c (i = 3,4
*J'_1 J. i ^ X J .

n). (13)

-3-



Adding x. , j 1 - ——— ] = ———— x'-i *-°  both sides of

\ i'1/ 1"1

equation 13, we obtain

x + . . . + X . =c. — — — x . (14)
l- i- pi_i 1~

(i = 3,4,...,n+l).

From equations 11 and 14, we obtain

x . + p . I c . , - — — - x . , 1 = p . c . . (15)
i L 1~-'- 1~1

Hence

xi = pi(ci ~

Let

di = pi(ci - ci-l) = -piai-l (i = 3,4, ...,n) (17)

and

p . q . ,
t. = ^ (i = 3,4,...,n). (10)
1 Pi-l

Then equation 16 can be written as

Xi = di + fcixi-l (i = 3,4,...,n). (19)

P2ql
Denote p^(l - a ) by d,, ~P2ai bV d2' and ~~p — by fc2' tnen we

have

xl = dl an X2 =

-4-



From equations 19 and 20, we obtain

xl = dl
xi - j?! djtj+ltj+2 '•• fci+di (i = 2,3,...,n). (21)

EQUATION SATISFIED BY qJL,...,qn

To derive an equation satisfied by q-j_,...,q , we shall express
n
Y* x. in terms of the quantities t. and d. (i = l,...,n).

Substituting i for i - 1 in equation 14, we obtain

(22)

j = l
.

Hence, in particular

n

n

n-1
n

(23)
= L

Since c - L = a , and since t.., ... t = ' We

obtain from equation 23

n-1 d.
(24)

Dividing by q, ... q and substituting -p-a._, for d., we obtain
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an-l
p̂

an an-l
ql '•• qn ql '•• qn-l

(25)
n-1 a- ! d,

____3-1 JL

n a •

or

n
= 1 - a . (26)

If it is known a priori that q, = ... = q , then our problem
is completely solved. The common value of q, ,...,q is the

root (between 0 and 1) of the equation

n a .Y -4f-^1 13=1 qj

It is easy to see that there exists exactly one root between zero
and one. We can certainly assume that q, >_ q~ _̂ ••• >_ q . We

shall investigate the implications of these inequalities and
equation 26 later.

ALTERNATIVE DERIVATION OF EQUATION 26

Let b- be the hypothetical proportion of planes that would have
been hit exactly i times if dummy bullets would have been used.
Clearly b^ >_ a^. Denote b^ - a^ by y^ ( i = 0,l,2,...,n). Of

n
course, b = aQ, i.e., yQ = 0. We have X) b^ = 1. Clearly

j=0

-6-



yi = Pibi = Pi(ai + yi) (i = l,2,...,n). (27)

Hencej

Pi 1 - gjL ... qt aA
y . = -=. a. = ———— i ————— i a. = ——— - ——— - a. . (28)

n
Since £ y. = L, we obtain from equation 28

i

- •' - - •
.-This equation is the same as equation 26. This is a simpler
derivation than the derivation of equation 26 given before.
However, equations 21 and 22 (on which the derivation of equation
26 was based) will be needed later for other purposes.

As mentioned before, equation 29 leads to a solution of our
problem if it is known that q. = ... = q . In the next
memorandum (part II) we shall investigate the implications of
equation 29 under the condition that q, _> q0 >_ ... _>. ̂  •

NUMERICAL EXAMPLES

N is the number of planes participating in combat. A , A,, A2,
...,A are the number returning with no hits, one hit, two hits,
...,n hits, respectively. Then

A.
ai = ~ (i = 0,1,2,...,n)

i.e., a. is the proportion of planes returning with i hits. The
computations below were performed under the following two
assumptions:

-7-



• The bombing mission is representative so that there is no
sampling error.

• The probability that a plane will be shot down does not
depend on the number of previous non-destructive hits.

Example 1; Let N = 400
and AQ = 320 then aQ = .80

&1 = 3 2 a;L = .08

A =20 a = .05
^ ^

A3 = 4 a3 = .01
A4 = 2 a4 = .005

AS = 2 a5 = .005

We assume q = q = ... = q = q., where q. is the probability of
-L £* J -L _L

a plane surviving the i-th hit, knowing that the first i - 1 hits
did not down the plane.

Then equation 26,

n a.
Z TT——1 qj

reduces to

n a .
£ -i = 1 - a
• i DD=l qj

Substituting values of a.

.08 .05 .01 .005 .005
—— + ——2 + ——3 ——4 ———5q q q q q



or
.200q5 - . 080q4 - .050q - .OlOq2 - . 005q - .005 = 0.

The Birge-Vieta method of finding roots described in Marchant
Method No. 225 is used to solve this equation (table 1). We find
q = q. = .851, p. = .149 where p. is the probability of a plane
being downed by the i-th hit, knowing that the first i - 1 hits
did not down the plane.

x. equals the ratio of the number of planes downed by the i-th
hit to the total number of planes participating in combat. Using
equation 9

Xi = Pi(1 - ao - al - '•• - ai-l - Xl - X2 - •'• - Xi-l)

(i = 2,3,...,n)

for n = 5, we obtain

- aQ) = .030
= »013

X3 = P3(1 ~ ao ~ al ~ a2 ~ Xl ~ X2) = *004
X
4
 = P4<1 ~ ao ~ al ~ a2 ~ a3 ~ Xl ~ X2 ~ X3} = 'U02

X5 = P5(1 - ao ~ al ~ 32 ~ a3 ~ a4 - Xl ~ X2~ X3 ~ X4) = '

Example 2; Let a = .3, a, = .2, a = .1, a = .1, a = .05, and
a,. = .05. Then the following results are obtained: q = .87,
5

p = 1 - q = .13, x, = .09, x9 = .05, x., = .03, x. = .02, and-i — % \j *s f '*•'') • \j -j i "3 — •*.'-», A

X5 =

The value of q in the second example is nearly equal to the value
in the first example in spite ot the fact that the values a.
(i = 0,1,...,5) differ considerably. The difference in the
values a. in these two examples is mainly due to the fact that
the probability that a plane will receive a hit is much smaller
in the first example than in the second example. The probability
that a plane will receive a hit has, of course, no relation to
the probability that a plane will be downed if it receives a
hit.



1 . A s s u m e

. 2 0 0

. 2 0 0

q - 1 - y.

- .080
+ .200

+ . 1 2 0
+ . 2 0 0

- . 0 5 0
+ .120

+ . 0 7 0
+ . 3 2 0

- . 0 1 0
+ .070

+ . 060
+ . 390

- .005
+ .060

+ .055
+ .450

- . 0 0 5
+ .055

+ . 050 = A

.200 + .390 + .450 +.505 " A.

y - —— «= 1 - .0990 - .9010

2. Assume q = .9010 = y

. 2000

.2000

-. 0800
+ . 1802

+. 1002
+.1802

-.0500
+.0903

+.0403
+. 2526

-.0100
+. 0363

+. 0263
+. 2639

-.0050
+.0237

+ .0 187
+.2615

-.0050
+.0168

+.0118 = B
(

.2000 +.2929 +.2902 +.2802 = B.

f - -- = .9010 - .042113 = .858887

3. Assume q = .858887

.200000 -.060000 -.050000 -.010000 -.005000 -.005000
+.171777 +.078826 +.024758 +.012675 +.006592

.200000 +.091777 +.028826 +.014758 +.007675 +.001592
+.171777 +.226363 +.219179 +.200925

.200000 +.263554 +.255189 +.233937 +.208600 = C

y = y - -- = .858887 - .007632
4 3 C

Assume q = .851255 = y

.2000000 +.080000 -.050000 -.010000 -.005000 -.005000
+.170251 +.076827 +.022837 +.010928 +.005046

.2000000 +.090251 +.026627 +.012837 +.005928 +.000046 = D
+.170251 +.221754 +.211606 +.191058

.2000000 +.260502 +.248531 4.224443 +.196986 = D

.851255 - .000234 .851021

-10-



PART II

MAXIMUM VALUE OF THE PROBABILITY THAT A PLANE WILL BE DOWNED
BY A GIVEN NUMBER OF HITS1

The symbols defined and the results obtained in part I will be
used here without further explanation. The purpose of this

i
memorandum is to derive the least upper bound of X. = Ŷ  x. and

1 J=l D
that of P. (i = l,...,n) under the restriction that

<3i .> ^2 - '** * ' - qn*

First, we shall show that X. is a strictly increasing function
of p. for j _< i . Let us replace p . by p . + A (A > 0) and let
us study the effect of this change on x,,...,x-. Denote the
changes in x ,...,x. by A , ...,A., respectively. Clearly,
A^ = ... = A . ^ = 0. It follows easily from equation 9 that

A . > 0 and

Aj

Hence,

AJ + Aj+1 = (1 - Pj+1) AJ > 0.

Similarly, we obtain from equation 9

Hence,

Aj '

Aj + Aj+l + A j + 2 = (1 - Pj + 2 > < A - P j + l > A j > °'

In general

AJ + Aj+1 + ... + Aj + k = (1 - Pj+1) ... (1 - P j + k) A J > 0

(k = 1,.. ., i-j )

Hence, we have proved that X. is a strictly increasing function
of P. (j = 1,...,i).

J-This part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" v/as published as SRG memo 87 and
AMD m^imr^i "7 £ ~)AMP memo 76.2.
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On the basis of the inequalities p.>_ p. , we shall derive the

least upper bound of X.. For the purpose of this derivation we
shall admit 0 and 1 as possible values of p. (i = l,...,n), thus

making the domain of all possible points (p,,...,p ) to be a
closed and bounded subset of the n-dimensional Cartesian space.
Since X. is a continuous function of the probabilities p,, p ,
etc. (X is a polynomial in p,,...,p.), the maximum of X. exists

and coincides, of course, with the least upper bound. Hence,
our problem is to determine the maximum of X..

First, we show that the value of X. is below the maximum if
p > p.. Assume that p > p. and let k be the smallest positive
integer for which p, > p.. Obviously k > i. Let p1. = p (1 + e)K ! D J
for j = l,...,k-l, and p\ = p. (1 - n) for j = k,k+l,...,n,
where e > 0 and n is a function n( e ) of e determined so that
n
23 x1 = L (xj. is the proportion of planes that would have been

brought down with the j-th hit if p',...,p' were the true
probabilities). Since X (r = l,...,n) is a strictly monotonic
function of p ,...,p , it is clear that for sufficiently small

such a function n( e ) exists. It is also clear that for suffi-
ciently small e the condition p1 _< p' _< ... £ p1 is fulfilled.

Since p' > p. (j = l,...,i), we see that X* > X. (X. does not
depend on p1 for r > i). Hence, we have proved that if
p,,...,p is a point at which X. becomes a maximum, we must have

pi =

Now we shall show that if X. is a maximum then p, = p,; = . . . = p .
For this purpose assume that p. > p and we shall derive a con-
tradiction. Let j be the greatest integer for which p.= p,.
Since p.> p., we must have j < i. Let p1 = p (1 + e) for

r = l,...,j and p ' = p ( 1 - 1 ) for r = j + l,...,i, where
i i

e > 0 and n is determined so that V xl = V x, . Then for the
kti k kti k

probabilities p',...tp'.r p. ,,..., p the proportion of lost

-12-



planes is not changed, i.e., it is equal to L. Now let p1 = p!

for r > i. Then the proportion L1 of lost planes corresponding
to p|»...fp^ is less than L. Hence, there exists a positive
A so that the proportion L" of lost planes corresponding to the
probabilities p" = p' (1 + A) is equal to L. But, since p" > p1

i i i
(r = l,...,i) we must have ]P x" > £ x^ = ̂  x.. Hence, we

j=l D j = l J j = l D

arrived at a contradiction and our statement that p, = P2 = ••• =

p. is proved. Thus, we see that the maximum of X. is reached
when p, = p = ... = p .

LEAST UPPER BOUND OF Pi

Now we shall calculate the least upper bound of P.. Admitting
the values 0 and 1 for p., the maximum of P. exists and is equal
to the least upper bound of P.. Since P. = 1 - q ...q.,
maximizing P^ is the same as minimizing q^ ... q^. We know that
q,,...,q are subject to the restriction

n a •
Z. qj_ .?. q. = 1 - ao • <30)

Let q?,...,q°  be a set of values of q,,...,q (satisfying
equation 30) for which q, ... q- becomes a minimum. First, we

show that q. = q. ,=...= q . Suppose that q < q. .

Consider the set of probabilities q1 = q°  for r <_ 1 and q1 = q?
for r > i. Then

n a.
-i——3——r < 1 - aq ••• q

-13-



Hence, there exists a positive factor A < 1 so that

a .

= q
- a

where q1' = \q! (i = l,...,n). Then

q;g» ...ql<q° q° ...q°
in contradiction to our assumption that q? ... q? is a minimum.

Hence, we have proved that q. = ... = q

Now we show that there exists at most one value j such that
1 > q°  > q? . Suppose there are two integers j and k' such that

1 > q. 2. ̂ k > qi * Let 3* ke the smallest integer for which

q., = q. and let k1 be the largest integer for which q?, = q°  ,D D K K

Let q^, = (1 + e) q°, , q~k,= ± * £ q°, (£ > 0), and q"r = q°

for r ̂  j ' , ̂  k1. Then

n a— — o Q J * - ^ r , ,q, ... q. — q, ... q- and > ———————— < 1 — a .Jl ^l ^1 ^l -6- — — o
r=l ql ••- qr

Hence, there exists a positive factor X < 1 such that

n a,

r=l ql *" * Mr

where q* = Xq" . But q* ... q̂ f < q - i ••• q- = < 3i ••• ^-f v/hich

contradicts the assumption that q, ... q. is a minimum. This
proves our statement.

±——r = 1 - a

-14-



It follows from our results that the minimum of q1 is the root of
the equation

n ar
E -F = i - ao • 02)
r=i q

Now we shall calculate the minimum of q^q^. First, we know that
q. = q (i >L 2) if ^-.^y be a minimum. Hence, we have to minimize
q.q? under the restriction

Using the Lagrange multiplier method we obtain the equations

2 a + + ~ + '-+-\ = °  <34>

(Lagrange multiplier = A.)

a 2a (n - l)a
+ -,*.+ ...+ ———___ , = o . (35)

Because of equation 33, we can write equation 34 as follows

q q

q2 -

Substituting for X in equation 35, we obtain

2a. 3a4 (n - l)a
__£ . __2. j. 4. ________li I - n
O ^ * * * r̂  T * —

-15-



or

2a3 {n ~ 1)an

On the other hand, from equation 33 we obtain

Equating the right-hand sides of equations 37 and 38, we obtain

a 2a. 3a5 (n - 2)a
—— + —— +-T + '•• + —— Z=I ——
q q q q

- 0. (39)

It is clear that equation 39 has exactly one positive root. The
root is less than or equal to 1 if and only if

a., + 2a. + 3a5 + ... + (n - 2)a <_ a-j^ . (40)

Equations 38 and 39 have exactly one positive root in q, and qy.
We shall show that if the roots satisfy the inequalities 1 _> q _> q ,
then for these roots q^q^ becomes a minimum. We can assume
that 2 < n, since the derivation of the minimum value of q, ... q
will be given later in this memorandum. It is clear that for any

alvalue q, > ̂  ———— equation 38 has exactly one positive root inx x — ao
q?. Denote this root by <t>(q-i). Hence, ^(qi) is defined for

aiall values qn > -^ ———— . it is easy to see thatj. j. ~* ao

-16-



lim <f> (q ) = + co

Hence (assuming a > 0)

lim ij> (q, ) = +

where - q

It is clear that lim <f>(q } = 0. Since a > 0, it follows fromn

*"equation 38 that q, [ ̂ (q-,)]" "*" has a positive lower bound when
q,-»-oa. But then, since n > 2, lim q, ^(q,) = + oo. From

the relations lim (p(q-,) = lim = + °° it follows

that the absolute minimum value of tp(q1 ) is reached for some
positive value q, . Since equations 38 and 39 have exactly one
positive root in q and q , the absolute minimum value of ^(q,
must be reached for this root. This proves our statement that
if the roots of equations 38 and 39 satisfy the inequalities

>̂  q >_ then for these roots q,q2 becomes a minimum con-
q issistent with our restrictions on q, and q-. If 1 >̂  q,

not satisfied by the roots of equations 38 and 39, then q is
equal either to 1 or to q and the minimum value of q^q^ is

2either <j>(l) or q , where q is the root of the equation

-17-



n a
_ = i - a
qr

How we shall determine the minimum of q, ... q. (2 < i < n).

First, we determine the minimum M. , of q, ... q. under the re-

striction that q2 = q.. Thus, we have to minimize q-iqV" under
the restriction that

...
ql qlq2 qiq2 qlq2

Using the Lagrange multiplier method, we obtain

"n

- a (40a)

(41)
\ /

and

i-2 X /a2 2a3 (n " 1)an
< i - 1)qlq2 -qT 4- +~r + —— + ———rT

1 \q2 q2 q2 / (41a)

Substituting ^————— for X (the value of X obtained from
i ~ clo

equation 41), we obtain

'a2 2a3 (n - l)an

0 q2 q2 q2 (42)

Prom equation 40a

a a
, ~~-

J- *™ a. I -1-
a + - +' ... + —— ~ 1 = 0 . (43 )

. - - ,-» f~+o q2 q2

-18-



From equations 42 and 43, we obtain

(i - 2)a (i - 3)a (i - n)a
(i - I)a1 + ——————- + ———^——- + ... + —————- = 0.

q2 q2 q2 (44)

From Descartes' sign rule it follows that equation 44 has exactly
one positive root.

Let q, = q, and q_ = q» be the roots of the equations 43 and

44. If 1 > q°  > q°  then M. = q̂ q?)1"1 . If 1 > q°  > q°  does
~~ -L ~~ ^ 1 J. 1 £• "~ 1 "̂ £

not hold, then M. , is either (q1)1 or (q11)1" , where q1 is the
root of the equation

n a.
L ——^T - 1 - a0 (45)
j = l (q')11 °

and q" is the root of the equation

a a a
a + — + ———^ + ... + ——"-—y = 1 - a . ( 4 6 )

-1- _ • ! / __ II \ ^ / __ l l \ l * J - *-*

q

Let Mir (r = 2,...,i-l) be the minimum of q, ... q.̂  under the
restriction that q, = . . . = q , = 1 and q ., = q.. Then M. can^ ^- ^ ^i ir
be calculated in the same way as M. ,; we have merely to make the
substitutions

*

n = n - r + 1
ao " ao + al + ••• + ar-l
* *i ( ] = l , . . . , n )

j = 1,...,n )
*

i = i - r + 1,

and we have to calculate the minimum of q, ... q.^ . Thus, we
have to solve the equations corresponding to equations 43 and 44,
i.e., the equations

-19-



* * *
a? a^ an

n*-lao \ q2 <q2) <q2)
(43*)

and
* * * * * * *

* * (i - 2)a (i - 3)a (i - n )a *
(i - Da. + ——————— - + —————— ——• + . . . + ——————————— = 0.

* * * n*-l
<32 <<32) (q2} (44*>

* *
Let q, = v, and q« = v9 be the positive roots of the equations

*
43* and 44*. If 1 _> v, >_ v , then M. = v v^ ~1 . If 1 >_ v >_ v

~ "~ JL "" ^ \ . \ - J L £ * \. £*

*
does not hold, then M. is equal to either (v1)1 or

*
(v")1 ~ , where v1 is the positive root of the equation

* *
n a .

and v" is the positive root of the equation

* an ao a
n*

(v»)2 (v»)n -

The minimum M^ of q, . . . q . ( i = 2,3,...,n-l) is equal to the
smallest of the i - 1 values M. ,,..., M. . , .

IX 1 / 1 — i

Now we shall determine the minimum of q . . . q . We show that

the minimum is reached when q, = ... = qn_i = 1« Suppose that
this is not true and we shall derive a contradiction^ Let j be
the smallest integer for which q. < 1 (j < n). Let q. = (1 + e)q.

_ q _
(e > 0), qn = ± +n e , and qr = qr for all r ji j» / n.

Then q . . . q . . . = q . . . q and
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n
E . - a
r=l

Hence, there exists a positive A < 1 such that

n a_

r=l q.

where
_

q = Aq^ J

* _q < q q = q q in contradiction toBut then q , .
the assumption that q, ... q is a minimum. Hence, we must have
q, = ... = qn i = 1« Then, from equation 26 it follows that the
minimum value of qn is given by

n
ao - al - - a n-l

If i > 1 but < n, the computation of the minimum value of q, ...
is involved,.since a large number of algebraic equations have to
be solved. In the next part we shall discuss some approximation
methods by means of which the amount of computational work can be
considerably reduced.
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PART III

APPROXIMATE DETERMINATION OF THE MAXIMUM VALUE OF THE PROBABILITY
THAT A PLANE WILL BE DOWNED BY A GIVEN NUMBER OF HITS1

The symbols defined in parts I and II will be used here without
further explanations. We have seen in part II that the exact
determination of the maximum value of P. (i < n) involves a con-
siderable amount of computational work, since a large number of
algebraic equations have to be solved. The purpose of this
memorandum is to derive some approximations to the maximum of P.
which can be computed much more easily than the exact values.

Let us denote the maximum of P. by P°  and let Q? = 1 - P? .

Thus, Q. is the minimum value of Q.. Before we derive approxi-

mate values of P. (or Q.) we shall discuss some simplifications

that can be made in calculating the exact value P. (or Q.)

assuming 1 < i < n. We have seen in part II that Q. is equal to
the smallest of the i - 1 values M. ,,..., M. . ,. We shall

XX X , X X
make some simplifications in calculating M. (r = l,...,i-l).

For this purpose consider the equation

* " - * - 1 - " - " - - - - (47)

a
It is clear that for any value u > -; ——————— - ———————— , equation1 - aQ - ... - ar-1
47 has exactly one positive root in v. Denote this root by <J> (u)

Thus, <f> (u) is defined for all values u > ̂ ————-————-————

In all that follows we shall assume that a. > 0 (i = l,...,n).
We shall prove that

u <J> ( u ) (48)

s part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo 88 and
AMP memo 76.3.
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and

"* > l - . ( u ) *•-* | . +. . (49)

u
rIt follows easily from equation 47 that if u-»-

~ ao ~ •" ~ ar-l
then 4> (u) ->• + CD . Since i > r, we see that equation 48 must
hold. It follows easily from equation 47 that lim 0 (u) = 0.

We also see from equation 47 that if u->o>, the product
must have a positive lower bound. Equation 49 follows
and the fact that lim <j> (u) = 0.

ln-ru <£ (u)
from this

U -J-oo

We have seen in part II that equations 43* and 44* have exactly
* *

one positive root in the unknowns, q, and q~. Let the root in

q.. be u°  . Then the root in q_ is equal to d> (u°  }.1̂ ir ^2 ^ Trv ir
From equations 48 and 49 it follows that u 10 (u) 1~r is

rstrictly decreasing in the interval •* ——————————————— < u < u? ,1 - aQ - ... - ar_1 ir

and is strictly increasing in the interval u. < u < + <» .

Denote by u' the positive root of the equation

... __ ... _. (50)
u u u

It is clear that u1 < 1 and 4> ( u ' ) = u ' . The value M . is
equal to the smallest of the three values

-'. -a u°r
A simplification in the calculation of M. can be achieved by
the fact that in some areas M- can be determined without

calculating the value u. . We consider three cases.

u£ |~4>r ( u£)l XCase A:

-23-



In this case,

M. = u1 I <j> (u») I1"1" if -=£ uU (u)|x~" > 0 for u =ir r Trv r du

and

M. =u. c|> (u. ) if -r— u <b (u) < 0 for u = u 1 .ir ir Trv ir' du yrv ' r

Case B: u.

In this case,

and

M. = U..(l)r~I- if -£• u U..(u)|J-~r < 0 for u = 1ir

[ -1 . _ p -i.
4> (u° ) x"r if ^2. u <b (u ) r~ r > 0 for u = 1,Tr ir du I Yr I

u^ [*(u;)liCase C: -r

In this case,

o f, . o ."I i-= u . ^>(u . )ir ir I ir I

We can easily calculate the value of —r— u <b ( u ) for u = u 1
J d u rr r

and u = 1. In fac t , we have

~r + ( i - r)u
(51)

d4>r(u) dvand —g—— = j— can be obtained from equation 47 as follows.
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Denote
a a .,_£ r+1

T T
n

u uv uv
by G(u,v). Then

d<)>r(u)
~~du

d_v
du

(52)

1

U

1
u

a

r r+1
\u uv
/•r+1 , 2ar+2 ,
^ v 2 v3

hi , 2ar+2 ,

^ "uvn-r/
(n - r )a \

- + v-^ )

, <" - "«n\ f
= <t> (u)T -W* \ /

v n-r+1

On the oasis of equations 51 and 52, we can easily obtain the

value of i-r for u = u1 and u = 1 if u1 and <J> (1)

have been calculated. If u = u1 , then <f> (u) = v = u1; if
u = 1, then v = <J> ( 1) .

Since $ (1) is equal to the root of the equation in v

,f ...

it follows from equation 50 that

(53)
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Thus, for carrying out the investigations of cases A, B, and C
for r = l,...,i-l, we merely have to calculate u',...,u!.

If we want to calculate Q°  for all values i < n, then it seems
best to compute first the n quantities uj,...,u'.

Since u£ = <l>r(u^) and <|>r(l) = u - ' we can sa¥ that M is
the smallest of the three values

,\i-r+l / . \i-r , o (", , o .1 i-ru ' , u ' , . , and u . H> ( u . )ry ' \ r+iy ' ir I Trx ir J

Since Q. is equal to the minimum of the i - 1 values,
M. ,,..., M. . -, , we see thatl J. i , i~" _L

Q°  1 tif (54)

where

t._ = Min ("(up1, (û )1'1,..., (û )2, uM . (55)

If n is large, it can be expected that Q. will be nearly equal to

t.. Thus, t. can be used as an approximation to Q. . In order
to see how good this approximation is, we shall derive a lower
bound z. for Q°  . If the difference t. - z. is small, we are

certain to have a satisfactory approximation to Q. . If t. - z.

is large, then t. still may be a good approximation to Q., since

it may be that z. is considerably below Q. .

To obtain a lower bound z. of Q., denote by y . (j = 0,1,..., i-1)
the proportion of planes (number of planes divided by the total
number of planes participating in combat) that would be downed
out of the returning planes with j hits if they were subject to
i - j additional hits. Then

Pi = yo + yl + *'* + yi-l + xl + X2 + * * * + xi
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It is clear that a.P.> y. (j = 0,1,..., i-1) and consequently

(ao + &1 + ... + a.̂ ) P± > yo

Hence,

y
°  j. * ...————̂  a

1"1 < P< • (57)

Equation 56 can be written

aQ

(58)

x, + ... + x.
+ (1 - a - ... - a. )-- ... - . _ _ ———— I - —— .o 1-1 1 aQ ... - ai_1

YO + ... + yi_1
Hence, P. is a yeighted average of —— - ———— - ————i a + ... + a and

x . + ... + x.
- ——————— - —— . Then, from equation 57 it follows that- -

X..+...+X.
p < ^ _————^_——— . (59)-

Since y. > 0, we obtain from equations 56 and 59

x, + ... + x.
x, + ... + x. < P. < _ L———————-i— . (60)1 i i J. aQ - ... ai_1

Hence,

x + ... + x.
1 - -j——±-———————i-—— < Q < l - (X, + ... + x. ) . (61)i - a - . . . - a 1 1 1
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In part II we have calculated the maximum value of x + ... + x..

Denote this maximum value by A.. Then a lower bound of Q. is
given by

A.
z . = 1 - _ 1———————— < Q°  . (62)i 1 - aQ - ... - ai_1 i

NUMERICAL EXAMPLE

The same notation will be used as in the numerical examples for
part I. q. is the probability of a plane surviving the i-th hit,
knowing that the first i - 1 hits did not down the plane. Then
the probability that a plane will survive i hits is given by

Qi = qlq2 ••' qi '

In part I it was assumed that

qi = q2 = ... = q. = qo (say),

which is equivalent to the assumption that the probability that a
plane will be shot down does not depend on the number of previous
non-destructive hits. Under this assumption

Q. - q1 .vi Mo

The example below is based on the assumption that

q, > q0 > ... > q ,_L —' ^ — — n

i.e., the probability of surviving the i + 1 hit is less than or
equal to the probability of surviving the i-th hit. In this
case, it is not possible to find an explicit formula for Q., but
a lower bound can be obtained. That is, a value of Q. can be
found such that the actual value of Q. must lie above it. The

o
greatest lower bound is denoted by Q. . Hence, we have

o
î — i

If

o o
i i'
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P. is the least upper bound of P.; that is, the probability of

being downed by i bullets cannot be greater than P. .

Since the computation of the exact value of Q. is relatively
complex/ an approximate formula has been developed. This
approximation is called t. and t. _>. Q-; • Another approximation

(z.) is available such that z. _< Q. . However, z. is not as
accurate as t.. Whenever the full computation is to be omitted,
it is recommended that t. be used.i

The observed data of example 1, part I, will be used. Thus,

a = .80, a. = .08, an = .05, a_ = .01, a. = .005, a_ = .005o 1 2 3 4 5

The calculations are in three sections:

• The calculation of t. > Q.,i — i
• The calculation of z. _< Q?.

• The exact value of Q..

1. Calculation of t^ (t̂  Q?)

(1) Calculate u', the positive root of equation 50:

a a . ar r+1 n _ ,
~ + ~^2~ + ' *' + un-r+l ~ -1 " ao ~ ' *' " ar-l '

For r = 1, we obtain

+ + + + .
u u2 u3 V ?
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which reduces to

.20u5 - .08u4 - .05u3 - .Olu2 - .005u - .005 = 0

u = .851 .

For r = 2,

3.̂  cl_ 3. ̂ ^c

— + -̂  + -|+^=l-a o - a ,
u u u u

which reduces to

.12u4 - ,05u3 - .Olu2 - .005u = 0

u^ = .722 .

For r = 3,

a a a
+ 0 + 0 — J_ — a — a, — a „ .2 3 o 1 2u u u

which reduces to

.07u3 - .Olu2 - .005u - .005 = 0

u^ = .531 .

For r = 4,

^ + ̂| = i ~ ao - al - a2 ' a3'

which reduces to

.06u2 - .005u - .005 = 0

u^ = .333 .

(2) t,,...,t are given by equation 54
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ti = Min [(up1, (up1'1,..., (uĵ )2, (u!)j

We have

u| a .851, u^ = .722, u^ = .531, u^ = .333 .

Hence,

ti = Min [(up] = u^
= .851

t2 = Min [(û )2, (up]
= Min [.724, .722 ]
= .722

t3 = Min [(up3, (up2, (up]
= Min [.616, .521, .531]
= .521

t4 = Min [(up4, (up3, (up2, (u4)]
= Min [.524, .376, .282, .333] -
= .282

t,. is not calculated since the exact value of Q,- can be
easily obtained.

2. Calculation of z. (z. < Q?)
X X *•"* X

The following values must be obtained:

q , the root of equation 26A

This has already been obtained as u' . Thus q = .851. The1 o
values of x1,...,x[- have been calculated in part I:
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= .030, x = .013, x = .004, x = .002, K = .001,

A. = x + x + . . . + x . .
J~ J_ £* -L

A = x = .030

A2 = x, + x~ = .043

A3 = x, + x + x3 = .047

A. = x, + x~ + x~ + x, = .049

Ac = xn + x~ + x.. + x. + xn = .050.5 1 2 3 4 5

From equation 62 the lower bounds z. are calculated

z . = 1 - , ——————— ——————— < Q°  .i 1 - a - . . . - a .

Then

i Al , .030zi = 1 - r̂ - = x - T2o = -850

i A2 n .043 ..„
Z2 = l ~ 1 - a - a = X - ̂12 = «642

„ _ , _____ 3 _______ .0477 - J- - ~i — 3 — - —— ~ — r —— _ -, - J. - —— prrr3 1 - a - a - a .07

, _ i _ _______ i __________ _ _ .049
4 1 - ao - ai - a, - a3 - 1 .06

z,. is not calculated since Qj. can be obtained directly,

3. The Exact Value of Q°

We have calculated t. and z. such that
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zi 1 QI 1 fci (* * 1/2,...,5) .

The exact value of Q. is obtained as follows:

i-r+l . , . i-r o f .0 .li-r I, (ur+1) , uir |̂ r(ulr) J ,Mir« Min j(ur)

where u? and <|> (u? ) will be defined below.

Q°  = Min lMil/...,Mi i-:i]

or combining these equations with the definition of t. we obtain

= Min ftJ = .851

°Q°  = Min |t, uf 41

°  = Min |t3/ u^t 4>1(u°1)]

= Min

If u? > 1, *r(uirM > lf °r Uir < *r^uir^' t"6"

<j>r(u. ) ~ is neglected in the equations above.

Q° = _________ ___________
5 - i -ao -ai -a, -a, -a4 - .055

In the equation of Q? the additional quantities we have to
compute are

o o
U 0 1 A , ( U 0 1 )21 1 21

O Ou-^i <M U -JI)oi i ji
o , . o .

U32 4>2(U32)

o . . o .u ., <P, ( u , , )41 lx 41'
O fL O

U Y ( 11 \
m n O \ A "~l '

U« *3'U«'
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The following equations have exactly one positive root in q*, q*

The root in q* is u°  ; the root in q* is <J> (u? ) .
•J- -LIT £, 77 If

2 a
a* + _ + — - + ... + ——— = (1 - a *)q* ,

q (q2 (q*)n l °  1

where q* satisfies

(i* - 2)a* U* - 3)a* (i* - n*)a*.
(i* - Da* + ——————— ± + —————— 5-1 + ... + ————— " = o,

where

n* = n - r + 1

a* =a + a, + ... + a .o o 1 r-1
_ -ff __ _ / ' - i ^ l O 4e s

i* = i - r + 1 .

The details of the computation are given in tables 2 and 3.

TABLE 2

ii i r n* i* 3* a* s* a* 3* a*u • -L. i. 11 J. a a.. ci „ ci-, d. a _

O
U21
o
U31
o

o

o
U42
o

U43

2

3

3

4

4

4

1

1

2

1

2

3

5

5

4

5

4

3

2

3

2

4

3

2

.80

.80

.88

.80

.88

.93

.08

.08

.05

.08

.05

.01

.05

.05

.01

.05

.01

.005

.01

.01

.005

.01

.005

.005

.005

.005

.005

.005

.005

.005

.005

.005

where

aQ = .80, a1 = .08, &2 = .05, a3 = .01, a^ = .005, a5 = .005
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TABLE 3

Computation
of Equation

(i*-2)a* (i*-3)a* (i*-4)a* (i*-S)a*

Numerical Equation

.08(q*)4 - .OKq*)2 - .01(q*) - .015 - 0

Result
Obtained

.774

21

aj a! a a?
(1-a*)q* „ .05 .01 .005 .005 „ ..08 + ——— + ————- + ————- + ————- - .20q*

.774 (.774) (.774) (.774)
.932

<i*-2)a; <i*-3)a* (i*-3)aj (i*-5)aj
(i*-1)ar + —————- +———r-^ +-———r-= + ————^ - 0 .16(qJ)4 + .05(q*)3 - .005(q*> - .01 - 0 .463

.oa.̂ .̂ ô .̂ oô .̂ oô .
.463 (.463) (.463) (.463)

1.968"

(jJ
U1

(i*-2)a* (i*-3)a« (i«-4)a*

*
05(q*2) - .005(q*) - .01 " 0 .642

32

a5 a3 «Ja* + — + —i-r + —^ - (1-a*
a* (a*) (o*>q2 lq2 >q2'

.to5+iO!.+ ̂ 05_^+-^5_^..12q.
.642 (.642) (.642)

.80S

VV.'
(i*-2)al (i*-3)a? (i*-4)a<| (i*-S)a*

(i*-1)a* + _____- •»• _____- + _____- + _____-
' _* / _* » * I _* \ •* I _* * ̂

.24(qJ)4 + .10(qJ)3 + .Ol(qJ)2 - .005 - 0 .29C



TABLE 3 (Continued)

Computation
of Numerical Equation Result

Obtained

41 - ( 1-» .08 + .05 .01 .005 .005

.290 (.290)2 (.290)3 (.29014 '""I 6.402

<1«-2)aJ (i*-3)a» (i*-4)aj
(i*-1)a* + —————— + ———$— + ————3— • 0 .10(q*)3 + .OKq*)2 - .005 - 0

o
U42

qj .338 (.338) (.338)
2.108

I
U)

(i*-2)aj (i*-3)a*
(i*-1)a| + —————— + -———:;— - 0

qj
.OKq*)' - .005 - 0 .707

43

"I a' .0, + ̂  +
.707 (.707)

.387"

l.968 > 1 :. not used.

6.402 > 1 .'. is not used.

2.108 > 1;-

.387



Substituting the values from table 3 in equation A and neglecting
several terms as explained in table 3, we have

Q°  = .851

Q°  = Min {.722, .721} = .721

Q°  = Min {.521, .517} = .517

Q4 = .282

Q°  = .091

The results obtained are shown in table 4.

TABLE 4

i

1

2

3

4

5

z .i

.851

.642

.329

.183

__

Q •i

.851

.721

.517

.282

.091

t.i

.851

.722

.521

.282

__

q-1-
o

.851

.724

.616

.524

.446

Thus, with the observed data, this example, if all the
information available about the g.'s is that

q > q > ... > q ,
J. """ £- """" "" D

all we can say about the Q. is that

Q >_ .85, Q _> .72, Q >̂  .52, Q _> .28, Q = .09

Note that
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This is always true.

It is interesting to compare Q. with the values of Q. obtained
under the assumption that all the q.'s are equal and have the
value q . Under this assumption,

Qi = q* (i = 1,2,...,5).

In table 4, Q, = q and Q~ is very close to q . Q., and q

differ by approximately .1 and the agreement between Q. and

q gets progressively worse. It will usually be true that q

and Q. are approximately equal for small values of i,- but will
differ widely as i increases.
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PART IV

MINIMUM AND MAXIMUM VALUE OF THE PROBABILITY THAT A PLANE
WILL BE DOWNED BY A GIVEN NUMBER OF HITS CALCULATED UNDER

SOME FURTHER RESTRICTIONS ON THE

PROBABILITIES q1,...,qn"L

In parts I, II, and III we merely assumed that q1 _> q _> ... >̂  q
In many cases we may have some further a priori knowledge
concerning the values ch/...,q . We shall consider
here the case when it is known a priori that Xjq-;.< q-j + i <_
(j = l,...,n-l), where X and A (A, < \ < 1) are known
positive constants.

We shall also assume that

n a .
Jfciq=u (63)

Since a, + a2 + ... + a < l - a , the inequality in equation
63 is certainly fulfilled if A, is sufficiently near 1. It
follows immediately from equations 63 and 26 that q < 1.

CALCULATION OF THE MINIMUM VALUE OF Q. = 1 - P. (i < n)

Let q,,...,q be the values of q,,...,q for which Q. becomes
a minimum. We shall prove the following.

Lemma 1; The relations

qj+l = X2qj (j = i"-""-1) (64)

must hold.

Proof:- Suppose that the relation in equation 64 does not hold
for at least one value j > i and we shall derive a contradiction

s part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo 89 and
AMP memo 76.4.
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Let q£ = q°  for r = lf...,i and <3^ + 1 = X2ql for j = i,...,n-l,
Then we have

and q. .

Hence, there exists a positive value A < 1 such that

n a.
«̂tf rt " r-f" r> '

where q1! = Aq1. (j = l,...,n). But then

in contradiction to our assumption that q, ... q? is a minimum.
Hence , Lemma 1 is proved .

Lemma 2 ; If j is the smallest integer such that q, , = X0q, for—————— • —— JC"rJ_ £. K.

all k > j, then q°  = X,q°  , for r = 2,3,...,j-l.— r j. r~ j.

Proof: Assume that Lemma 2 does not hold and we shall derive a
contradiction. Let u be the smallest integer greater than one
such that q > A q . It follows from the definition of the

integer u that if u > 2, then q _, = X,q ». From assumption 63

it follows that q, < 1. Hence, if we replace q , by

qu-1= (1 + e)4"u_3_ (e > O)» then for sufficiently small e the
inequalities X,q £ ^r+1 — 2̂̂ r ^r = l'««''n~l) will not be
disturbed. Let v be the smallest integer greater than or equal
to u such that q , < X?q . Since by assumption j is the

smallest integer such that 4"j,+i = 2̂̂ k ̂ or a^ ̂  — ^ ' we raust

have q. < X^q, -, . Hence, v < j-1. It is clear that replacing
J *• j~-*- ~

o vq by q1 = -z — - — - we shall not disturb the inequalities
V V J. T o

*lqr - qr+l - X2qr (r = l f * «"n-1). Hence, if
-40-



o
e) ' * - -

for r ̂ u, X v, then A.̂  _< q£+1 £ A2q£ (k = l,...,n-l) is ful
filled. Furthermore, we have

o o n
' ... q = q . .. q and £

"l

Hence, there exists a positive A < 1 such that

f *j 1 a_A< q'1 . . . q!! o

and q!,1 = Aq̂ ! (j = l,...,n). But then

in contradiction to the assumption that q°  ... q? is a minimum.
Hence, Lemma 2 is proved.

Let E. (r = l,...,i-l) be the minimum value of Q. under the

restriction that q^ + i = q̂-i ^or J = r+l/'-«/n~l 'j.! i •
for 3 = l,...-,r-l. From Lemma 1 and 2 it follows that the mini-
mum of Q. is equal to the smallest of the i - 1 values E.,,...,E. . ,,i i j . i , i — J.
The computation of the exact value of E. can be carried out
in a way similar to the computation of M. described in part
II. Since these computations are involved if n is large, we shall
discuss here an approximation method.

Let E? (r = l,...,i-l) be the value of Q. if q.., = X«q . for
I T X f c

j = r+l,...,n-l and q-j + i = \[9-; for J = If •••**•. Furthermore,
let E£Q be the value of (̂  if q^+1 = X2q • (j = l,...,n-l). Then,
if n is large, the minimum of E? „ , and Elf will be nearly equali / 1*~ x xir
to E. . Hence, we obtain an approximation to the minimum of Q.
by taking the minimum of the i numbers E* , £*,,...,£* . ,.

1O 1 J. lfl"~J.
The quantity E. can be computed as follows. Let g be the
positive root in q of the equation
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r+1 a .
3

j(j-l')
2 j

n-r-1 , , , .r+1+3
•

r3 . 2 r+l+jX q
(66)

(r = 0,1

Then

E*ir = Xl

(i-r)(i-r-l)

(67)

MINIMUM OP Qn

Let q, ,...,q be values of q,,...,q for which Q becomes a

minimum. We shall prove that q - , - , . (j = l,...rn-l).

Assume that there exists a value j < n such that q- , - . > X q.

and we shall derive a contradiction. Let u be the smallest

integer such that q°+1 > ^iq^ and let v be the largest integer
o

such that q°+1 > Xiq°  . Let qu = ( 1 + e)q°  (e > O) , q;+1= 3——

and q! = q°  for j ̂  u, ̂  v+1. Then for sufficiently

small e we shall have X,q' £ q^+l — ^2qr ^r = J-''--'11"1)*
Furthermore , we have

n a .
and - a

Hence, there exists a positive A < 1 such that q1! =
( j = 1 , . . . , n ) and

q'.

n
^
= q

a .
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But then q" ... q" < q, ... q in contradiction to the assumption

that q*? ... q°  is a minimum. Hence, our statement is proved.

If q is the root of the equation

a .

n(n-l)
then the minimum of Q is equal to A, q

MAXIMUM OF Q^ (i < n)

Let q?,...,q* be values of qlf.../q for which Q. becomes a
maximum. We shall prove the following:

Lemma 3 ; The relations

Xlqj (68)

must hold.

Proof: Assume that there exists an integer j _> i such that
q*,i > ^q* and we shall derive a contradiction. Let q1 = q*
for r = !,..., i and let q' = q' (j = i,...,n-l). Then

q- .. . = q* . q* and
n

h «i ••• qj * l ' a°
Hence, there exists a value A > 1 such that

n a .
3 - a

where q!j = Aq! (j = l,...,n). But then
contradiction to the assumption that q*
Hence, Lemma 3 is proved.

<3i > qf ••
is a maximum.

q* in
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Lemma 4: If for some j < i we have q*,-, > ^-, q* then

k+l
= X2qk f°r

Proof: Assume that q* > X,q* for some j < i and that there

exists an integer k _< j-1 such that q£ , < ^2qv * We sna-1--'-
derive a contradiction from this assumption. Let u be the
smallest integer such that q*,-, < 2̂

q* . Furthermore, let v be
the smallest integer greater than or equal to u + 1 such that

v+l Xlqv Zt is clear that v

q1 = (1 + e) q*
ciently small e we have

/ and q1 = q* for r 7* u,
Let q^ = 1 g (e > O) ,

v. Then for suffi-

xlqj 1 1 X
2
qj

Furthermore, we have

| . . . q! = q*
n a .

q*. and ̂ q. ..? q.

Hence, there exists a value A > 1 such that

n
-, rT= q

a .
3 _ i _ =,

~

where q1.' = Aq! (j = i,...,n). But then q" .. q1.' > q*
contradiction to the assumption that q?

q1.1 in
is a maximum.

Let D. (r = l,...,i-l) be the maximum of Q. under the restric-
tion that q. = A,q. for j = r+l,...,n-l and q. = X q. for

From Lemma 3 and 4 it follows that the maximum of
., D. . , .

*~

j = l,...,r-l.
Q. is equal to the maximum of the i - 1 values D. ,,
1 XX

The computation of the exact value of D. can be carried out in a
way similar to the computation of M. in part II. Since these
computations are involved if n is large, we shall discuss here
only an approximation method.
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Let D* (r = l,...,i-l) be the value of Q. if q. = A,q. for

j = r+l,...,n-l and q-j+1 = 2̂
q-i for J = l/--«/ r' Furthermore,

let D?o be the value of Q̂  if q. = X̂ . (j = l,...,n-l). Then,
if A, is not much below one, the maximum of D* and D* ,J. ir i, r— j.
(r = l,...,i-l) will be nearly equal to D. . Hence, we obtain an
approximation to the maximum value of Q. by taking the largest of
the i values D* ,...,0? . -.

The value of. D? can be determined as follows. Let g be the
root in q of the equation

r+1 a . n— r— 1 a
j ( j - l ) '

X 2 ^
^i ^(r+l)^^; j ( j+ l ) " "o3 1 . 2 +jr/ 2 r+l+jX2 X1 q

Then

(i-r-1) (i-r)
i 2 A 2 ~i{2 Xl 9r

MAXIMUM OF Qn

We shall prove that the maximum of Q is reached when
(j = l,...,n-l). Denote by q| ... q* the values of q, ... q
for which Q becomes a maximum. We shall assume that there
exists a value j < n such that q*.-, < A9q^ and we shall deriveJ "*"•*• *• j
a contradiction from this assumption. Let u be the smallest and
v be the largest integer such that q* , < Xnq* and q* , < A0g* .U-rJ. ^ U V+X / V

q*
Let q^ = ̂  ̂ U

£ (e > O) , qv+1 = ( l + e ) q^+1r and q̂ . = q* for
r ̂  u, / v+1. Then for sufficiently small e we shall have
Alqr < qr+1 < A2qr (r " l-'-n-l).
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Furthermore, we have

n q .
ql '' ' qA = ql ' * • qn and ̂  &——2~^r > 1 ~ ao-L ri x a * • • " -

Hence, there exists a value A > 1 such that q'.' = Aq'
( j = 1, . . . ,n) and

n a.
= 1 - a

But then q',1 ... q" > q? ... q* in contradiction to the assumption
that q* ... q* is a maximum. Hence, our statement is proved.

The maximum of Q is equal to

n(n-l)
2 n '

2
where q is the root of the equation

n a.«—» "i = 1 - a
J(J-D

,̂ ,j

NUMERICAL EXAMPLE

The same notation will be used as in the previous numerical
examples. The assumption of no sampling error, which is common
to all the previous examples, is retained. In part I it was
assumed that the q., the probability of a plane surviving the
i-th hit, knowing that the first i - 1 hits did not down the
plane, were equal for all i (q, = q« = ... = q = q (say)).
Under this assumption, the exact value of the probability of a
plane surviving i hits is given by

Qi = qo '

In part III it was assumed that q > q > ... > q . Since no1 — 2. — — n
lower limit is assumed in the decrease from q. to q. , only a
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lower bound to the Q. could be obtained. The assumption here is
that the decrease from q. to q-., lies between definite limits.
Therefore, both an upper and lower bound for the Q. can be
obtained.

We assume that

where X < X < 1 and such that the expression

A 2Al

is satisfied.

The exact solution is tedious but close approximations to the
upper and lower bounds to the Q. for i < n can be obtained by
the following procedure. The set of hypothetical data used is

aQ = .780 a3 = .010
a, = .070 a. = .005
a = .040 a,. = .005^ o
X^ = .80 X2 = .90

Condition A is satisfied, since by substitution

.07
.8 (.8)J (.8)b (.8)±U

which is less than

1 - ao = .22 .

THE LOWER LIMIT OF

The first step is to solve equation 66. This involves the
solution of the following four equations for positive roots g ,

g2' g3'

-47-



a4 + S5 = i - ao = .22 (B)
,

q X q \y X q \2 q

.07 .04 + .01 + .005 + .005 _

.92 .729q3 .531441q4 .348678q5q . q

22q5 - .07q4 - .044444q3 - .013717q2 - .009408q - .014340 = 0

q
^

= .844.

al S2 a3 ± 94 ._ , 5 = i - a ' (C)
— — + - + + 5q Aiq AlA2M ,v̂  x ̂

_________ ___ _____.005______

(.64)(.9)q3 (.512)(.729)q4 (. 4096)(.531441)q!
1̂1 + ̂£4 ̂  __^gl___ + _ :005__^_4

q . Oq

<22q5 _ .07q4 _ .05q3 - .017361q2 - .013396q - .022970 - 0

g;L = .904.

al . a2_ , "3_ + _!4 + _^5 = , _ a

.01 - .005 _ j. -005——————F = .2207 .04 ^ .01 . •VVJ———-,. +
——— + ———" + —————^ (.32768)(.9)q4 (. 209715)(.729)q

.22q5 - .07q4 - .05q3 - .019531q2 - .016954q - .032705 - 0

g2 - .941.
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.07 .04 .01 .005 .005

q .8q2 .512q3 .262144q4 (. 134218) (. 9 )q5

22q5 - .07q4 - .05q3 - .019531q2 - .019073q - .041392 = 0

g3 = .964 .

Next, calculate the i numbers defined by

ir

where

- r -

go = .844
g-j^ = .904

g2 = .941
g = .964

The minimum of the E* (r = 0,...,i-l) will be the lower limit of
Q.. The computations are given in table 5.
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TABLE 5

COMPUTATION OF LOWER LIMIT OF Q._

Qi
Q-L 1 u

i

1

r

0

a(i,r)

0

b(i,r)

0

9r

.844

gr

.844

E*ir

,844

Min CE*Q] = .844

Q2 2

2

0

1

0

1

1

0

.844

.904

.712

.817

.641

.654

Min [E*0, E*x] = .641

Q3 3

3

3

0

1
2

0

2

3

3

1

0

.844

.904

.941

.601

,739

.833

.438

.426

.427

Min = .426

Q4 4

4

4

4

0

1

2

3

0

3

5

6

6

3

1

0

.844

.904

.941

.964

.507

.668

.784

.864

.270

.249

.231

.226

Min = -226
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The lower limit of Q can be obtained directly. The lower limit
of

Q5 - xj"q5 ,

where q is the positive root of

a a a a
_, *_. 4. °  . ^ i J _ 1 at n T -̂  -5 T > * T -*-/* r- ~̂ JL Cl

Xig2 Xjq3 X6q4 Xfq5

.07 ^ .04 _,_ .01 ^ .005 _,_ .005 00—— + ——2 + ————3 + ——————T + ———————F = .22
q .8q .512q .262144q .107374q

q = .974 .

The lower limit of

Q5 = (.8)10(.974)5 = .094 .

THE UPPER LIMIT OF Q.

The computations for the upper limit of Q, are entirely analogous
to the computations of the lower limit. First, we solve the
equations of part IV, which for this example are the following:

,33 T ,64Xj_q Xiq

07 ^ .04 _,_ .01 ^ .005 ^ .005 _ _+ ——j + ————^ + ———————j + ———————^ = .22
q .8q̂  .5J.2qJ .262144qf* .107374q°

22q5 - .07q4 - .05q3 - .019531q2 - .019073q - .046566 = 0

g* = .974
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a4 a5
" a2, 3 ,3,3 4 4.6 5 ~ - " o

2xxq X2xiq X2xiq

,07 .04 .01 .005 .005_____ _____ _______

q .9q2 (.81)(.8)q3 ( . 729) ( , 512)q4 ( . 6561 ) ( . 262144)q5

22q5 - .07q4 - .044444q3 - .015432q2 - .013396q - .029071 = 0

g* = .905

al a
2
 a3 a

4
 a

5

2 3 3 5 4
I \2q X2Xlq

,07 .04 .01 ____.005____ _____.005______ _

q .9q2 .729q3 (.59049)(.8)q4 (.512)(.478297)q5

22q5 - .07q4 - .044444q3 - .013717q2 - .010584q - .020417 = 0

g* = .869

»- a2- -5-5 -g-j -g- —— 5 -
2q 2q 2 lq

.07 .04 .01 .005 .005—— + ——- + ————- + ———————7 + ————————————=• = .22
q .9q .729q .531441q {.387420)(.8)q

22q5 - .07q4 - .044444q3 - .013717q2 - .009408q - .016132 = 0

g = .851
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Next, calculate the i numbers defined by

Dir = *2(l'r) *i(l'r) ̂ r1 (r = 0,l,...,i-l)

where

. . rfr + i)

(i-D(i-r-l)

g* = .974
g* = .905
g* * .869
g* = .851

The maximum of the D*r (r = 0,...,i-l) will be the upper limit of
Q.. The computations are given in table 6.

The upper limit of Q_ can be obtained directly. The limit of

Q5 = \2 q ,

where q* is the positive root of

07 .04 .01 .005 . .005f ——— =• +
q .9q̂  .729q .531441q* .348678q

q* = .844.
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TABLE 6

COMPUTATION OF UPPER LIMIT OF Q.

Qi
Ql

i

1

r

0

a( i , r )

0

b(i , r )

0

g*^r

.974

*igr-

.974

D*ir

.974

Max CD*Q] = .974

Q2
2

2

0

1

0

1

I

0

.974

.905

.949

.819

.759

.737

Max [D*0, D*x] = .759

Q3 3

3

3

0

1
2

0

2

3

3

1

0

.974

.905

.869

.924

.741

.656

.473

.480

.478

Max [D*0. D*31, D32] = .480

Q4 4

4

4

4

0

1

2

3

0

3

5

6

6

3

1

0

.974

.905

.869

.851

.890

.671

.570

.524

.236

.250

.269

.279

= .279
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The upper limit of

Q5 = (.9)10(.844)5 = .149

Sultunarizing the results, the upper and lower limits of the
probability of a plane surviving i hits are given by

.844 < Q1 < .974

.641 < Q2 < .759

.426 < Q3 < .480

.226 < Q4 < .279

.094 < Q < .149
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PART V

SUBDIVISION OF THE PLANE INTO SEVERAL
EQUI-VULNERABILITY AREAS1

In parts I through IV we have considered the probability that a
plane will be downed by a hit without any reference to the part
of the plane that receives the hit. Undoubtedly, the probability
of downing a plane by a hit will depend considerably upon the
part that receives the hit. The purpose of this memorandum is to
extend the previous results to the more general case where the
probability of downing a plane by a hit depends on the part of
the plane sustaining the hit. To carry out this generalization
of the theory, we shall subdivide the plane into k equi-
vulnerability areas A, ,...,A,. For any set of non-negative
integers i,,...,i, let P(i,,...,i, ) be the probability that aJ. Jc J. fC
plane will be downed if the area A, receives i, hits, the area
A0 receives i0 hits,..., and the area A, receives i, -hits. Let
^ £. K. K.

Q(i1 , . . . , i k ) = 1 - P ( i l f . . . , i k ) . Then Q ( i l f . . . , i k ) is the prob-
ability that the plane will not be downed if the areas A ,. . . ,A,

jL Kl
receive i1 ,.* *,i, hits, respectively* We shall assume that

_L JC
Q(i ,.,.,i ) is a symmetric function of the arguments i ,...,i .I K I K .

To estimate the value of Q(i ,...,i,) from the damage to
returning planes, we need to know the probability distribution of
hits over the k areas A,,...,A, knowing merely the total number
of hits received. In other words, for any positive integer i we
need to know the conditional probability Y, (i, ,. . . , i, ) that the
areas A,,...,Ak will receive i,,...,ik hits, respectively,
knowing that the total number of hits is i. Of course,
Y-( i, ,. . . , i,) is defined only for values i,,...,i, for which
1 J_ K X K.

i + ... + i, = i . To avoid confusion, it should be emphasized
1 K.

that the probability Yj(ii»•••rik) is determined under the

s part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo 96 and
AMP memo 76.5.
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assumption that dummy bullets are used. It can easily be shown
that it is impossible to estimate both Y. (i, , . . . , i, ) and

X X JC
Q(i,,...,i, ) from the damage to returning planes only. To see
this, assume that k is equal to 2 and all hits on the returning
planes were located in the area A, . This fact could be explained
in two different ways. One explanation could be that
Y. (i,,i ) = 0 for i» > 0. The other possible explanation would be that
Q(i.,i ) = 0 for i > 0. Hence, it is impossible to estimate
both Yi(i1,i2) and Q(i-L,i2)« Fortunately, Ŷ ijy . . . , ik) can be
assumed to be known a priori (on the basis of the dispersion of
the guns), or can be established experimentally by firing with
dummy bullets and recording the hits scored. Thus, in what
follows we shall assume that Y. (i. ,. . . , i, ) is known for any set

1 -L JC
of integers i .,..., i, .

Clearly, the probability that i hits will not down the plane is
given by

QI =L ••• £ \(i1,.»,ik)Q(i1,...,ik), (69)

where the summation is to be taken over all non-negative integers
,,...,i, for which i,i,,...,i, for which i, + . . . + i = i

&. (i,,...,i,) be the conditional probability that the areas
A,,..., A, received i ,...,i, hits, respectively, knowing that the

-L J C X X
plane received i hits and that the plane was not downed. Then we
have

(70)

Of course, 6. (i, , . . . , i, ) is defined only for non-negative
.L J. JC

integers i, , . . . , i, for which i, + . . . + i = i .
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The probability <5.(i,...,i) can be determined from the distri
1 -L K

bution of hits on returning planes. In fact, let a( i.. , . . ., i, )
be the proportion of planes (out of the total number of planes
participating in combat) that returned with i hits on area A ,
i_ hits on area A_,..., and i hits on area A^. Then we

obviously have

a(i, , .. ., i, )
a.i

From equations 70 and 71, we obtain

(72)

Since Q. can be estimated by methods described in parts I through
IV, estimates of Q(i, ,...,!,) can be obtained from equation 72.

According to equation 29, the probabilities Q,,...,Q satisfy the
equation

.£ ̂  - 1 - ao . (73)

We have assumed that q >_ q2 >_ ... >_ q . This is equivalent to
stating that

-A±i. < -1±1 for j < i . (74)
Qi " °j

A similar assumption can be made with respect to the prob-
abilities Q(i, , . . ., i, ) . In fact, the conditional probability

JL K.
that an additional hit on the area A will not down the plane
knowing that the areas AI , . . ., A, have already sustained
i.,...,!, hits, respectively, is given by
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n — i i i T r .
yill'""1r-l' r' "*"1

(75)

Obviously, we can assume that if

J2 1

then

Q ( i , . . . > i _ , i+l , i , . . . , ik ) Q( ĵ . . . , Jr_1/ Jr+l, J

(76)
for r = 1,2, ... ,k.

Hence, the possible values of Q, , ...,Q are restricted to those
for which equation 73 is fulfilled and for which the quantities
Q(i ,...,i, ) computed from equation 72 are less than or equal to
one and satisfy the inequalities of equation 76. It should be
remarked that the inequalities of equation 76 do not follow from
the inequalities of equation 74. From equation 72 and the
inequality Q(i ,...,i, ) £ 1, it follows that

a. y. (i, ,. ..,i,_)

If the right-hand side expression in equation 77 happens to be
less than one, then equation 77 imposes a restriction on Q. .
Since

= 4-"

(the summation is taken over all values i, ,...,i, for which
i-,+ ... + ik = i), we must have either
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a.Y.(ilf...,ik)
a (i ,. . . , i )

for all values i,,...,i, for which i, + .. . + i, = i, or

a. Y. (i, ,. . . ,i.1 1 1 K <

at least for one set of values i,,...,i, satisfying the condition
i + . . . + i, = i . Hence, equation 77 gives an upper bound for
1 K

Q. whenever there exists a set of integers i,,...,i, such that1 JL K.
i.. + ... + i, = i and

_L k

ai
It is of interest to investigate the case of independence, i.e.,
the case when the probability that an additional hit will not
down the plane does not depend on the number and distribution of
hits already received. Denote by q(i) the probability that a
single hit on the area A. will not down the plane. Then under
the assumption of independence we have

il i2 ik
Q(ilf...,ik) = [q(l)l -1 [q(2)J * ... [q(k)J * . (78)

Hence, the only unknown probabilities are q(1),..*,q(k).

Let Y(i) be the conditional probability that the area A. is hit
knowing that the plane received exactly one hit. Obviously

tY(k)] k . (79),J. •. •
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Similarly, let <$(i) be the conditional probability that the area
A. is hit knowing that the plane received exactly one hit and
this hit did not down the plane. Because of the assumption of
independence, we have

6, (i,,. ..,!,.) = • , ' —— TT [6(D] ... [6(JO1 . (CO)
J- -L JS. J. -.:... 1, i

Furthermore, we have

5(1, =

Since the probability q that a single hit does not down the plane
k

is equal to £ Y(i)q(i), we obtain from equation 81

(82)

Because of the assumption of independence, we see that 6(i) is
equal to the ratio of the total number of hits in the area A. of
the returning planes to the total number of hits received by the
returning planes. That is

£ • • • £ Jia< Jj." • • '3fc)
Jk 1),

6(i) = ————— ± ————— i ———————————————————— . (83)

Since Y(i) is assumed to be known and since 6(i) can be computed
from equation 83, we see from equation 82 that q(i) can be
determined as soon as the value of q is known. The value of q
can be obtained by solving the equation

n a .
£ -i = 1 - a . (84)
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NUMERICAL EXAMPLE

In the examples for parts I, III, and IV we have estimated the
probability that a plane will be downed without reference to the
part of the plane that receives the hit. However, the vulner-
ability of a particular part (say the motors) may be of interest
and this example illustrates the methods of estimating part
vulnerabilities under the following assumptions:

• The number of planes participating in combat is large so
that sampling errors can be neglected.

• The probability that a hit will down the plane does not
depend on the number of previous non-destructive hits. That
is, qi = q2 = ... = qn = qo .

• Given that a shot has hit the plane, the probability that
it hit a particular part is assumed to be known. In this
example it is put equal to the ratio of the area of this
part to the total surface area of the plane.-"-

• The division of the plane into several parts is repre-
sentative of all the planes of the mission. If the types of
planes are radically different so that no representative
division is possible, we may consider the different classes
of planes separately.

Consider the following example. Of 400 planes on a bombing
mission, 359 return. Of these, 240 were not hit, 68 had one hit,
29 had two hits, 12 had three hits, and 10 had four hits.
Following the example in part I we have

N = 400,

whence

A = 240 a = .600o o
h = 6 8 a^ = .170
A2 = 2 9 a2 = .072

A- = 12 a- = .030
•j O

A. = 1 0 a. = .0254 4

•'-By area is meant here the component of the area perpendic-
ular to the direction of the enemy attack. If this direction
varies during the combat, some proper average direction may be
taken.
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As before, the probability that a single hit will not down the
plane is given by the root of

q
2

o

4̂
4 lo '

which reduces to

- .030qQ - .025 = 0

and

q = .850^

Suppose that we are interested in estimating the vulnerability of
the engines, the fuselage, and the fuel system. Assume that the
following data is representative of all the planes of the
mission:

Part number Description

2 engines

Fuselage

Fuel system

All other parts

Total area

Ratio of
area of part
to total

Area of

35

45

20

30

130

sq.

sq.

sq.

sq.

sq.

part

ft.

ft.

ft.

ft .

ft.

area ( Y ( i ) )

35
130 ~

45
130

20
130

30
130

.269

. 346

.154

.231

The ratio of the area of the i-th part to the total area is
designated Y(i). Given that the plane is hit, by the third
assumption, Y(i) is the probability that this hit occurred on
part i. Thus
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Y(l) = .269
Y(2) = .346
Y(3) = .154
Y(4) = .231

The only additional information we require is the number of hits
on each part. Let the observed number of hits be 202. In
general, the total number of hits (on returning planes) must be
equal to

A. + 2A_ + 3A_ + ... + nAi 2 3 n

and in this example

AI + 2A2 + 3A3 + 4A4 = 68 + 2(29) + 3(12) + 4(10) = 202

The hits on the returning planes were distributed as follows:

Ratio of number of hits
observed on part to

Number of hits total number of observed
Part number observed on part hits (6(i))___________

1 39 .193

2 78 .386

3 31 .154

4 54 .267

Total number of hits 202

The ratio of the number of hits on part i to the total number of
hits on surviving planes is designated 6(i). Then q(i), the
probability that a hit on the i-th part does not down the plane,
is given by
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whence

K I 1 \ 1 Q -3
(.850) = .61

Til! <-850> - '85

<-850) = -98

The results may be summarized as follows:

Probability of Probability of being
surviving a single downed by a single

Part hit (g(i))_______ hit (1 - g(i) )_____

Entire plane .85 .15

Engines .61 .39

Fuselage .95 .05

Fuel system .85 .15

Other parts .98 .02

Thus, for the observed data of this hypothetical example, the
engine area is the most vulnerable in the sense that a hit there
is most likely to down the plane. The fuselage has a relatively
low vulnerability.

-65-



PART VI

SAMPLING ERRORS1

In parts I through V we have assumed that the total number of
planes participating in combat is so large that sampling errors
can be neglected altogether. However, in practice N is not
excessively large and therefore it is desirable to take sampling
errors into account. We shall deal here with the case when
q, = q.p... = q = q (say) and we shall derive confidence limits for
the unknown probability q.

If there were no sampling errors, then we would have
(85)

xi = p(l - a0 - a]_ ~ ••• ~ ai_i ~ xi

( i = 2,3, . . . ) ,

where p = 1 - q. However, because of sampling errors we shall
have the equation

xi = P^1 ~ a0 ~ ••• ~

where p. is distributed like the success ratio in a sequence of

N. = N(l - a^ - a, - ... - a . -, -x, - ... - x - , ) independenti o x i — i x i — j.
trials, the probability of success in a single trial being equal
to p.

Let q. = 1 - p. . Then, according to equation 26 we have

n a .
V"1 ______D________ — 1 a I "T \L, ~————— - 1 - aQ, (<,7)
j=l q, ... q.

part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo 103 and
AMP memo 76.6.
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provided that x. = 0 for i > n. In part I we have shown that
x. = 0 for i > n if there are no sampling errors. This is not
necessarily true if sampling errors are taken into account. However,
in the case of independence, i.e., when q. = q (i = 1,2,...), x.

OQ

is very small for i > n so that £ x, can be neglected.
i=n+l

In fact, if the number of planes that received more than n hits
were not negligibly small, it follows from the assumption of
independence that the probability is very high that at least some
of these planes would return. Since no plane returned with more

oo
than n hits, for practical purposes we may assume that 2_, x.=0.
In what follows we shall make this assumption. i=n+l

Each of the quantities q-, ,. . . ,q can be considered as a sample
e_stimate_ of the unknown probability q. However, the quantities
q,,...,q are unknown. It is merely known that they satisfy
the relation in equation 87. Confidence limits for q may be
derived on the basis of equation 87. However, we shall use
another more direct approach.

To derive confidence limits for the unknown probability q we shall
consider the hypothetical proportion b. of planes that would have
been hit exactly i times if dummy bullets would have been used.
We shall treat the quantities b, ,...,b, as fixed (but unknown)
constants.. This assumption does not involve any loss of
generality, since the confidence limits for q obtained on the
basis of this assumption remain valid also when b.,...,b, are
random variables. Clearly, the probability distribution of Na.
(i = l,...,n) .is the same as the distribution of the number of
successes in a sequence of Nb. independent trials, the prob-

ability of success in a single trial being q . Hence

E(Hai) = q1Nbi (88)

a2 (Naj_) = Nbiq1(l - q1) . (89)
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From equations 88 and 89 we obtain

= b (90)

2 /ai

a, a_ a
Since the variates —, —=• > . . . ,— are independently distributed,

q q qn
and since a. is nearly normally distributed if N is not small, we
can assume with very good approximation that the sum

n a.
£ "I 02)
i=l q1

is normally distributed. We obtain from equations 90 and 91

n a. \ n
E -I - E *i- 1 -ao (93)
=l q / 1=1

/ n a.\ n b.(1 - q )
2 / \p i \ _ V 1_____o 2̂  -r) - 2- ———T— •

\i=l q1/ i=l Nq1

For any positive a < 1 let Aa be the value for which

.2
' Aa i - T-——— e dt = a

a

The set of all values q for which the inequality

"'
« v / i = i Nq1 - i=i ^ ° A° 7 i-i m1 (95)
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is fulfilled forms a confidence set for the unknown probability q
with confidence coefficient a . However, formula 95 cannot be
used, since it involves the unknown quantities b,...,b . Since
ai—- converges stochastically to b. as N •* «, we change the stan-

ai 1dard deviation of £—r- only by a quantity of order less than —
q r/N

if we replace b. by —r . 'Thus, the set of values q that satisfy

the inequalities

n a (I - q1) n ̂  /„ a^l-q1) (96)

is an approximation to a confidence set with confidence
coefficient a •

Denote by q the root of the equation in q

n a .

Then q converges stochastically to q as N -> » . A considerable
simplification can be achieved in the computation of the
confidence set by substituting q for q in the expression of the

aistandard deviation of £/— -̂  . The error introduced by this substi-
q

tution is small if 11 is large. Making this substitution, the
inequalities defining the confidence set are given by

. = 1
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Hence, the confidence set is an interval. The upper end point of
the confidence interval is the root of the equation

n
— = 1 - a -

a.(1 - q )i o

Nq
2i
o

(98)

and the lower end point of the confidence interval is. the root of
the equation

n
E = 1 - a

n a . (1 - q )i o

Nq
2i (99)

NUMERICAL EXAMPLE

In all previous examples it was assumed that A. (the number ot

planes returning with i hits) was compiled from such a large
number of observations that they were not subject to sampling
errors. If it is further assumed that the probability q that a
hit will down a plane does not depend on the number of previous
non-destructive hits, it is possible to obtain an exact solution
for the probability that a hit will down a plane. Here we
introduce the possibility that the A ,...,A are subject to

o n
sampling errors but retain the assumption of independence. Under
these less restrictive assumptions we cannot obtain the exact
solution for q, but for any positive number a < 1 we can construct
two functions of the data, called confidence limits, such that
the statement that q lies between the confidence limits will be
true lOOa percent of the time in the long run. The confidence
limits are calculated for a = .95 and .99.
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Under the assumptions of part I, it was proved that no planes
received more hits than the greatest number of hits observed on a
returning plane. This is not necessarily true when the possi-
bility of sampling error is introduced, but it is retained as an
assumption, since the error involved is small.

If the a. are subject to sampling error, and q is the true para-
meter.

n a.
E4- (A)
i q

will be approximately normally distributed with mean value 1 - a ,

In outlining the steps necessary to calculate the confidence
limits, the following hypothetical set of data will be used.
Given

A.
N = 500 a =

A^ =
O

Al =
A2 =
A =A3
A4 =
A =A5

400

40

25

5

•3

2

a =o
al =
a2 =
a =3
a4 =
a =5

.80

.08

.05

.01

.006

.004

475

The first step is to find the value q , for which expression A is
equal to its mean value, by finding the positive root of

q q

We obtain

+ + + _ 1 _ a
2 3 4 5

. 20q5 - .08q4 - . 05q3 - . Olq2 - .006q - .004 = 0

qQ = .850 .
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The next step is to calculate the standard deviation of
expression A. This can be shown to be approximately equal to

2i
o

Nq6 Nq8 Nq10n ^ M

= .01226 .

n a^
Knowing that ]T) — - is approximately normally distributed with

i=l q1
mean value 1 - a and the standard deviation a, we can determineo

ai
the range in which / „ — r- can be expected to be lOOcx percent of

q1
the time (say 95 and 99 percent) by determining X _ _ and X• y !5 • y y
such that

2lT

-X
r1
.95

_ '
2? J

_ f - ±_ I dt = .99 .

n .99
From the table or the areas of a normal curve, it is found that

X 95 = 1.959964
A „„ = 2.575829 .

We can now calculate the confidence limits for each value of a by
finding the two values of q for which the equality sign of the
following expression holds:
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n a.
V —
£l?

It follows that for each a , the confidence limits are the
positive roots of the equation

n a.
5- _i = 1 - a +x c
>-', i o — A al-l. q

Xn .0122678A 1 - a -A a 1 - a + \aa. a a o a o a
.95 1.959964 .024044 .175956 .224044
.99 2.575829 .031600 .168400 .231600

For a = .95 the confidence limits of q are the positive roots of
equat ion

a ^ a a _ a a
—— +-^+^+-|+-|= .175956,
q q q q q

which reduces to

.175956q5 - .08q4 - .05q3 - .Olq2 - .006q - .004 = 0

q = .912,

and equation

dl a-) a3 a4 as
~ 2 1 + ~ T + ~ ? + ~§= .224044,

q q q q q

which reduces to

.224044q5 - .08q4 - .05q3 - .Olq2 - ,006q - .004 = 0

q =

Similarly, for a = . 99 we have
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5 - S 4 - .05q3 - W - -006, - .004 - 0.168400q - -OSq - .05q

= .935

.231600q -
= .787 .

5 - - .05q3 - - Olq2 - -006q - .004 - 0

limits are .787 and .935.
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PART VII

MISCELLANEOUS REMARKS1

1. Factors that may vary from combat to combat but influence the
probability of surviving a hit. The factors that influence the
probability of surviving a hit may be classified into two groups.
The first group contains those factors that do not vary from
combat to combat. This does not necessarily mean that the factor
in question has a fixed value of all combats; the factor may be a
random variable whose probability distribution does not vary from
combat to combat. The second group comprises those factors whose
probability distribution cannot be assumed to be the same for all
combats. To make predictions as to the proportions of planes
that will be downed in future combats, it is necessary to study
the dependence of the probability q of surviving a hit on the
factors in the second group. In part V we have already taken
into account such a factor. In part V we have considered a
subdivision of the plane into several equi-vulnerability areas
A,,...,A, and we expressed the probability of survival as a func-
tion of the part of the plane that received the hit. Since the
probability of hitting a certain part of the plane depends on the
angle of attack, this probability may vary from combat to combat.
Thus, it is desirable to study the dependence of the probability
of survival on the part of the plane that received the hit. In
addition to the factors represented by the different parts of the
plane, there may also be other factors, such as the type of gun
used by the enemy, etc., which belong to the second group. There
are no theoretical difficulties whatsoever in extending the
theory in part V to any number and type of factors. To
illustrate this, let us assume that the factors to be taken into
account are the different parts A-,,...,A, of the plane and the
different guns g,,...,g used by the enemy. Let q(i,j) be the
probability of surviving a hit on part A, knowing that the bullet
has been fired by gun g.. We may order the km pairs (i,j) in a
sequence. We shall denote q(i,j) by q(u) if the pair (i,j) is
the u-th element in the ordered sequence of pairs. The problem
of determining the unknown probabilities q(u) (u = l,...,km) can
be treated in exactly the same way as the problem discussed in

part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo 109 and
AMP memo 76.7.
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part V assuming that the plane consists of km parts. Any hit on
part A. by a bullet from gun g . can be considered as a hit on
part A in the problem discussed in part V where (i,j) is the
u-th element in the ordered sequence of pairs.

2. Non-probabilistic interpretation of the results. It is
interesting to note that a purely arithmetic interpretation of
the results of parts I through V can be given. Instead of
defining q. as the probability of surviving the i-th hit knowing
that the previous i - 1 hits did not down the plane, we define q.
as follows: Let M. be the number of planes that received at least
i hits and the i-th hit did not down the plane, and let N. be the
total number of planes that received at least i hits. Then

Miq. = — — . Thus, q. is defined in terms of what actually hap-
1. IJ « 1

pened in the particular combat under consideration. To distin-
guish this definition of q. from the probabilistic definition, we

M. _ _
shall denote the ratio — by q.. The quantity q is unknown,

since we do not know the distribution of hits on the planes that
did not return. However, it follows from the results of part I
that these quantities must satisfy equation 26. If we can assume
that in the_particular combat under consideration we have
q. = ... = q then the common value q of these quantities is the
root of the equation

= 1 - a

Assuming that c[, >_ q „ >_ . . . >_ q , the minimum value Q. of Q.
derived in_ partis III arid IV can be interpreted as the minimum
value of Q . = q, ... q. .

The minimum and maximum values of Q. derived in part IV can also
be interpreted as minimum and maximum values of Q.= q,... q. if

we assume that the inequalities q̂.; <. -̂i + i 5. 2̂̂ -1 ̂  = •*•'••• 'n~
are fulfilled. Similarly, a pure arithmetic interpretation of
the results of part V can be given.
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3. The case when Y(i) is unknown. In part V we have assumed
that the probabilities Y( 1)r•.•,Y(k) are known. Since the
exposed areas of the different parts A-,,...,A, depend on the
angle of attack, and since this angle may vary during the combat,
it may sometimes be difficult to estimate the probabilities
Y( 1) ,.. •, Y(k) . Thus, it may be of interest to investigate the
question whether any inference as to the probabilities
q(l),...,q(k) can be drawn when Y(l),...,Y(k) are entirely unknown,
We shall see that frequently a useful lower bound for q(i) can
still be obtained. In fact, the value q*(i) of q(i), calculated
under the assumption that the parts A.(j £ i) are not vulnerable
(q(j) =1), is certainly a lower bound of the true value q(i).
Considering only the hits on part A., a lower bound of q*(i), and
therefore also of q(i), is given by the root of the equation

n a*
£ -£ = 1 - a* , (100)
r=l q

where a* (r = 0,1,...,n) is the ratio of the number of planes
returned with exactly r hits on part A. to the total number of
planes participating in combat.

The lower limit obtained from equation 100 will be a useful one
if it is not near zero. The root of equation 100 will be

n
considerably above zero if ̂  a* is not very small as compared

with 1 - a*. 'This can be expected to happen whenever both Y(i)
and q(i) are considerably above zero.
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PART VIII

VULNERABILITY OF A PLANE TO DIFFERENT TYPES OF GUNS1

In part V we discussed the case where the plane is subdivided
into several equi-vulnerability areas (parts) and we dealt with
the problem of determining the vulnerability of each of these
parts. It was pointed out in part VII that the method described
in part V can be applied to the more general problem of esti-
mating the probability q(i,j) that a plane will survive a hit on
part i caused by a bullet fired from gun j. However, this method
is based on the assumption that the value of Y(i,j) is known
where Y(i,j) is the conditional probability that part i is hit by
gun j knowing that a hit has been scored. In practice it may be
difficult to determine the value of Y(i,j) since the proportions
in which the different guns are used by the enemy may be unknown.
On the other hand, it seems likely that frequently we shall be
able to estimate the conditional probability Y(ilj) that part i
is hit knowing that a hit has been scored by gun j. The purpose
of this memorandum is to investigate the question whether q( i , j )
can be estimated from the data assuming that merely the quan-
tities Y(ilj) are known a priori. In what follows we shall
restrict ourselves to the case of independence, i.e., it will be
assumed that the probability of surviving a hit does not depend
on the non-destructive hits already received.

Let 6(i,j) be the conditional probability that part i is hit by
gun j knowing that a hit has been scored and the plane survived
the hit. Furthermore, let q be the probability that the plane
survives a hit (not knowing which part was hit and which gun
scored the hit) . Then, similar to equation 82, we shall have

(101)

Let q(j) be the probability that the plane will survive a hit by
gun j (not knowing the part hit) . Then obviously

,j) • (102)
1

Let <5(i|j) be the conditional probability that part i is hit by
gun j knowing that a hit has been scored by gun j and the plane
survived the hit. Clearly

s part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo 126 and
AMP memo 76.8.
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i ' J W i ' J ) . (103)

From equation 103, we obtain

q ( i ' j ) - •'77TTTT 9 ( J ) • (104)

The quantity 6(i|j) can be estimated on the basis of the observed
hits on the returning planes. The best sample estimate of 6(i|j)
is the ratio of the number of hits scored by gun j on part i of
the returning planes to the total number of hits scored by gun j
on the returning planes. Thus, on the basis of equation 104, the
probability q(i,j) can be determined if q(j) is known.

Now we shall investigate the question whether q(j) can be
estimated. First, we shall consider the case when it is known a
priori that a certain part of the plane, say part 1, is not
vulnerable. Then q(i,j) = 1 and we obtain from equation 104

1 = S(llj) ... a
Y( 11 j ) qn) ' (1°5'

Hence,

ar-n - T d l J ) n n f i iq ( D ) ~ 6 d l j ) ' (106)

Thus, in this case our problem is solved. If no part of the
plane can be assumed to be invulnerable, then we can still obtain
upper limits for q(j). In fact, since q(i,j) £ 1, we obtain from
equation 104 ~~

(107)

Y( i I "i)Denote by p(j) the minimum of ;t ^i with respect to 1. Then
we have

q(j) 1 p(j) • (108)

If there is a part of the airplane that is only slightly
vulnerable (this is usually the case), then q(j) will not be much
below P(j). Let the part i. be the part of the plane least
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vulnerable to gun j. If q( i.,j ) has the same value for any gun
j, then q(j) is proportional to P(j). Thus, the error is perhaps
not serious if we assume that q(j) is proportional to p(j), i.e.,

q(j) = XP(j). (109)

The proportionality factor X can be determined as follows. From
equations 101 and 104 we obtain

Y(i,j) * ~ AK V J' Y(ilj)

Hence,

- -,D) -

Denote £ 8(i,j) by s(j). Then,
i

From equations 111 and 112 we obtain

Since

E v(iij) = i,
i

we obtain from equatio'n 113

D i

But

(112)
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Hence ,

Since 6(j) and P(j) are known quantities, the proportionality
factor A can be obtained from equation 115. The probability q is
the root of the equation

n

where a. denotes the ratio of the number of planes returned with
exactly j hits to the total number of planes participating in
combat .

NUMERICAL EXAMPLE

In part V, the case of a plane subdivided into several equi-
vulnerability areas was discussed, and the vulnerability of each
part was estimated. The same method can be extended to solve the
more general problem of estimating the probability that a plane
will survive a hit on part i caused by a bullet fired from gun j,
if assumptions corresponding to those of part V are made. The
first three of the four assumptions that must be made to apply
the method of part V directly are identical with those made in
part V. They are:

• The number of planes participating in combat is large so
that sampling errors can be neglected.

• The probability that a hit will not down the plane does
not depend on the number of previous non-destructive
hits. That is , q, = q = ... = q (say), where q. is the
conditional probability that the i-th hit will not down
the plane, knowing that the plane is hit.

• The division of the plane into several parts is
representative of all planes of the mission.

The fourth assumption necessary to apply the method of part V
directly usually cannot be fulfilled in practice. It is:

• Given that a shot has hit the plane, the probability that
it hit a particular part, and was fired from a particular
type of gun, is known.
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These probabilities depend upon the proportions in which differ-
ent guns are used by the enemy. To overcome this difficulty a
method that does not depend on these proportions is developed in
part VIII. The assumptions necessary for the method of part VIII
differ from those of part V only in that the fourth assumption is
replaced by:

• Given that a shot has hit the plane, and given that it
was fired by a particular type of gun, the probability
that it hit a particular part is known.

The information necessary to satisfy this assumption is more
readily available, and in the numerical example that follows a
simplified method is suggested for estimating these
probabilities.

The Data

The numerical example will be an analysis of a set of hypotheti-
cal data, which is based on an assumed record of damage of sur-
viving planes of a mission of 1,000 planes dispatched to attack
an enemy objective. Of the 1,000 planes dispatched, 634 (N)
actually attacked the objective. Thirty-two planes were lost
(L=32) in combat and the number of hits on returning planes was:

A. = number of planes returning with i hits

A = 386
A°  = 120 (A)

A2 = 4?

A3 = 22

A4 = 16

A5 = ll

The total number of hits on all returning planes is

Al + 2A2 + 3A3 + 4A4 + 5A5 =
(B)

120 + 2x47 + 3x22 + 4x16 4- 5x11 = 399 .

These 399 hits were made by three types of enemy ammunition:
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B, Flak
B» 20-mm aircraft cannon
B,. 7.9-mm aircraft machine gun

and the hits by these different types of ammunition were also
recorded by part of airplane hit:

C, Forward fuselage
C~ Engine
C_ Full system
C. Remainder

The necessary information from the record of damage is given in
table 7.

TABLE 7

NUMBER OF HITS OF VARIOUS TYPES BY PARTS

Forward Fuel Total
fuselage, Engine, system, Remainder,
c c c ccl C2 ^3 U4 parts

Flak, BI 17 25 50 202 294

20-mm 8 7 17 18 50
cannon, B

7.9-mm 7 13 17 18 55
machine
gun, B3

Total all 32 45 84 238 399
types

A Method of Estimating the Probability of Hitting a Particular
Part Given That a Shot of a Particular Ammunition Has Hit the
Plane!

The conditional probability that a plane will be hit on the i-th
area, knowing that the hit is of the j-th type, must be deter-
mined from other sources of information than the record of

^-Necessary for fourth assumption.
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damage. Although a simplified method is used in this example,
more accurate estimates can be made if more technical data is at
hand. The first step is to make definite boundaries for the
areas C. , C«, C», C.. Next, assume that each type of enemy fire
& , B«, B_ has an average angle of fire 6., 9_, e_. Finally,
assume that the probability of hitting a part of the plane from a
given angle is equal to the ratio of the exposed area of that
part from the given angle to the total area exposed from that
angle.

In this example it is assumed that flak ( BI ) has the average
angle of attack of 45 degrees in front of and below the plane,
whereas 20-mm cannon and 7 . 9— mm machine gun fiire both hit the
plane head-on on the average. The area C.. is so bounded that it
includes areas which, if hit, will endanger the pilot and
co-pilot. Area C_ includes the engine area and area C3 consists
essentially of the area covering the fuel tanks. The results of
computations, based on the above assumptions, are assumed to be
as follows, where "Y(C. |B.) represents the probability that a hit

is on part C, knowing it is of type B. (as estimated by deter-
mining the ratio of the area of C. to the total area as viewed
from the angle 6. associated with ammunition B.).

•J -J

(C)

Y(C1lB1) = .058 7(C1lB2) = .143 -/(C-jBg) = .143
•Y(C2lB1) = .092 7(C2lB2) = .248 Y(C2|B3) = .248

T(C3lB1) = .174 7(C3lB2) = .303 ^C^B^ = -303

Y(C4lB1) = .676 7(C4lB2) = .306 Y(C4|B3) = .306

1-This notation differs from the previous notation of part
VIII. In the first part of part VIII, Y(i|j) is used with the
understanding that the first subscript refers to the part hit and
the second subscript refers to the type of bullet. In the
numerical example, the relationship is made explicit by letting
C. stand for the i-th part (or component) and B. for the j-th
type of bullet. The same device is used throughout this example.
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Computations for Method of Part VIII

Let q(C.,B.) be the probability of surviving a hit on part C. by
gun B.. By equation 104, we have

q(ci'Bj} =
6(C |B

where 8(C. IB.) is the probability of being hit on part C.,

knowing that the hit was scored by a bullet from gun B. and that
the plane survived? 7(C. IB.) is the probability of being hit on
part C. , knowing that the hit was scored by a bullet of type B.;
and q(B.) is the probability that a plane will survive a hit of
type B., knowing that the plane is hit. This can be estimated by
taking the ratio of the number of hits of type B. on part C. to
the total number of hits of type B. on returning planes.
Applying this method to the table we obtain

(E)

atC^lB^ = .058 6(C1lB2) = .160 ^(CjBg) = .127
5(C2lB1) = .085 6(C2lB2) = .140 5(C2|B3) = .236

5(C3lB1) = .170 5(C3|B2) = .340 8(C3|B3) = .309
5(C4|B1) = .687 6(C4lB2) = .360 6(C4|B3) = .327

The final quantity required to calculate q(C.,B.) by equation D
is q(B.). By equation 109, we have

q(B..) = XP(Bj) , (F)

r(c IB )
where p(B.) is the minimum of /_ \ J \ with respect to i.D o I*-. 11> •)
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Y(C2|Bj)1 2 j 4..
P(BJ) = mm |6 |B ) '6(C |B ) 'fi(C IB.) '6(C,|B

\ -*• J *• j J J ^ J

'058 -092 *174 -6761- min- mm

min l , >1 , >1 , .984

.984

- min- mm

(G)

,3061

(.894 , >1 , .891 , . 85oJmm

.850

.143 .248 .303- min- mm

min >1 f >1 , .981

.936

, .936J

The constant multiplier A. is defined by equation 115

6(B.)

j

where 6(B.) is the conditional probability that a hit is of type

V
The determination of q is identical with the procedure of part
VII. From equation 26

= N - Aoq
we substitute the values of equation K'.

248q5 - 120q4 - 47q3 - 22q2 - 16q - 11 = 0 (I)
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The root is .930 (= q , say)

The values 6(B.) are obtained directly from table 7 by taking the
ratio of hits of type B. on returning planes to the total number
of hits on returning planes.

294
S^B1^ = "399 = *737

6(B2) = -J| = .125 (J)

6(B3) = 3§f = -138

Substituting the results of equations G, I, and J in equation H,
we obtain:

6(8..)
X = qo £ P(B.)

f '
1.
737 -125 -138
984 .850 .936

= .930 (1.0433)

= .9703

Substituting in equation F

q(B1) = (.9703) (.984) = .955

q(B2) = (.9703) (.850) = .825 (K)
q(B3) = (.9703) (.936) = .908

The probabilities q(C.,B.) can now be determined from equation D
by using the values given in equations C, E, and K.

6(C.|B.)
/ _ _ _ _ \ 1 J / 1-1 \
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q(C ,B ) = (.058) (.955)/.058 = .955

q(C2,B1) = (.085) (.955)/.092 = .882
q(C3,B1) = (.170) (.955)7.174 = .933
q(C4,B1) = (.687) (.955)7.676 = .971

q(ClfB2) = (.160) (.825)7.143 = .923
q(C2,B2) = (.140) (.825)7.248 = .466
q(C3,B2) = (.340) (.825)7.303 = .926 (L)

q(C4,B2) = (.360) (.825)7.306 = .971

q(Cl'B3) = ('127) (-908)7.143 = .806
q(C2,B3) = (.236) (.908)/.248 = .864
q(C3,B3) = (.309) (.908)7.303 = .926
q(C4,B3) = (.327) (.908)/.306 = .970

Comments on Results

The vulnerability of a plane to a hit of type B. on part Ci is
the probability that a plane will be destroyed if it receives a
hit of type B. on part C.. Let P(C.,B.) represent this vulner-
ability. The numerical value of P(C.,B.) is obtained from the
set L and the relationship

P(Ci,Bj) = 1 - q(Ci,Bj) (M)

The vulnerability of a plane to a hit to type B. on part C. is
given in table 8.

This analysis of the hypothetical data would lead to the
conclusion that the plane is most vulnerable to a hit on the
engine area if the type of bullet is not specified, and is most
vulnerable to a hit by a 20-mm cannon shell if the part hit is
not specified. The greatest probability of being destroyed is
.534, and occurs when a plane is hit by a 20-mm cannon shell
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on the engine area. The next most vulnerable event is a hit by a
7.9-mm machine gun bullet on the cockpit. These, and other
conclusions that can be made from the table of vulnerabilities
derived by the method of analysis of part VIII, can be used as
guides for locating protective armor and can be used to make a
prediction of the estimated loss of a future mission.

TABLE 8

VULNERABILITY OF A PLANE TO A HIT OF A SPECIFIED TYPE
ON A SPECIFIED PART

Flak, B

20-mm
cannon,

Forward
fuselage

.045

.077

Engine

.118

.534

Fuel
system

.067

.074

Remainder

.029

.029

Vulner-
ability to
specified
type of
hit when
area is un-
specified

.045

.175

7.9-mm
machine
gun, B

,194 136 .074 .030 .092

Vulnerability
to hit on
specified area
when type of
hit is un-
specified .114 .179 .074 .038 .070

aThese vulnerabilities are calculated using the method of
part V, and assuming that the y(C.), the probability that part
C. is hit, knowing that the plane is hit, are as follows:

y(C. ) = .084 Y(C,) = .128 Y(C.J = .212 Y(C ) = .576 .
1 £• 3 4r

"This is the probability that a plane will be destroyed by a
hit, when neither the part hit nor the type of bullet is
specified.
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