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Editor’s Notes

Provenance

Two Second World War research papers by Alan Turing were declassified re-
cently. The papers, The Applications of Probability to Cryptography and its shorter
companion Paper on Statistics of Repetitions, are available from from the National
Archives in the UK at www.nationalarchives.gov.uk.

The released papers give the full text, along with figures and tables, and pro-
vide a fascinating insight into the preparation of the manuscripts, as well as the
style of writing at a time when typographical errors were corrected by hand, and
mathematical expression handwritten into spaces left in the text.

Working with the papers in their original format provides some challenges, so
they have been typeset for easier reading and access. We recommend that the
typeset versions are read with a copy of the original manuscript at hand.

This document contains the text and figures for The Applications of Probability
to Cryptography, the companion paper is also available in typeset form from arXiv
at www.arxiv.org/abs/1505.04715. These notes apply to both documents.

Separately, a journal article by Zabell1 provides an analysis of the papers and
further background information.

The text

It is not our intent to cast Alan Turing’s manuscripts into a journal style
article, but more to provide clearer access to his writing and, perhaps, to answer
the questions “If Turing had have had access to typesetting software, what would
his papers have looked like?”. Consequently no “house-style” copy-editing has been
imposed. Occasional punctuation has been added to improve readability, some
obvious errors corrected, and paragraph breaks added to ease the reading of long
text blocks - and occasionally to give a better text flow. Turing uses typewriter
underlining, single, and double quotes to indicate emphasis or style; these have
been implemented using font format changes, double quotes are used as needed.

The manuscript has many typographical errors, deletions, and substitutions,
all of which are indicated by over-typing, crossed out items, and handwritten pencil
or ink annotations. These corrections have been implemented in this document to
give the text that we presume Turing intended. Additionally, there are some hand
written notes in the manuscript, which may or may not be by Turing; these are
indicated by the use of footnotes.

British English spelling is used in the manuscript and this is retained, so words
such as favour, neighbourhood, cancelling, etc. will be encountered. Turing appears
to favour the spellings bigramme, trigramme, tetragramme, etc., although he is not
always consistent; throughout this document the favoured rendering is used.

Turing’s wording is unchanged to give the full flavour of his original style.
This means that “That is to say that we suppose for instance that ..... ” will be
encountered - amongst others!

Both papers end abruptly, no summary or conclusion is o↵ered, perhaps the
papers are incomplete or pages are missing. To indicate the end of the manuscript
we have marked the end of each paper with a printing sign - an infinity symbol
between two horizontal bars.

1Zabell, S. 2012. “Commentary on Alan M.Turing: The Applications of Probability to
Cryptography” Cryptologia, 36:191-214.

www.nationalarchives.gov.uk.
www.arxiv.org/abs/1505.04715
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In the section on a letter subtractor problem, reference is made to other meth-
ods to be discussed later in the paper. This does not happen - perhaps another
indicator of an incomplete paper or missing pages.

Finally, Turing uses some forward page references that appear in the manuscript
as see(p ), obviously intending to return and complete the reference. This also does
not happen, so these references remain unresolved.

In short, we strive to represent Turing’s text as he wrote it.

Ciphertext, cleartext, etc.

In an attempt to capture the flavour of the time, ciphertext, cleartext, keys,
etc. are displayed in a fixed pitch, bold, non-serif font to represent the type-
writer, teletype, and telegraph machines that would have printed the original code,
viz. CONDITIONS.

Mathematics

In the manuscript all mathematics is hand written in ink and pencil in spaces
left between the typed text. Sometimes adequate space was left, other time not,
and the handwriting spills into margins and adjacent lines, adding to the reading
challenge. We have cast all mathematics into standard in-line or display formats
as appropriate. We have used the mathcal font in places to capture the flavour of
Turing’s handwriting, e.g. “the probability p” appears as “the probability P”.

Turing uses no punctuation in his mathematics, this has been added to be con-
sistent with modern practice2; he also uses letters to reference equations - numbers
are used in this document. In many places we have added parentheses to give clar-
ity to an expression, and in some places where Turing is inconsistent in his uses of
parentheses for a mathematical phrase (the expression for letter probability in the
Vigenère in particular) we have chosen one format and been consistent in its use.

As Turing demonstrates a love of dense mathematics the algebraic multiplica-
tion symbol ⇥ has occasionally been used for readability, so all standard forms of
multiplication will be encountered, viz., ab, a⇥ b, a · b. Finally, convention suggests
that the subject of a formula or expression sits on its own on the left hand side
of the equals sign, with the subsidiary variables collected on the right hand side.
Turing adheres to this convention as it suits him, his preference is retained.

In short, we strive to retain the elegance of Turing’s mathematics, whilst casting
it into a modern format.

Figures and tables

All figures have been included with rearrangement of some items to improve
clarity or document flow. Turing uses a variety of papers, styles, inks, pen, and
pencil; these have all been represented in standard figure and table format.

Contents page

Turing provides a rudimentary Contents for The Applications of Probability to
Cryptography, this has been reworked with some additions to make it more mean-
ingful. Paper on Statistics of Repetitions, being much shorter, requires no Contents.

Editors

The editor can be contacted at: ian.taylor@maths.oxon.org.

2See, for instance, Higham, Nicholas J. 1998. “Handbook of writing for the Mathematical
Sciences”, SIAM, Philadelphia.
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CHAPTER 1

Introduction

1.1. Preamble

The theory of probability may be used in cryptography with most e↵ect when
the type of cipher used is already fully understood, and it only remains to find the
actual keys. It is of rather less value when one is trying to diagnose the type of
cipher, but if definite rival theories about the type of cipher are suggested it may
be used to decide between them.

1.2. Meaning of probability and odds

I shall not attempt to give a systematic account of the theory of probability,
but it may be worth while to define shortly probability and odds. The probability
of an event on certain evidence is the proportion of cases in which that event may
be expected to happen given that evidence. For instance if it is known the 20% of
men live to the age of 70, then knowing of Hitler only Hitler is a man we can say
that the probability of Hitler living to the age of 70 is 0.2. Suppose that we know
that Hitler is now of age 52 the probability will be quite di↵erent, say 0.5, because
50% of men of 52 live to 70.

The odds of an event happening is the ratio P/(1�P) where P is the probability
of it happening. This terminology is connected with the common phraseology odds
of 5:2 on meaning in our terminology that the odds are 5/2.

1.3. Probabilities based on part of the evidence

When the whole evidence about some event is taken into account it may be
extremely di�cult to estimate the probability of the event, even very approximately,
and it may be better to form an estimate based on a part of the evidence, so that
the probability may be more easily calculated. This happens in cryptography in
a very obvious way. The whole evidence when we are trying to solve a cipher is
the complete tra�c, and the events in question are the di↵erent possible keys, and
functions of the keys. Unless the tra�c is very small indeed the theoretical answer
to the problem “What are the probabilities of the various keys? ” will be of the form
“The key . . . has a probability di↵ering almost imperceptibly from 1 (certainty)
and the other keys are virtually impossible”. But a direct attempt to determine
these probabilities would obviously not be a practical method.

1.4. A priori probabilities

The evidence concerning the possibility of an event occurring usually divides
into a part about which statistics are available, or some mathematical method can
be applied, and a less definite part about which one can only use one’s judgement.

1



2 1. INTRODUCTION

Suppose for example that a new kind of tra�c has turned up and that only three
messages are available. Each message has the letter V in the 17th place and G in
the 18th place. We want to know the probability that it is a general rule that we
should find V and G in these places. We first have to decide how probable it is that
a cipher would have such a rule, and as regards this one can probably only guess,
and my guess would be about 1/5, 000, 000. This judgement is not entirely a guess;
some rather insecure mathematical reasoning has gone into it, something like this:-

The chance of there being a rule that two consecutive letters somewhere after
the 10th should have certain fixed values seems to be about 1/500 (this is a complete
guess). The chance of the letters being the 17th and 18th is about 1/15 (another
guess, but not quite as much in the air). The probability of a letter being V or
G is 1/676 (hardly a guess at all, but expressing a judgement that there is no
special virtue in the bigramme VG). Hence the chance is 1/(500 ⇥ 15 ⇥ 676) or
about 1/5, 000, 000. This is however all so vague, that it is more usual to make the
judgment “1/5, 000, 000” without explanation.

The question as to what is the chance of having a rule of this kind might of
course be resolved by statistics of some kind, but there is no point in having this
very accurate, and of course the experience of the cryptographer itself forms a kind
of statistics.

The remainder of the problem is then solved quite mathematically. Let us
consider a large number of ciphers chosen at random. N of them say. Of these
N/5, 000, 000 of them will have the rule in question, and the remainder not. Now if
we had three messages of each of the ciphers before us, we should find that for each
of the ciphers with the rule, three messages have VG in the required place, but of
the remaining (4, 999, 999⇥N)/5, 000, 000 only a proportion 1/6763 will have them.
Rejecting the ciphers which have not the required characteristics we are left with
N/5, 000, 000 cases where the rule holds, and (4, 999, 999⇥N) /(5, 000, 000⇥ 6763)
cases where it does not. This selection of ciphers is a random selection of ones
which have all the known characteristics of the one in question, and therefore the
odds in favour of the rule holding are:

N

5, 000, 000
:

4, 999, 999⇥N

5, 000, 000⇥ 6763
,

i.e 6763 : 4, 999, 9999,

or about 60 : 1 on.

It should be noticed that the whole argument is to some extent fallacious, as it is
assumed that there are only two possibilities, viz. that either VG must always occur
in that position, or else that the letters in the 17th and 18th positions are wholly
random. There are however many other possibilities worth consideration, e.g.

(1) On the day in question we have VG in the position in question.
(2) Or on another day we have some other fixed pair of letters.
(3) Or in the positions 17, 18 we have to have one of the four combinations

VG, RH, OM, IL and by chance VG has been chosen for all the three messages
we have had.

(4) Or the cipher is a simple substitution and VG is the substitute of some
common bigramme, say TH.

The possibilities are of course endless, and it is therefore always necessary to
bear in mind the possibility of there being other theories not yet suggested.
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The a priori probability sometimes has to be estimated as above by some sort
of guesswork, but often the situation is more satisfactory. Suppose for example
that we know that a certain cipher is a simple substitution, the keys having no
specially noticeable properties. Suppose also that we have 50 letters of such a
message including five occurrences of P. We want to know how probable it it that
P is the substitute of E. As before we have to answer two questions.

(1) How likely is it that P would be the substitute of E neglecting the evidence
of the five Es occurring in the message?

(2) How likely are we to get 5 Ps?
(a) If P is not the substitute of E
(b) If P is the substitute of E.

I will not attempt to answer the second question for the present. The answer
to the first is simply that the probability of a letter being the substitute of E is
independent of what the letter is, and is therefore always 1/26, in particular it is
1/26 for the letter P. The only guesswork here is the judgement that the keys are
chosen at random.

1.5. The Factor Principle

Nearly all applications of probability to cryptography depend on the factor
principle (or Bayes’ Theorem). This principle may first be illustrated by a simple
example. Suppose that one man in five dies of heart failure, and that of the men
who die of heart failure two in three die in their beds, but of the men who die from
other causes only one in four dies in their beds. (My facts are no doubt hopelessly
inaccurate). Now suppose we know that a certain man died in his bed. What is
the probability that he died of heart failure? Of all numbering N say we find that

N⇥(1/5)⇥ (2/3) die in their beds of heart failure

N⇥(1/5⇥ (1/3) . . . elsewhere . . . . . . . . . . . . . . . . . .

N⇥(4/5)⇥ (1/4) die in their beds from other causes

N⇥(4/5⇥ (3/4) . . . elsewhere . . . . . . . . . . . . . . . . . .

Now as our man died in his bed we do not need to consider the cases of men who
did not die in their beds, and these consist of

N⇥(1/5)⇥ (2/3) cases of heart failure and

N⇥(4/5)⇥ (1/4) from other causes

and therefore the odds are 1⇥ (2/3) : 4⇥ (1/4)in favour of heart failure. If this had
been done algebraically the result would have been

A posteriori odds of the theory

= A priori odds of the theory

⇥ Probability of the data being fulfilled if the theory is true

Probability of the data being fulfilled if the theory is false
.

In this the theory is that the man died of heart failure, and the data is that he died
in his bed.
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The general formula above will be described as the factor principle, the ratio

Probability of the data if the theory is true

Probability of the data if the theory is false
,

is called the factor for the theory on account of the data.

1.6. Decibanage

Usually when we are estimating the probability of a theory there will be several
independent pieces of evidence e.g. following our last example, where we want to
know whether a certain man died of heart failure or not, we may know

(1) He died in his bed
(2) His father died of heart failure
(3) His bedroom was on the ground floor

and also have statistics telling us

(a) 2/3 of men who die of heart failure die in their beds
(b) 2/5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . have fathers who died of heart failure
(c) 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . have bedroom on the ground floor
(d) 1/4 of men who died from other causes die in their beds
(e) 1/6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . have fathers who died of heart failure
(f) 1/20 of men who die of other cause have their bedrooms on the ground floor

Let us suppose that the three pieces of evidence are independent of one another
if we know that he died of heart failure, and also if we know that he did not die
of heart failure. That is to say that we suppose for instance that knowing that he
slept on the ground floor does not make it any more likely that he died in his bed if
we knew all along that he died of heart failure. When we make these assumptions
the probability of a man who died of heart failure satisfying all three conditions
is obtained simply by multiplication, and is (2/3) ⇥ (2/5) ⇥ (1/2) and likewise for
those who died from other causes the probability is (1/4)⇥ (1/6)⇥ (1/20), and the
factor in favour of the heart theory failure is

(2/3)⇥ (2/5)⇥ (1/2)

(1/4)⇥ (1/6)⇥ (1/20)
.

We may regard this as the product of three factors (2/3)/(1/4) and (2/5)/(1/6)
and (1/2)/(1/20) arising from from the three independent pieces of evidence. Prod-
ucts like this arise very frequently, and sometimes one will get products involving
thousands of factors, and large groups of these factors may be equal. We naturally
therefore work in terms of the logarithms of the factors. The logarithm of the fac-
tor, taken to the base 101/10 is called decibanage in favour of the theory. A deciban
is a unit of evidence; a piece of evidence is worth a deciban if it increase the odds
of the theory in the ratio 101/10 : 1. The deciban is used as a more convenient
unit that the ban. The terminology was introduced in honor of the famous town of
Banbury.

Using this terminology we might say that the fact that our man died in bed
scores 4.3 decibans in favour of the heart failure theory (10 log(8/3) = 4.3). We
score a further 3.8 decibans for his father dying of heart failure, and 10 for his
having his bedroom on the ground floor, totalling 18.1 decibans. We then bring in
the a priori odds 1/4 or 10�6/10 and the result is the the odds are 1012.1/10, or as
we may say “12.1 deciban up on evens”. This means about 16:1 on.



CHAPTER 2

Straightforward Cryptographic Problems

2.1. Vigenère

The factor principle can be applied to the solutions of a Vigenère problem

with great e↵ect. I will assume here that the period of the cipher has already been

determined. Probability theory may be applied to this part of the problem also, but

that is not so elementary. Suppose our cipher, written out in its correct period is1

D K Q H S H Z N M P
R C V X U H T E A Q
X H P U E P P S B K
T W U J A G D Y O J
T H W C Y D Z H G A
P Z K O X O E Y A E
B O K B U B P I K R
W W A C E J P H L P
T U Z Y F H L R Y C

Figure 1. Vigenère problem.
(It is only by chance that it makes a rectangular array.)

Let us try to find the key for the first column, and for the moment let us only take
into account the evidence a↵orded by the first letter D. Let us first consider the key
B. The factor principle tells us

Odds in favour of key B = A priori odds in favour of key B

⇥ Probability of getting D in cipher if key is B

Probability of getting key D in cipher if key is not B

Now the a priori odds in favour of key B may be taken as 1/25. The probability
of getting D in the cipher with the key B is just the probability of getting C in the
clear which (using the count on 1000 letters in Fig 2) is 0.021. If however the key
is not B we can have any letter other the C in the clear, and the probability is
(1 - 0.021)/25. Using the evidence of the D then the odds in favour of the key B are

1

25
⇥
✓
25⇥ 0.021

1� 0.021

◆
.

1 Turing’s statement of the ciphertext is slightly di↵erent to what he decodes. The N M at
the end the first line are reversed to read DKQHSHZMNP in Fig 5, which gives the correct cleartext.

5



6 2. STRAIGHTFORWARD CRYPTOGRAPHIC PROBLEMS

We may then consider the e↵ect of the next letter in the column R which gives a
further factor of (25 x 0.064)/(1 - 0.064). We are here assuming that the evidence
of the R is independent of the evidence of the D. This is not quite correct, but is
a useful approximation; a more accurate method of calculation will be given later.
Let us write P↵ for the frequency of the letter ↵ in plain language. Then our final
estimate for the odds in favour of key B is

1

25

Y

i

25P↵i�1

1� P↵i�1
.

where ↵1,↵2, . . . is the series of letters in the 1st column, and we use the letters
and numbers interchangeably, A meaning 1, B meaning 2, . . . , Z meaning 26 or 0.
More generally for key � the odds are

1

25

Y

i

25P↵i��+1

1� P↵i��+1
.

The value of this can be calculated by having a table of the decibanage correspond-
ing to the factors 25P↵/(1 � P↵). One then decodes the column with the various
possible keys, looks up the decibanage, and adds them up.

The most convenient form for doing this is a table of values of 20 log10[25P↵/(1�
P↵)], taken to the nearest integer, or as we may say, the values of the score in half
decibans. One may also have columns showing multiples of these, and the table
made of double height2 (Fig 3). For the first column with key B the decoded
column is CQWS••OAV,3 and we score -5 for C, -26 for Q, -5 for W, 17 for the three
letters S, 5 for O, 7 for A and -10 V, totalling -17. These calculations can be done
very quickly by the use of the transparent gadget Fig 4 , in which squares are ringed
in pencil to show the number of letters occurring in the column.

A 84 J 2 S 73
B 23 K 5 T 81
C 21 L 38 U 19
D 46 M 34 V 11
E 116 N 66 W 21
F 20 O 66 X 16
G 25 P 15 Y 24
H 49 Q 2 Z 3
I 76 R 64

Figure 2. Count on 1000 letters.
(English text)

The value for X has been taken more of less at random as a compromise
between real language & telegraphese. Also I added to each entry (see p )4.

2 Turing provides a table of double height for Fig 3 to allow the “gadget” of Figure 4 to be

used with any letter of the alphabet as a decode key - hence the double alphabet. Figure 4 can be
prepared as a transparency, with the original markings cleared, and markings for the new decode
letter added. Fig 3 and Fig 4 are correctly proportioned in this document for this to work.

3 S•• means SSS, for a total of three letter S, as noted in the following arithmetic. The linear

decode for the example is CQWSSOAVS
4 Forward reference left unresolved in the manuscript.



2.1. VIGENÈRE 7

31 26 20 13 7 A
(23 (18 (14 (9 (5 B
(26 (21 (16 (10 (5 C
7 6 4 3 1 D
48 38 29 19 10 E
(28 (22 (17 (11 (6 F
(19 (15 (11 (8 (4 G
10 8 6 4 2 H
29 23 17 12 6 I
(131 (103 (77 (52 (26 J
(99 (79 (59 (40 (20 K
(2 (2 (1 (1 0 L
(6 (5 (4 (2 (1 M
23 18 14 9 5 N
23 18 14 9 5 O
(41 (33 (25 (16 (8 P
(131 (103 (77 (52 (26 Q
22 18 13 9 4 R
28 22 17 11 6 S
32 26 19 13 6 T
(31 (25 (19 (12 (6 U
(54 (43 (32 (22 (10 V
(26 (21 (16 (10 (5 W
(38 (30 (23 (15 (8 X
(20 (16 (12 (8 (4 Y
(111 (89 (67 (44 (22 Z
31 26 20 13 7 A
(23 (18 (14 (9 (5 B
(26 (21 (16 (10 (5 C
7 6 4 3 1 D
48 38 29 19 10 E
(28 (22 (17 (11 (6 F
(19 (15 (11 (8 (4 G
10 8 6 4 2 H
29 23 17 12 6 I
(131 (103 (77 (52 (26 J
(99 (79 (59 (40 (20 K
(2 (2 (1 (1 0 L
(6 (5 (4 (2 (1 M
23 18 14 9 5 N
23 18 14 9 5 O
(41 (33 (25 (16 (8 P
(131 (103 (77 (52 (26 Q
22 18 13 9 4 R
28 22 17 11 6 S
32 26 19 13 6 T
(31 (25 (19 (12 (6 U
(54 (43 (32 (22 (10 V
(26 (21 (16 (10 (5 W
(38 (30 (23 (15 (8 X
(20 (16 (12 (8 (4 Y
(111 (89 (67 (44 (22 Z

Figure 3. Table for scoring a Vigenère.

In units of half a deciban.
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A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Figure 4. Apparatus for scoring a Vigenère.

Pencil marks arranged for 1st wheel of Fig. 1.

The gadget may be placed over Fig 3 in various positions corresponding to the
various keys. The score is obtained by adding up the numbers showing through
the various squares. In Fig 5 the alphabet has been written in a vertical below the
cipher text of Fig 1, each letter representing a possible key. The score for each key
has been written opposite the key, and under the relevant column. An X denotes
a bad score, not worth adding up. Usually these will be -15 or worse. It will be
seen that for the first column P, having a score of 43 is extremely likely to be right,
especially as there is no other score better than 8. If we neglect this latter fact
the odds for the key are (1/25)102.15 i.e. about 5:1 on. The e↵ect of decoding this
column with key P has been shown underneath.

For the second column the best key is O, but is by no means so certain as the first
column. The decode for this column is also shown, and provides very satisfactory
combinations with the first column, confirming both keys. (This confirmation could
also be based on probability theory, given a table of bigramme frequencies). In the
third column I and C are best although D would be very possible, and in the fourth
column Q and U are best.
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D K Q H S H Z M N P
R C V X U H T E A Q
X H P U E P P S B K
T W U J A G D Y O J
T H W C Y D Z H G A
P Z K O X O E Y A E
B O K B U B P I K R
W W A C E J P H L P
T U Z Y F H L R Y C

A ;2 X • X X
B • ;17 X X • ;2
C X • 3 16 •• X
D • X 9 9 X
E ;6 X X X
F X X X X
G X X X ;3
H X •• 1 ;3 • X
I X X 17 X
J X X X • 13
K X • X •• X ;15

Scores'for L 2 X X X
possible'keys M X X X X

N X X X X
O X • 28 X • X
P • 43 X • X X
Q X X • X 22
R • X X X X
S X X ;6 X
T ••• 8 X ;15 X
U X • X • X • 22
V X X • X X
W • X •• 16 • 1 X
X • X X ;15 • X
Y X X ;18 • X
Z X • ;13 • X X

Best'Keys P O IC QU
O W IO RN G
C O NT HD I
I T HN EA S

Possible E I MW TF O
Decodes E T OU MI M

A L CI YU L
M A CI LH I
H I SY MI S
E G RX IE T

Figure 5. Scoring and solving a Vigenère.

Writing down the possible decodes we see that the first line must read OWING
and this makes the other lines read CONDI, ITHAS, EIMPO, ETOIM, ALCUL, MACHI,
HISIS, EGRET. By filling in the word CONDITIONS the whole can now be decoded.5

5 Solution: Keylength - 10, Key - POIUMOLQNY, Cleartext - OWINGTOWAR CONDITIONS

ITHASBECOM EIMPOSSIBL ETOIMPORTC ALCULATING MACHINESXT HISISVERYR EGRETTTABLE
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A more accurate argument would run as follows. For the first column, instead
of setting up as rival theories the two possibilities that B is the key and that B is
not we can set up 26 rival theories that the key is A or B or . . . Z, and we may apply
the factor principle in the form:-

A posteriori probability of key A

A priori probability of key A⇥ Probability of getting the given column with key A
,

=
A posteriori probability of key B

A priori probability of key B⇥ Probability of getting the given column with key B
,

= etc.

The argument to justify this form of factor principle is really the same as for the
original form. Let q� be the a priori probability of key �. Then out of N cases we
have Nq� cases of key �. Let P (�, C) be the probability of getting the column C
with key �, then we have rejected the cases where we get columns other than C we
find that there are Nq�P (�, C) cases of key � i.e. the a posteriori probability of
key � is KNq�P (�, C), where K is independent of �.

We have therefore to calculate the probability of getting the column C with
key � and this is simply

Q
i P(↵i��+1), i.e. the product of the frequencies of the

decode letters which we get if the key is �.

Since the a priori probabilities of the keys are all equal we may say that the a
posteriori probabilities are in the ratio

Q
i P↵i��+1 i.e. in the ratio

Q
i 26P↵i��+1

which is more convenient for calculation. The final value for the probability is thenQ
i
26P↵i��+1

P
�

Q
i
26P↵i��+1

.

The calculation of the product
Q

i 26P↵i��+1 may be done by the method recom-
mended before for Y

i

25P↵i��+1

1� P↵i��+1
.

�
The table in Fig 3 was in fact made up for

Q
i 26P↵i��+1. The di↵erences between

the two tables would of course be rather slight
�
. The new result is more accurate

than the old because of the independence assumption in the original result.
If we only want to know the ratios of the probabilities of the various keys there

is no need to calculate the denominator
P

�

Q
i 26P↵i��+1. This denominator has

however another importance: it gives us some evidence about other assumptions,
such as that the cipher is Vigenère, and that the period is 10. This aspect will be
dealt with later (p. )6.

2.2. A letter subtractor problem

A substitution with the period 91 ⇥ 95 ⇥ 99 is obtained by superimposing
three substitutions of periods 91, 95, and 99, each substitution being a Vigenère
composed of slides of 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.7 The three substitutions are
known in detail, but we do not know for any given message at what point in the
complete substitution to begin. For many messages however we can provide a more
or less probable crib. How can we test the probability of a crib before attempting to

6 Forward reference left unresolved in the manuscript.
7 Equivalent to keys A to J.
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solve it? It may be assumed that approximately equal numbers of slides 0, 1, . . . , 9
occur in each substitution.

The principle of the calculation is that owing to the way in which the substi-
tution is built up, not all slides are equally frequent, e.g. a slide of 25 can only be
the sum of slides of 9, 8, and 8, or 9, 9, and 7 whilst a slide of 15 can be any of the
following

9,6,0 8,7,0 7,7,1 6,6,3
9,5,1 8,6,1 7,6,2 6,5,4
9,4,2 8,5,2 7,5,3
9,3,3 8,4,3 7,4,4

A crib will therefore, other things being equal, be more likely if it requires a slide
of 15 than if it requires a slide of 25. The problem is to make the best use of this
principle, by determining the probability of the crib with reasonable accuracy, but
without spending long over it.

We have to find the probability of getting a given slide. To do this we can
apply several methods.

(a) We can produce a long stretch of key by addition and take a count of the
resulting slides. This is obviously a very general method, and requires no special
mathematical technique. It may be rather laborious, but by interpreting a small
count with common sense one can probably get quite good results.

(b) There are 1000 possible combinations of slides all equally likely viz. 000, 001,
. . . , 999. We can add up the digits in these and take the remainder on division
by 26, and then count the number of combinations giving each of the possible
remainders.

(c) We can make use of a trick which might appear to be rather special, but is
really applicable to a multitude of problems. Consider the expression

f(x) =
�
1 + x+ x

2 + · · ·+ x

9
�3

.

For each possible way of expressing a number n as the sum of three numbers
0, . . . , 9, say n = m1 + m2 + m3, there is a term x

m1
x

m2
x

m3 in f(x), xm1

coming out of the first factor, xm2 out of the second, and x

m3 out of the third.
Hence the number of ways of expressing n in the form n = m1 +m2 +m3, is
the coe�cient of xn in f(x) i.e. in

�
1� x

10
�3

(1� x)
3 ,

or in �
1� 3x10 + 3x20 � x

30
�
(1� x)

�3
.

Expanding (1� x)
�3

by the binomial theorem

(1� x)
�3

= 1 + 3x+ 6x2 + 10x3 + 15x4 + 21x5 + 28x6 + 36x7

+ 45x8 + 55x9 + 66x10 + 78x11 + 91x12 + 105x13

+ 120x14 + 136x15 + 153x16 + 171x17 + 190x18

+ 210x19 + 231x20 + 253x21 + 276x22 + 300x23

+ 325x24 + 351x25 + 378x26 + 406x27 + 435x28 + . . . .
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Now multiply by 1� 3x10 + 3x20 � x

30 and we get

f(x) = 1 + 3x+ 6x2 + 10x3 + 15x4 + 21x5 + 28x6 + 36x7

+ 45x8 + 55x9 + 63x10 + 69x11 + 73x12 + 75x13

+ 75x14 + 73x15 + 69x16 + 63x17 + 55x18

+ 45x19 + 36x20 + 28x21 + 21x22 + 15x23

+ 10x24 + 6x25 + 3x26 + x

27

This means to say that the chances of getting totals 0, 1, 2, . . . are in the ratio
1, 3, 6, 10, . . . The chances of getting remainders of 0, 1, 2, . . . on division
by 26 are in the ration 4, 4, 6, 10, 15, . . . To get true probabilities these must
be divided by their total which is conveniently 1000.

(d) There are two other methods, both connected with the last method but not
relying so much on the special features of the problem. They will be discussed
later.8

Suppose then that the probabilities have been calculated by one method or the
other (as in fact we have done under (c)). We can then estimate the values of cribs.
Let us suppose that a possible crib for a message beginning MVHWUSXOWBVMMK was
AMBASSADOR so that the slides were 12, 9, 6, 22, 2, 0, 23, 11, 14. The slide of 12 gives
us some slight evidence in favour of the crib being right for slides of 12 occur with
frequency 0.073 with right cribs, whilst with wrong cribs they occur with frequency
only 1/26. The factor in favour of the crib is therefore 26 ⇥ 0.073 or about 1.9.
A similar calculation may be made for each of the slides, but of course the work
may be greatly speeded up by having the values of the factors 26 Cs/1000 in half
decibans tabulated: here Cs is the coe�cient of xs in the above polynomial f(x).
The table is given below (Fig 6)

1 0 -20
2 25 -16
3 24 -12
4 23 -8
5 22 -6
6 21 -3
7 20 -1
8 19 1
9 18 3
10 17 4
11 16 5
12 15 6
13 14 6

Figure 6. Scores in half decibans of the various slides.

Evaluating this crib by means of this table we score

6 + 3� 3� 6� 16� 20� 8 + 5 + 6 ( = �33 ),

i.e. the crib is worse by a factor of 10�33/20 than it was before e.g. if the a priori
odds of the crib were 2:1 against it becomes 98:1 against. This crib was in fact
made up at random i.e. the letters of the cipher text were chosen at random.

8 No such discussion appears in the manuscript.
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Now let us take one made up correctly, i.e. really enciphered by the method in
question, but with a random chosen key.

N Y X L N X I Q H H
A M B A S S A D O R
13 12 22 11 21 5 8 13 19 16

(slides)

This scores 15 so that if it were originally 2:1 against, it now becomes nearly 3:1 on.
Having decided on a crib the natural way to test it is to have a catalogue of the

positions in which a given series of slides is obtained if the 91 period component
is omitted. We make 91 di↵erent hypotheses as to this third component, draw an
inference as to what is the part of the slide arising from the components of periods
95 and 99 combined. This we look up in the catalogue. This process is fairly
lengthy, and as the scoring of the crib takes only a minute it is certainly worth
doing.

2.3. Theory of repeats

Suppose we have a cipher in which there are several very long series of substi-
tutions which can be used for enciphering a message, but that one may sometimes
get two messages enciphered with the same series of substitutions (or possibly, the
series of substitutions for one message being those for another with some at the
beginning omitted). In such a case let us say that the messages fit, or that they
fit at such and such a distance, the distance being the number of substitutions
which have to be omitted from the one series to obtain the other series. One will
frequently want to know whether two messages fit or not, and we may find some
evidence about this by examining the repeats between them.

By the repeats between them I mean this. One writes out the cipher texts of
the two messages with the letters which are thought to have been enciphered with
the same substitution under one another. One then writes under these messages
a series of letters O and X, an O being written where the cipher texts di↵er and
an X where they agree. The series of letters O and X will begin where the second
message begins and end where the first to end ends. This series of letters O and X
may be called the repetition figure. It may be completed by adding at the ends an
indication of how many letters there are which do not overlap, and which message
they belong to.

As an example:

GFRLIKQGVBMILAFIXMMOROGBYSKYXDAZCHMUMRKBZLDLDDOHCMVTIPRSD
VLOVDYQCEJSOPYGBMBKYXDAZNBFIOPTFCXDOD

8XOOOOOOOOOOXOOXXOOXXXXXXOOOOOOOOOOXOX11

On the whole one expects that a fit is more likely to be right the more letters

X there are in the repetition figure, and that long series of letters X are especially

desirable. This is because it would not be very unusual for two fairly common

words to lie directly under one another when the clear texts are written out, thus

THEMAINCONVOYWILLARRIVE ...
ALLCONVOYSMUSTREPORT ...
XOOXXXXXXOOOOOXOOOO ...
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If the corresponding cipher texts really fit, i.e. if the letters in the same col-

umn are enciphered with the same substitution, then the condition for an X in the

repetition figure of the cipher texts is that there be an X in the repetition figure of

the corresponding clear text. Now series of several consecutive letters X can occur

quite easily as above by two identical words coming under one another, or by such

combinations as

ITISEASIERTOTEACHTHANALGEBRA ...
THERAINWASSUCHTHATHECOULD ...
OOOOOOOOOOOOXXXXXOOOOOOOO ...

if the messages really fit, but if not they can only occur by complete coincidence.
One therefore tends to believe that there is a fit when one gets such series of letters X.
As regards single cases of X the value of them is not so clear, but one can see that
if P↵ is the frequency of letters ↵ in plain language then the frequency of letters X
as a whole in comparison of plain language with plain language is

P
↵ P 2

↵ , whilst
for wrong fits of cipher text it is 1/26 which is necessarily less. Given a su�ciently
long repetition figure one should therefore be able to tell whether it is a fit or not
simply by counting the letters X and O.

So much is well known. The real point of this section is to show these ideas
can be developed into an accurate method of estimating the probabilities of fits.

2.3.1. Simple form of theory. The complete theory takes account of the
various possible lengths of repeat. As this theory is somewhat complicated it will
be as well to give first two simplified forms of the theory. In both cases the sim-
plification arises by neglecting a part of the evidence. In the first simplified form
of theory we neglect all evidence except the number of letters X and the number of
letters O. In the other simplified form the evidence is the number of series of (say)
four consecutive letters X in a repetition figure.

When our evidence is just the number of times X occurs in the repetition figure,
(n let us say) and the length of the repetition figure (N say), then the factor in
favour of the fit is

Probability of a right repetition figure of length N and n occurrences of X

Probability of a wrong repetition figure of length N having n occurrences of X
.

As an approximation we may assume that the numerator of this expression has
the same value as if the right repetition figures were produced letter by letter by
independent random choices, with a certain fixed probability of getting an X at each
stage. This probability will have to be � =

P
↵ P 2

↵ . The numerator is then

(Number of repetition patterns with length N and n occurrences of X)

⇥(Probability of getting a given such repetition pattern by the process just mentioned) ,

which we may write as R(N,n)Q(N,n). Now let us denote by yi the ith symbol
of the given repetition pattern and put ⌧x = � and ⌧0 = 1 � �. Then Q(N,n),

the probability of getting the repetition pattern is
QN

i=1 ⌧yi which simplifies to
�

n(1� �)N�n. We may do a similar calculation for the denominator, but here we
must take � = 1/26 since all letters occur equally frequently in the cipher. The
denominator is then

R(N,n)

✓
1

26

◆n ✓
25

26

◆N�n

.
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In dividing to find the factor for the fit R(N,n) cancels out, leaving

(26�)
n

✓
26

25
(1� �)

◆N�n

.

In other words we score a factor of 26� for an X and a factor of (26/25)(1� �) for
an O. More convenient is to regard it as 10 log10

⇥
(25�)/(1 � �)

⇤
decibans for an X

and 10 log10[(26/25)/(1��)] per unit length of repetition figure (per unit overlap).
An alternative argument, leading to the same result, runs as follows. Having

decided to neglect all evidence except the overlap and the number of repeats we
pretend that nothing else matters, i.e. that the form of the figure is irrelevant. In
this case we can regard each letter of the repetition figure as independent evidence
about the fit. If we get an X the factor for the fit is

Probability of getting an X if the fit is right

Probability of getting an X if the fit is wrong
,

i.e. �/(1/26). Similarly the factor for an O is (1� �)/(25/26).
In either form of argument it is unnecessary to calculate the number R(N,n).

In this particular case there is no particular di�culty about about it: it is the
binomial coe�cient. In some similar problems this cancelling out is a great boon,
as we might not be able to find any simple form for the factor which cancels. The
cancelling out is a normal feature of this kind of problem, and it seems quite natural
that it should happen when we think of the second form of argument in which we
think of the evidence as consisting of a number of independent parts.

The device of assuming, as we have done here, that the evidence which is not
available is irrelevant can often be used and usually leads to good results. It is of
course not supposed that the evidence really is irrelevant, but only that the error
resulting from the assumption when used in this kind of way is likely to be small.

2.3.2. Second simplified form of theory. In the second simplified form of
theory we take as our evidence that a particular part of the repetition figure is
OXXXXO (say, or alternatively OXXXXXO say). The factor is then

Frequency of OXXXXO in right repetition figures

Frequency of OXXXXO in wrong repetition figures
.

The denominator is ✓
1

26

◆4 ✓
25

26

◆2

,

and the numerator may be estimated by taking a sample of language hexagrams
and counting the number of pairs that have the repetition figure OXXXXO. The
expectation of the number of such pairs is the sum for all pairs of the probabilities
of those pairs having the desired repetition figure i.e. is the number of such pairs
(viz N(N � 1)/2 where N is the size of the sample) multiplied by the frequency of
OXXXXO repetition figures. This frequency may therefore be obtained by division if
we equate the expected number of these repetition figures to the actual number.
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2.3.3. General form of theory. It is not of course possible to have statistics
of every conceivable repetition figure. We must make some assumptions to reduce
the variety that need to be considered. The following assumption is theoretically
very convenient, and also appears to be a very good approximation.

The probability of repeats at two points known to be separated by a point where
there is known to be no repeat are independent.

We may also assume that the probability of a repeat is independent of anything
but the repetition figure in this neighbourhood. (We may however as a refinement
produce di↵erent positions in a message). We can therefore think of repetition
figures as being produced by selecting the symbols of the figure consecutively, the
probability of getting an X at each stage being determined by the repetition figure
from the point in question back as far as the last O. Sometimes this will take us
back as far as the beginning of the message, and will include the number telling us
how many more letters there are which do not repeat at all. We need in practice
only distinguish two cases, where this number is 0 and when it is more. We may
also neglect the question as to which message occurs first. We therefore have to
distinguish the following cases

O a0 some b0 none c0

OX a1 some X b1 none X c1

OXX a2 some XX b2 none XX c2

OXXX a3 some XXX b3 none XXX c3

. . . . . . . . .

The entries a0, a1, b0, etc. opposite the repetition figures are the notations we are
adopting for the probability of getting another X following such a figure. Strictly
speaking we should also bring in a notation for the probability of the message
coming to an end after any given repetition figure. As the repeats at the end of a
comparison do not appear to behave very di↵erently from those in the main part
of the message I shall neglect this complication by assuming that the probability
of getting an O added to the probability of getting an X is 1, and that afterwards
one cuts o↵ the end of the series arbitrarily.

Let us calculate the factor for the repeat figure9

none X X X X O O O X
c0 c1 c2 c3 1-c4 1-a0 1-a0 a0

1/26 1/26 1/26 1/26 25/26 25/26 25/26 1/26

O X X X O O X X some
1-a1 a0 a1 a2 1-a3 1-a0 a0 a1

25/26 1/26 1/26 1/26 25/26 25/26 1/26 1/26

Underneath each symbol has been written the probability that one would get
that symbol, knowing the ones which precede, both for the case of a right and of a
wrong repetition figure. The factor for the fit is the product of the first row divided

9 In the manuscript, Turing squeezes the figure into three lines by spilling into the margins

and use of pen and ink. The typeset equivalent is unreadable, so the figure has been split into a
left and right components.

Reassemble as: none X X X X O | O | O | X O | X X X O | O | X X | some
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by the product of the second. It is convenient to split this up as indicated by the
vertical lines into the product of

c0c1c2c3 (1� c4)

(1/26)4 ⇥ (25/26)
,

1� a0

(25/26)
, - occurring three times,

a0(1� a1)

(1/26)⇥ (25/26)
,

a0a1a2 (1� a3)

(1/26)3 ⇥ (25/26)
,

a0a1

(1/26)2
,

and this product may be put into the form of the product of

c0c1c2c3 (1� c4)

(1/26)
4 ⇥ (25/26)

⇥
✓

1� a0

(25/26)

◆�5

,

- which we call the factor for an
initial tetragramme repeat level,

a0(1� a1)

(1/26)⇥ (25/26)
⇥

✓
1� a0

(25/26)

◆�2

,

- the factor for a single repeat,

a0a1a2 (1� a3)

(1/26)
3 ⇥ (25/26)

⇥
✓

1� a0

(25/26)

◆�4

,

- the factor for a trigramme,

1� a0

1� a2
,

- the correction for a final bigramme,

✓
1� a0

(25/26)

◆16

,

- the factor for an overlap of 16,

a0a1 (1� a2)

(1/26)
2 ⇥ (25/26)

⇥
✓

1� a0

(25/26)

◆�3

,

- the factor for a trigramme.

We shall neglect the correction for a final bigramme (or whatever it may be).
It is in any case rather small, and vanishes if the repetition figure ends with O; also
with our conventions the whole question of the ends of repetition figures has been
left rather in doubt.
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Now let us put10

a0a1 . . . ar(1� ar+1) = kr,

b0b1 . . . br(1� br+1) = jr,

c0c1 . . . cr(1� cr+1) = ir.

The values of the ir can be obtained as follows. We take a number of plain language
messages and leave out two or three words at the beginning. Then combine the
messages to form one long message; this message may be made to eat its own
tail i.e. it may be written round a circle. If the message were compared with
itself in every possible position, except level, we should expect to get repetition
figures which when divided up as shown by vertical lines after each O, containing
(N(N � 1)/2)kr (= Nr) parts which consist of r symbols O, or as we may say Nr

actual r-gramme repeats, where h is the probability of an O .
The values of Nr can be calculated given the apparent number of r-gramme

repeats Mr for each r. This apparent number of r -gramme repeats is the number
of series of r consecutive symbols X in the repetition figures regardless of what
precedes or follows the series.

By considering the ways in which an actual repeat can give rise to the apparent
repeat of various lengths we see that

Mr = Nr + 2Nr+1 + 3Nr+2 + . . . ,

and therefore

Mr �Mr+1 = Nr +Nr+1 +Nr+2 + . . . ,

and

(Mr �Mr+1)� (Mr+1 �Mr+2) = Nr.

The calculation of jr may perhaps best be done by comparing the beginners of
a number of messages with the long circular message, and the values of ir by
comparing the beginners among themselves. A similar technique of actual and
apparent numbers of repeats can be used. I shall not go into this in detail. The
formulae required may now be assembled.

µr = decibanage for an r -gramme repeat,

� = negative decibanage for unit overlap,

S�,r = number of occurrences in the statistics of the r -gramme �,

N = total number of letters in the statistics.

Then if

Mr =
X

�

S�,r (S�,r � 1)

2
,

Nr = Mr � 2Mr+1 +Mr+2,

L =
N(N � 1)

2
,

kr =
Nr

Lh

.

10 The manuscript has a pencilled note beside kr indicating it is to be read as kr+1. We
presume that this also means that jr should be jr+1, and ir should be ir+1, However, these are
not indicated and no changes are made in the subsequent text. We leave the text unchanged
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h may be calculated as follows. From the identity

(1� a0) + a0 (1� a1) + a0a1 (1� a2) + · · · = 1,

we get
k0 + k1 + k2 + · · · = 1,

) L�M1

Lh

= 1,

(1� a0) = k0 =
N0

L�M1
=

L� 2M1 +M2

L�M1
,

µr = 10 log10

✓
26r+1

kr

25

◆
+ (r + 1) ⌫,

⌫ = �10 log10

✓
26(1� a0)

25

◆
.

2.4. Transposition ciphers

2.4.1. A probability problem. In making calculations about substitution
ciphers we have often found it useful to treat the plain language as if it were pro-
duced by independent choices for the letters, using certain fixed frequencies with
which the letters are chosen. Our method for Vigenère and one of the simplified
forms of repeat theory could be based on this sort of assumption. With a transpo-
sition cipher however such an assumption would be useless or worse than useless,
for it would result in the conclusion that all transpositions were equally likely. We
have therefore to take a slightly less crude assumption, and the one which suggests
itself is that the letters forming the plain language are chosen consecutively, the
probability of getting a particular letter depending only on what the letter is and
what the preceding letter was. It is easily verified the if P↵� is the proportion of
bigrammes ↵� in plain language and P↵ the frequency of the letter ↵ then the
probability q↵� of a letter � following an ↵ is P↵�/P↵. The probability of a piece
of plain language of length L letters saying ↵1↵2 . . .↵L is then

P↵1 ⇥ q↵1↵2 ⇥ q↵2↵3 ⇥ q↵3↵4 ⇥ · · ·⇥ q↵(L�1)↵L ,

which may also be written as

J (↵1, . . . ,↵L) .

We may also calculate the probability of a given piece of plain language having
certain given letters in given places, the remainder of the message being unspecified.
The probability is given by

X
(⇠1, . . . , ⇠L consistent with data )J (⇠1, . . . , ⇠L) ,

and if the data is that the known letters are

· · ·
n1 dots

�1 · · ·
n2 dots

�2 · · · · · ·�r�1 · · ·
nr dots

�r · · · , (1)

it is approximately11
Y

r

P�r ·
Y

nr+1=0

P�r�r+1

P�rP�r+1

. (2)

11 The manuscript has as the first term
Q

r �r, a pencilled annotation indicates that the �r

is to be read as P�r . This substitution has been made in the text.
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A more or less rigorous deduction of this approximation from the assumptions above
is given at the end of the section. For the present let us see how it can be applied.
If we have two theories about the transposition of which the one requires the above
pattern of letters, and the other brings the same letters in to positions in which no
two of them are consecutive, then the factor in favour of the first as compared with
the second is Y

nr+1=0

P�r�r+1

P�rP�r+1

.

We can apply this straightforwardly to the case of a simple transposition by columns.

The following text is known to be a simple transposition of a certain type of German

text with a key length of not more than 15.12

S A T P T W S F A S T A U T E E A I E U F H W T J T D D G C
N L T S E F C U I E B O E Y Q H G T J T E E F I E O R T A R
U R N L N N N N A I E O T U S H L E S B F B R N D X G N J H
U A N W R

To solve this transposition, we may try comparing the first six letters of

S A T P T W which we know form part of one column with each other series of

six letters in the message, for we know that one such comparison will give entirely

bigrammes occurring in the decode. We may try first

S F
A A
T S
P T
T A
W U

The factor for a transposition which brings these letters together, as compared
with one which leaves them apart is

PSF

PSPF
⇥ PAA

PAPA
⇥ · · ·⇥ PWU

PWPU
.

By using a table of values of

20 log10

✓
P↵�

P↵P�

◆
,

made up for the type of tra�c in question, and given to the nearest integer (table of
values of P↵�/(P↵P�) expressed in half-decibans) we get the product by addition.
Such a table is shown in Fig 6. The scores for this particular columns are SF
-7, AA -7, TS -2, PT -10, TA -3, WU -13, totalling -36. If we consider this
combination as a priori about 100:1 against (there are 95 letters in the message) it
is a posteriori about 3000:1 against.

12 As for the Vigenère problem above, Turing’s statement of the ciphertext is slightly di↵erent

from that which he scores for decryption. The second line in the ciphertext below begins NLTS,
however, this changes to NITS in the scoring example in Figure 7 below. See also the notes
accompanying the cleartext.
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A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

Q
R

S
T

U
V

W
X

Y
Z

A
-7

5
10

>4
>5

>7
3

>4
>2
5

>7
>8

>1
1

3
>2
0

>6
>2

>1
>6

>6
8

0
>1
1

>2
0

>7
>1
3

A
B

-7
6

>1
0

>9
9

>1
3

>6
>1
3

1
>1
1

>1
2

>7
>2

>1
8

4
>1
3

>2
1

>1
3

>1
5

>1
>1
6

>1
2

>1
8

>4
>1
2

B
C

-14
>3

>3
>1
8

>1
9

>2
0

>1
9

27
>2
1

>1
0

3
>1
2

>1
2

>2
1

>1
5

>1
3

>2
>1
4

>1
4

>2
1

>2
1

>5
>1
7

>1
7

>1
4

>1
7

C
D

5
>8

>1
8

>1
8

4
>6

>1
3

>1
6

>4
2

>9
>1
1

>6
>1
3

4
>4

>2
9

>6
>1
1

2
>2

>9
>1
0

>5
>4

D
E

-15
4

0
>8

>1
5

>5
>2

>5
10

>8
>1
4

1
>1

5
>2
2

>6
>3

8
>2

>6
>5

>6
>1
1

>1
3

>8
>4

E
F

-2
>1
1

>2
0

>9
>2

10
>3

>1
5

>1
2

4
>2

1
>8

>1
1

6
0

>3
>8

>8
>1

9
>8

>8
1

>2
>1

F
G

-1
>8

>1
8

>5
8

>1
0

>2
>1
3

>1
0

2
6

>3
>1
3

>1
1

>1
0

>1
4

>3
0

>3
>9

>2
>7

>7
1

2
>2

G
H

1
>1
0

>1
2

>8
4

>5
>1
1

>1
2

>2
5

>1
0

2
>3

>1
0

>2
>2

>2
4

>1
9

>1
1

>7
>4

>7
>1
5

>8
H

I
-14

>4
10

>1
0

0
>1

2
>1
8

>1
7

>6
>5

0
>1

9
>1
7

>7
>1

>1
0

>1
4

>1
9

>7
>1
6

>3
>9

>4
I

J
3

3
>4

1
>3

0
>1

2
>6

14
1

>3
1

>7
>3

7
>2

>1
2

1
>8

>4
5

>2
0

9
>1
2

J
K

-2
>9

>1
2

3
>3

1
>7

>9
>9

4
20

>2
1

>1
4

>1
5

>1
3

7
>6

>5
0

0
>3

>6
>1
7

>5
>8

K
L

6
0

>6
2

>4
>7

>1
>1
5

1
>3

>1
4

8
>4

>2
>2

>5
8

>1
8

>5
>5

2
>1

>1
0

3
>5

>3
L

M
6

>1
>1
7

>6
1

>9
>6

>5
5

1
>1
0

>1
4

15
>1
4

0
>2

>2
>1
4

>6
>5

>1
1

>4
>7

3
>6

2
M

N
-1

>8
>1
8

10
>6

3
11

>9
>8

2
>6

>1
1

>5
>7

>2
>9

2
>2
0

6
>6

4
>3

>6
3

0
>5

N
O

-10
>8

>1
0

>6
>3

4
>6

>1
3

>1
8

0
>1

2
6

0
1

2
>2

9
0

2
>1
8

3
>1
1

6
>6

>2
O

P
2

>7
>1
3

>1
3

4
>3

>1
4

>5
>8

3
>1
2

0
>2

>8
6

8
>2

5
>1
5

>1
0

5
>1
2

>1
2

>1
3

>1
1

>1
P

Q
-3

>2
>2

>2
>3

>3
>3

>2
>2

>1
>3

>2
>2

>3
>2

>2
3

>3
>3

>3
13

>2
>2

>2
>2

>2
Q

R
2

3
>3

5
2

0
>6

>1
0

>2
2

>1
>6

>2
>9

>6
1

>1
>1
1

>1
2

>1
>2

0
1

>1
2

R
S

-3
>1

11
>2

>4
>7

>1
3

>1
2

2
>6

1
>9

>1
0

>7
>5

8
>3

>1
9

5
7

>8
5

>9
>1
5

1
4

S
T

3
>3

>1
4

>7
5

>3
>1
1

>1
1

>4
1

>1
>4

>5
>9

>2
>7

>3
>2

>2
5

>5
>3

>4
2

>3
9

T
U

-11
>4

>3
>1
5

0
5

>6
>2

>2
6

>1
2

>1
6

10
>2

8
>1
1

3
2

>3
>3

>1
1

>2
>9

>1
1

>1
2

>9
>2
0

U
V

-13
>1
6

>1
5

>1
8

2
>1
5

>1
6

>5
12

>1
0

>7
>1
6

>1
5

>1
7

14
>1
2

>2
>1
7

>1
8

>8
>1
1

10
>1
4

>4
8

>8
V

W
-1

>1
7

>1
7

>1
7

4
>1
8

>1
8

>1
8

2
>1
0

>9
>1
3

>1
0

>2
0

21
>1
2

>2
>1
9

>2
0

>1
9

>1
3

>1
4

>3
>1
6

>6
>1
6

W
X

1
1

>1
3

6
1

0
>4

>1
3

>1
4

3
0

>1
2

2
>1
0

>1
2

>2
8

>1
5

>6
>4

>5
9

1
10

>6
3

X
Y

-11
>1

>1
4

7
>5

>4
>9

>9
>1
1

>9
0

>9
>6

>5
>4

>1
1

>2
>1
1

>6
>6

>7
9

>2
>1
3

25
>2

Y
Z

-13
>1
3

>1
7

>1
3

>4
>1
2

>8
>1
4

>7
>3

>1
0

>1
1

>1
7

>1
6

>1
>5

>2
>2
0

>1
3

>1
0

8
>8

27
0

>6
>2

Z
A

B
C

D
E

F
G

H
I

J
K

L
M

N
O

P
Q

R
S

T
U

V
W

X
Y

Z

F
ig
u
r
e
6
.
E
x
cl
u
si
ve

b
ig
ra
m
m
e
sc
o
re
s
in

h
a
lf
d
ec
ib
a
n
s,

i.
e.

2
0
lo
g
1
0

⇣
P

↵
�

P
↵
P

�

⌘ ,
fo
r
a
ce
rt
a
in

k
in
d
o
f
G
er
m
a
n
tr
a
�
c.
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!36 S X F !22 X E !36
X A 13 C 37 X O !55
X T X U !23 X T !8
X P X I !1 X U !40
X T X E !2 X S !18
X W X X B !49 X H !44
X S !10 X X O !44 X L !43
X F !36 X X E !59 X E !38
!19 A !26 X !22 Y !31 X S !32
X S 16 X X Q !25 7 B !32
X T !6 6 X H 8 X F !35
!10 A 18 !7 X G !19 !17 B !40
X U 0 X -26 T !4 !38 R !67
X T 9 7 X J !4 X N !42
X E !22 !8 X T 4 D !58
X E !24 X X E 6 X !40
X A !39 X X E !32 G !20
X I !25 !10 X F !38 N !37
X E !27 !15 X I 1 J !25
X U !23 X X E !52 H !42
X F !43 X !11 O !14 U
X H !27 X X R !46 A
X W !53 X !13 T !19 N
X T !38 !22 X A !26 W
X J !60 X X R !45 R
X T !52 !25 X U !47
X D !37 X X R !87
X D !44 !7 X N !54
X G !45 X X L !33
7 C 2 X X N !16
X N !56 X !13 N !11
X I !22 X !5 N 17
X T !11 !15 !24 N !36
X S !19 X X A !25
X E !18 27 X I !40

F E
C O
U T
I U
E S

Figure 7. Scoring the matching of columns in a simple transpo-
sition. Correct matchings noted.
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Similar scoring may be done for every possible comparison of S A T P T W
with six consecutive letters of the message. The comparison may be made both
with S A T P T W as earlier and as later column; one may also use the last six
letters of the message H U A N W R.

The results of doing this are shown in Fig 7. The message has been written
out vertically. The first columns of figures after the message gives the score for
S A T P T W as earlier column, entered against the first letter of the later column,
e.g. the -36 as calculated above gets entered against the F of F A S T A U. The
second column after the message consists of the scores for H U A N W R as first
column [and the column before the message gives scores for H U A N W R as second
column].13 One of these columns has been worked out in detail but in the other
two crosses have been put in where the scores are very bad.

The scores which eventually turned to to be right are ringed. The fourth
comparison, which did not have to be done scored very badly viz. -27. Amongst
the good scores which were wrong there was one score of 37. It was not di�cult to
see that this one was wrong as most of the score came from W O with requires Z to
precede it, and there was no Z in the message. Apart from this fact the comparison
was about evens, although if we take into account the fact that there was no better
score it would be better.14 [We have already had a case of this kind of thing in
connection with Vigenère; if the various positions are a priori equally likely and
the factors are f1, f2, . . . , fN then the value fr/

P
fi for the probability of the rth

alternative is better than (fr/N) / (1 + fr/N)].

2.4.2. The Probability Formula. (Semi) Rigorous deduction of the formula
(2) on page 20. (This is something of a digression).

The probability of a piece of plain language coinciding where necessary with
the data (1) on page 20 is

P�1Tn2,�1�2Tn3,�2�3 . . . Tnm,�m�1�m ,

where
Tn,↵� is

X

⌘1⌘1...⌘n

q↵⌘1q⌘1⌘2 . . . q⌘n� ,

since X

⌘1...⌘n1

P⌘1q⌘1⌘2 . . . q⌘n1�1 = P�1 .

We can put
Tn,↵� =

�
Qn+1

�
↵�

,

where Q is the matrix whose ↵� coe�cient is q↵� . The formula (2) on page 20
would then be accurate if we could say that for n > 0,

�
Qn+1

�
↵�

= P� .

This is not true, but it is true that except for very special values for q↵� ,

(Qn)↵� ! P� , as n ! 1,

13
. . . and the column to end of sentence, has the note in pencil: I doubt it - S.W.

14 Using Turing’s scoring recommendations and a key length of 12 with sequence 5, 11, 8,
7, 3, 10, 6, 12, 9, 4, 1, 2, a cleartext emerges: BNTO SJJ ALBA RFJ STATT IN OST B HEUTE DEN

ETA RUFS PEDUNYAR NACHT FGFNQUUDNUL WICH AHTR X WIESEN WI GEN GRESFOITE TE. With Tur-

ing’s original statement of the ciphertext, as noted above, GRESFOITE becomes GRESFOLTE. Turing
scores for the I and not for L, although it makes no di↵erences in the decision to align bigrams.
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and the convergence is rather rapid.
To prove this I shall assume that the eigenvalues of Q are all di↵erent in mod-

ulus. In this case we can find a matrix U with unit determinant, such that U�1Q U
is in the diagonal form

M = U�1Q U =

0

BBBBBBB@

µ1 0 0 · · · 0

0 µ2 0
...

0
. . .

. . .
. . . 0

... 0 µ25 0
0 · · · 0 0 µ26

1

CCCCCCCA

,

since QU = UM we have
X

�

q↵�u�� =
X

⇠

u↵⇠m⇠� ,

i.e. X

�

q↵�u�� = µ�µ↵� .

That is, for each �, u↵� provides a solution of
X

�

q↵� l� = µl↵, (3)

with µ = µ� . Conversely if we have any solution of (3) then µ = µ#, l↵ = ku↵# for
some k,# and all ↵, for as U is non singular we can find numbers c� such that

l↵ =
X

�

u↵�c� for all ↵,

and then substituting in (3) we get
X

�,�

q↵�u��c� = µ

X

�

u↵�c�,

i.e. X

�

(µ�c� � µc�)u↵� = 0.

Which, since U is nonsingular implies µ = µ� or c� = 0 for all �.
As the series µ1, . . . , µ26 are all di↵erent there is only one value # of � for which

µ = µ� and so l↵ = c#u↵# for all ↵. Now putting l↵ = 1 for all ↵ we see that one
member of the series µ1, . . . , µ26 is 1, for (3) is certainly satisfied.

I shall prove that the remaining eigenvalues satisfy |µ|  1. We first prove that
if µ 6= 1 then

P
p↵l↵ = 0. This follows by multiplying (3) on each side by P↵ and

summing. Since

q↵� =
P↵�

P↵
and

X

↵

P↵� = P� ,

we get X

↵�

q↵� l� =
X

p� l� = µ

X
p↵l↵,

which implies

µ = 1 or
X

p↵l↵ = 0.
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Next we show that each µ for which |µ| > 1 is real and positive. Let l↵ satisfy
(3) with |µ| > 1; then the eigenvalue for l↵ is µ and so

X

�

(Qr)↵�
�
1 + "

�
l� + l�

��
= 1 + 2" < µ

r
l↵.

If " > 0 has been chosen so small that < "l� > �1/2 for all � then the L.H.S. is
positive for the coe�cients in the matrix are positive, whereas the R.H.S. is negative
for suitably chosen µ, unless l↵ = 0. If now µ > 1 we may take it that l↵ is real for
each ↵. As it must satisfy

P
p↵l↵ = 0 it is negative for some ↵, but then

X

�

(Qr)↵� (1 + " l�) = 1 + "µ

r
l↵,

and if " is chosen so that 1 + " l� > 0 for all � the L.H.S is positive whereas the
R.H.S is negative for su�ciently large r.

All the eigenvalues therefore satisfy |µ|  1 as the eigenvalues are all di↵erent
in modulus this means that |µ| < 1 except for one value of µ. Then as r ! 1,Mr

tends to a matrix which has only one element di↵erent from 0, and that a 1 on the
diagonal, say in position ��.

Calling this matrix X� the series of matrices Qr tends to the matrix U�1X�U .
This matrix is the one and only one Y which satisfies YQ = Y,Y2 = Y,Y 6= 0 and
is therefore the one whose ↵� coe�cient is P� .

2.4.3. Another probability problem. There is another probability problem
that arises in connection with simple transpositions. With a message of length L,
and a key length of K what is the probability that the mth letter will be at the
bottom of a column? Let D be the length of the short columns i.e. D = [L/K],
and let E = L �DK. Then if the mth letter is at the bottom of the wth column
we must have

m

D + 1
 w  m

D

,

and there will be (D+1)w�m short and m�Dw long columns among these first
w columns. There are15

✓
w

m�Dw

◆✓
K � w

E �m+Dw

◆

ways in which the short and long columns can be arranged consistently with this,

and altogether
�
K
E

�
ways in which the columns can be arranged, so that the prob-

ability of the m the letter being at the bottom of a column is

X

(m/D+1)w(m/D)

✓
w

m�Dw

◆✓
K � w

E �m+Dw

◆,✓
K

E

◆
.

There will normally be very few terms in the sum.
Let us take the case of the message of length 133 and consider the 45th letter,

assuming the key length is between 10 and 20 (inclusive). LO
B
. L = 133,m = 45.

15 Turing is using Binomial Coe�cient notation in this section;
⇣n
k

⌘
= C(n, k) =

P (n, k)

P (k, k)
=

n!

(n� k)!k!
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K = 10, D = 13, E = 3,
m

D + 1
= 3+,

m

D

= 3+ no terms

K = 11, D = 12, E = 1,
m

D + 1
= 3+,

m

D

= 3+ no terms

K = 12, D = 11, E = 1,
m

D + 1
= 3+,

m

D

= 4+

only terms w = 4, m�Dw = 1 probability is:

✓
4

1

◆✓
8

0

◆,✓
12

1

◆
=

4

12

K = 13, D = 10, E = 3,
m

D + 1
= 4+,

m

D

= 4+ no terms

K = 14, D = 9, E = 7,
m

D + 1
= 4+,

m

D

= 5

only terms w = 5, m�Dw = 0 probability is:

✓
5

0

◆✓
9

7

◆,✓
14

7

◆
=

3

286
= 0.0105,

K = 15, D = 8, E = 13,
m

D + 1
= 5,

m

D

= 5+

only terms w = 5, m�Dw = 5 probability is:

✓
5

5

◆✓
10

8

◆,✓
15

13

◆
=

3

7
= 0.428,

K = 16, D = 8, E = 5,
m

D + 1
= 5+,

m

D

= 5+

only terms w = 5, m�Dw = 5 probability is:

✓
5

5

◆✓
11

0

◆,✓
16

5

◆
=

1

4368
= 0.000229,

K = 17, D = 7, E = 14,
m

D + 1
= 5+,

m

D

= 6+

only terms w = 6, m�Dw = 3 probability is:

✓
6

3

◆✓
11

11

◆,✓
17

14

◆
=

1

34
= 0.0307

(Editor � 1/34 is 0.0294.)

K = 18, D = 7, E = 7,
m

D + 1
= 5+,

m

D

= 6+

only terms w = 6, m�Dw = 3 probability is:

✓
6

3

◆✓
12

4

◆,✓
18

7

◆
=

4950

15912
= 0.311,

K = 19, D = 7, E = 0, probability is: = 0

K = 20, D = 6, E = 13,
m

D + 1
= 6+,

m

D

= 7+

only terms w = 7, m�Dw = 3 probability is:

✓
7

3

◆✓
13

4

◆,✓
20

7

◆
=

35⇥ 143

15504
= 0.323.

1
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THE APPLICATIONS OP PROBABILITY TO CRYPTOGRAPHY

The theory of probability may be used in cryptog sphy

with most effect when the type of civher used is Already

fully understood, and it onlv remains to find the actual

keys. It is of rather less value when one ms trying to

diagnose the type of cipher, but if definite riv<=l theories

about the type of cinher are suggested it may be used to

decide between them.

. -eaniny of probability and odds .

I shall not attempt to give a systematic account of the

theory of probability, but it may be wofcth while to define

shortly ’probability' and ’odds’. The probability of an

event on certain evidence's the propoxrtion of cases in

'which th8t event may be expected to hapnen given that evidence.

For instance if it is known that 20% of men 'live to the age

of 70, then knowing cf Hitler only » Hitler is a man* we can

say that the probability of Hitler living to the age of 70

is 0.2 . Suppose however that we know th° t ’Hitler is now of
0.5

8ge 52' the probability will be quite different, say

because 50% of menxiiimxtoDCfelaExxgE of 52 live to 70.

The 'odds’ of an event hapuening is the ratio ^/b ? xir

where J
3 is th e probability of it happening. This terminology

is connected with the common phraseology ’odds of 5:2 on’

meaning in our terminology that the odds are 5/2.



Probabilities baaed on part of the evidence

When the whole evidence shout some event is taken into

account it may be extremely difficult to estimate the

probability oijthe event, even xxtxs very approximately, and it

may be better to form an estimate based on a part of the evidence,

so that the probability may be more easily calculated. This

happens in cryptography in a very obvious way. The whole evidence

when we are ttrying to solve a cipher is the complete traffic
,

and the vents in question are the different possible keys, and

functions of the keys. Unless the traffic is very small indeed

the theoretical answer to the problem ’whart are the probabilities

of the various keys ?’ will be of the form * The key ... has

a probability differing almost imserceptibly from 1 (certainty)

and the other keys are virtually impossible’. But sxocxxkxia

±t®xxxxxlxx*xKxxxx a direct attempt tte> determine these probab-

ilities would obviously not be a practical method.

A priori probabilities

The evidence concerning the possib lity of an event occurring

usually divides into a part about which statistics are available,

or some mathematical method can be applied, and r less definite

part about which one can only use one’s judgment. Suppose for

example that a new kind of traffic has turned up and that

only three messages are svaileble. Each message has th letter V

in the 17th place and G in the 18th rlace. We wsnt to know the

probability that it is a general rule that we should find V

and G in these places. We first have to decide how probable it

is that a cipher would have such a rule, and as regards this one

can probably . only guess, and my guess would be about 1/5,000,000 .
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This judgment is nor entirely tsrxnxanaxijn a guess; some

rather inaccurate mathematical reasonin' has gofcft- into it,

something like this<-

The chance of there being a rule that two consecutive letters

somewhere after th^lOth should have certain fixed values s ems

to be about 1/500 (this is a complete guess). The chance ofthe

letters being the 17th and 18th is about 1/15 (another guess
,

but not quite so much in th? air). The probability of the letter^

being V and G is 1/676 (hardly a guess at all, but expressing a

judgment that there is no special virtue in the bigrara^e VG) .

Hence the chance is 1/ 500x15x676 or about 1/5,000,000 . T^is

is however all so vagur, that it is more usual to make the

judgment ’ l/5 , 000, 000 f without explanation.

Ther question as to whst is bhe chanc^ of having a rule of

this kind might of course be solved by statistics of some

kind, but the e is no point in having this very accurate, and
h

of course the experience of the cryptographer itself forms

a kind of statistics.

The remainder of the problem is then solved quite mathematically.

Let us con side a large number of ciphers ’chosen at random*
, N

of them say. Of these N/5,000,000 of them will have the rule in

question, and the remainder not. Now if we h ad three messages
for

of each of the ciphers before us, '-e should find that with esch

of the ciphers with the rule, the thre mes^ ges have VG in the

required place, but of the rejoining 4,999,999 N/5,000,000

only a proportion 1/6763 will have them. Rejecting the ciphers

which have not the required characteristic we ^ re left with



Y

N/5,000,000 cases where the rule holds, end 4,999,999 N/5, 000, OOOx 6763

cases where it does not. This selection of ciphers is a random

one in question, and therefore the odds in favour of the rul e

holding are N/5,000,000 : 4,999,999N/5,000,000 x 6763 i.e.

It should be noticed hat the whole argumen t is to some

extent fellpcious, as it is as urned that there are only two

possibilities, viz. that either VG must always occufc in that

position, or else th! t the letters in the 17th and 18th

positions are wholly random. There are however many other

possibilities worth consideration, e.g.

On the day in question we have Vg in the position in question.

On another day we have some other fixed psir of letters. Or

In tbT^ position 17,18 we hnve to have one of the four

combinations VG, RE, OM, IL and by chance Vg has been chosen

for all the three messaged we have had. Or ••

The cipher is a simple substitution and Vg is the substitute

of some common bdigramme, say TH.

The possibilities are of course endless, and it is therefore

always necessary to bear in mind the possibility of there being

other theories not yet suggested.

The a priori probability sometimes has to be estimated as

above by some sort of guesswork,but often the situation is more

satisfactory, suppose for example that we know that a ce tain

cipher is a simple substitution, the keys having no specially

noticeable propserties. ^uprose ^lso that we have 550 letters

of such a message including five occurrences of P. We want to

know how probable it is that P is the substitute of E. As before

we have to answer tv/o questions .How likely is it that P woul d

knovTi characteristics of the

6763 : 4,999,999 or about 60 ;1 on



be the substitute of E neglecting the evidence of the five Es

occurring in the message. Secondly 'How likely ere we to get

5 Ps (a) if P is not the subs itute of E (£) if P is the substitute of E.

I wil not attempt to answer the second question for the present.

The answer to the fir^t is imply that the probability of any

letter being the substitu&eof E is independent of wfr-t the letter

is, 8nd is therefore always li?26, in particular it is 1 l/26

for the letter P. The only ue s '-work here is the judgment that

the keys are chosen at random.

The ffactor Principle.

Nearly all applications of probability to cryptography

depend on the 'factor principle' (or Bayes' theorem). This

principle may first be illustrated by a simple example. Suppose

that one man in five dies of heart failure, and that of men who

die of heart failure two in three hie in their beds, but of men

who die from other causes only one in four die in their beds.

(My facts are no doubt hopelessly inaccurate). Nov; suppose ve

know that a certain man died in his bed. That is the probability

thn t he died of heart failure? Of all men war numbering N say, we

find that

Nx $l/5)x(2/3) die in their b^ds of heart failur-
Nx ( 1/5 jx( l/3 ) ... elsewhere
Nx (4/5)x(l/4) die in tlffeir beds from other causes
NX (4/5flbc(3/4) ... elsewhere

Nov; as our man died in his bed we do not need to consider

the cases of men who did not die in their beds, and these

consist of Nx (l/5)x(2/3) cases of heart failure and

Nx (4/5 )x (l/4) from other causes, and therefore the odds are

lx (2/3): 4x (1/4) in favour of he-rt failure. If this had been

done algebraically thejresult r
rould have be r n
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odds
A posteriori jzrwteskiixfcT: of the theory

odds
= A priori xrobxtilltyx of the theory x

Probability of the data being fulfilled if the theory is true
x

Probability of the data being fulfilled if the theory is false

In this thess"3c ’theory’ is that the man died'of heart failure,

and the ’data’ is that he died in his bed. The ;ener*l formula

above will be described a the ’factor principle’, the r-tio

Probability of the dat 1- if theory true
is zcalled the factor

Probability of the data if theory ^Ise

for the theory xfxtiix on account of the data.

Decibanage

.

Usually when nur e ere estimating the probab lity of a theory

there will be several independent pieces of evidence e.g. following

our last example, where we went to kno^r whether a certain man

died of heart failure or not, we may know

a) He died in his bed

bfl) His father died of heart, failure

c) His bedroom w«s on the ground floor

and also have statistics telling us

2/3 of men who die of he' rt failure die in their beds

2/5 ..... . have f- thers who died of

heart failure

l/2 ...... . have bedrooms on the

ground floor

l/4 of men who died from other causes die in^their beds

1/6 ....... have fathers who di d

of he^rt failure



l/EO of men • ’ho die of other cruses have their bedrooms on

the round floor

Let us
i£xxs sup ose that the three pieces of evidence Rre independent

of one another :fc«xgxxfctacS if we know that he died of heart

failure, end sl30 if we knov; he did not die of heart failure.

That is to say we suppose Xhaci for instance that knowing

kx'TiiaiixHl^aEyrtxfacitHrxpcxjidxikarfc that h slept on the

ground floor does not rrrke it any more likely that ihe died

in his bed if we kne -
- p ii along that he died of If'e^t failure,

/hen we make the^e assumptions the probability of a man who

died of heart failure satisfying all three conditions is

obtein~ed s imp " y t - multiplication, an-3 Is (2/3)x(£/5)x(l/‘ )x,

and likewise for tho% who died from other causes the

probability is (l/4)x(l/6)x(l/20)
,
and the factor in favour

of the heart failure theory is

We may regard this bs the product of the three factors

( 2/3 ) / ( l/4 ) and (2/5) / ( l/6 ) and (l/2)/(l/20) arising from the

three independent pieces of evidence. Products like this arise

very frequently, end sometimes one •'"ill net products

involving thousands of factors, and l^rge groups of these

factors may he eaual. We naturally therefore work in terms of

the logarithms of th e fac ors.The logarithm of the factor,

taken to the base lO^7 is called the T dec ibenr ,:e in favour

of the theory! iksxkxse A ’decibsn’ is a. unit of evidence; a

piece of evidence is worth a dediban if it increases the

odds of the theory in the ratio lO^/^0
: 1 . The deciban is

us das a more convenient unit than the ’ban 1
. The terminology

ixxxxxx was introduced in honour of the f- raous town of Banbury.



Us in£ this eminology e migh' nay that the feet that our m^n

died i’1 bed scores 4.3 decibens in favour of the hcr, rt failure

I
theory (101og(8/5) = 4.3). le score p further 3.8 d^oibans for

his father dying of heart failure, and 10 for his having his

bedroom on the ground floor, totalling 18.1 decibans. We then

bring in the a priori odds l/4 or ni 10 and the result is

that the odds arr 1C
,
or as vre may say *12.1 decigcbans

up on evens’. This means about 16;1 on.



Chapter II. Btraightforwcrd cnnto '^phic problem? .

- \
Vi. ;energ .

\

The factor rrinciole can he applied to the solution of a

Vi enere problem with gr at effect. I ,,r ill assume here that

theory may be applied to this cert of the problem also, but

that is not so elementary. Suppose our cipher, written out

in its correct period 13

DK^H-SHZNH?
HC VXUHTiSA Q,XHPUEPP3BK
TrtUJAGDYOJTHWCYDZHGAPZKOXOEYAE
BOICBUBP I 5 R

(It is only by chance that it makes a rctengular arwsy).

Let us try to find the key for the first column, ° nd for the

moment let us only tajfce Into account the evidence afforded

by the first letter D. Let us first consider the key B. The

factor principle tells us

Odds in favour of key B3 A priori odds i f^our of key Bx

Probability of getting D|in cipher if key is B

The probability of -etting D in the cipher with the key B is

just the probability of getting C in the deep which (using the

count on 1000 letters in Pig 2} is 0.021 . if however the key

is not B we can h° ve any let ^r other than C in the clear, and

the probability is -(1- 0.02l)/25 . Using the evidence of

the period of^ the cipher has elrend-’- bean dtermined, Probability

x

Probability of getting D in cipher if key is not B

Now the a priori odds in favour of cey B may be taken as l/25.

odds in favour of the key B ^re ?X > o. o'l /

I — o. O'L. 1
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,7e %iy then consider the effect of the next letter in the column

R which gives e furthe~ factor of 25x 0.064/(1-0.064). V/e -’re

he e e ' suming thet the evidence of the R is independent of

the evidence of the D. This is not quite correct, but is °

useful ° prroximstion: 8 more 'c^ur^te method of calculation

• ill be -iv-n later# Let us • rite ^ for the fr< quency of the

letter < in lan rua ge . Th° n our fir,r l estimate for

the odds in favour of key B is

. is the series of let ers in the 1st

colunn, and we use lettc id numbers interchangeably, A

meaning £ 1, B mesning Z mining 26 or 0. Tore generally

for the oddg are

then decodes the column with the various no^sible keys, look"

up the decibanages, end ^dds them up.

The most convenient form for 6oing this is a table of values

may say, the values of the score in’half decibans’ <)>. One nay

of taken to the nearest integer^ or as we

al o have columns shov/ing multiples of these, end tie table

made of double height{Tig 3). Tor the first column with key B

the decoded column is (X>S . .0]^ and we score -5 for C, -26 for Q

,
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-5 for 8 W, 17 for the three letters S, 5 for 0, # for A and

-10 for V, totalling -17. The <s lculations can he doif'e

very quickly by the use of the transparent gadget Fig 4, in

which squares are ringed in pencil to show he number of

letters occurring in the oolunn. The gadget may be placed

over Fig 3 in various positions corresponding to the

various possible keys. The score is obtained by Q dding un the

numbers showing through the various ssusres. In Fig 5 the

nurnsibjbs alphabet has been written in a vertical column

below the aibfter text of Fig 1, e •
: let er raor- anting a

possible key. The snore for e ch key lv ^ been written opposite

the key, and under the relevrnt column, ^n X denotes a baa

score, not worth adding up,. Usually the ill be -15 or

worse. It ••ill be seen that for the first column ?, h- ving

a score of 43 is extremely likely to be right, especially

as there is no otb r score better than 8. If we neglect this

latter fact the odds for the key are (1/25) 10
^* 1o

i.e.

about 5:1 on. The effect of decoding this column with key P

has be n shown underneath. For the second column thr best

key is 0, but is by no mean# so cert° irjas the first column.

The d code for thig. column is ^ Iso sham, an d provides very

satisfactory combinations with the first column, confirming

both the keys. (This confirmation could also be based on

probability theory, given a table of bigramme frequencies).

In the third column I and C are best “lthough D would be

very pos ible, and in the fourth column l and U are best .

Writing down the possible decodes we see that the first line



must read OWING- and this makes the oth^r lines read CONDI, ITHA3,

EL IPO ,ETOIM,ALCUL,MA C i, HIS13 ,EGHET. By fill in In the word

’conditions’ the whole can no” be decoded.

A more pcour^te argument would run ^s fol ' o’ s . For the

first column, instead of setting up c s rival theories the

t" : o po sibilities thn t B is the key «nd that B is not the

key we can set up 26 rival theories that tlfe key is A or B

or ... or E, and we may apply the factor principle in the forra:-

A posteriori probability of key A

A priori probability of kpy A x Probability of getting the given

o

column '"ith key A
*

A posteriori probability of key B

A priori orob- bility of key B x Probability of -et ing the
given columiWith key B

= etc

.

The argument to justify this form cf f'-^tor principle is really

the Same as for the original form. Let

probability of key a . Then ou~t, of N

cases of key /3 . Let

get ing the key column

Then ou t of N cases we hsve NV

rejected the case where we get columns other than C we

"e hove th refore 1 o oalcnlate the nrob^bility of getting

the column C with ke 1

* p> a na th#is is ^inply /.I *]** *'’/* + »

i.e. the product of the frequencies of the decode letters

which we get if the key is

the column C
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Since the a priori probabilities of the ’ceys are all equal

say th< t the a posteriori probabilities are in the

ratio
,

i.e. in the -at io (\ 7^. ^ { )

which is mo”e convenient for calculation. The '"’inal va lue for

the probability is then

'
(tt

T
! f'J

lCUl f*- - >54 » )

be done by the method recommended before for II X sr^

.

h , / /- 7)

in fact —^
L / • *' P f

(The table i Fig 3 masf ade up ^or It xZl'p*; -a+ /} . The differences
1 rather

betv;e n the two tables would of course be xssqr sli 'ht). The

new esult is more ccurate than the old because of the

independence assumption in the original result.

If we only went to *cnow the ratios of the probabilities

of the various keys there is no ne d to calculate the

dent ®b

another im^o^tance : it tarti-K-x-mrjrfrMig x

I

rtVgi-y gives us some

evidence about our other as umptions, such as that the

cioher is Vigenere
,
and that the period is 10. T^is aspect will

be dealt "mth later (p. ).



A letter subtracfror rroble

/

A substitution with period 91 x 95 x 99 is obtained by

superimposing three substitutions of periods 91, 95, snd 99,

each substitution beinr a Vigenere composed of slides of

0,1, 2, 3, 4, 5, 6, 7,8, or 9. The three substitutions are known in

detail, but we do not know for any given message at what

point in the c >inplete substitution to begin. For many

mes ^ges however we can orovdde a more or less probable crib.

How can we test, the .prob-- bility of a crib before attempting

to solve it? It may be assumed that approximately ecual numbers

of slides t>,l,... 9 occur in each substitution.

The principle of the calculation is that owing to the

way in which the substitution is built up, not all slides

are equally frequent, e.g. a slide of 25 can only be

the sum of slides- of 9,8 ana 8 or of 9,9 and 7 whilst a slide

of 15 can be any of the following

9.6.0 8,7,0 7,7,1 6,6,3
9.5.1 8,6,1 7,6,2 6,5,4
9.4.2 8,5,2 7,5,3
9.3.3 8,4,3 7,4,4

A crib will' therefore, other things being enual, be more likely

if it requires a slide of 15 thanjif it requires a slide of 25.

The problem is to make the best us<?of this principle, by

determining the probability of the crib with reasonable

accuracy, but without spending long over it.

We heve to find out the probability of et‘; ing 8 -iven

slide. To do this we can ep^ly several methods.



(a) We can produce a long stretch of xx key by addition and

take a count of the resulting slides. This is obviously a

v° ry eneral method, and requires no special me thematic-

1

technique.lt may be r° ther laborious, but by interpreting

a small count with con on sense one can nrob-hly get suite

good tesults.

(b) There are 1000 pos ible combinations of slides ell

equally likely, viz 000,001, ..., 999 . ifxxa: add up the

digits in these and xxii take the remainder on division by

26, and then count the number of combinations giving each

of th e pos ible remainders.

(c)We can make use of a trick which might appear to be

rather special, but is realty ap^lica±ble to a multitude of

problems. Consider the expression

For e r ah possible wejnbf expressing a number k as the

sum of thre<- numbers 0,...,9 say * there

the third. Hence the number of ways of expressing K in

We can

m
is a terra X 1

X ’ ^ 5 ih \ 1 coming out of

the first fee tot, * out of the sedond ,
• n>' X •’out of

the form h ^ -4 is the coeffinient of X

in 1 60 i . e . in

0-*V
or in



by the binomial theoremExpan ing

C I
”*') - / 3 + b /o +

9
-h t,'sr*

c
i + kb*.'* + 7T x.

-f 't»3> ^ -y- /-y/x' 7
-t- /<^o *.

,S
-f~ 2-10

't 1 Zi> ^ ^ £,"/ -*

‘ 1ST -A^ -y- 2./ 2 £? x ^ -y- 3 4*-'

* /2
~ t- /05“ -y- /Z.O x/^-y-

sz3/x
7% +

4 o L^ 7 + u3J>'-*-
I?

-<- .

Now multiply by / - 3 *'r +3*1C end we yet

j(x) -
I -*- 3x + ^xv y- /O x3 f /rx *V 2./ **V -t-3 6 x 7 4.S" » 8 + $y

-t ^3 A -r£<7* +• 73 % a -/- 75“ * ' 3
-h ys~ x'*-/- 73 X /5

lCj x (,

+ *~i>~
*'9 -+**!>'

*

,c>

-1- 3b*'
lo

i- zP^'+i/^^/rn 1^ ^is'^

This means to sey that the chances of getting totals of 0,1,2,.

are in th ^e ratio 1, 3, 6, 10,... The chances of get ing

remainders of 0,1,2,... on division by 26 are in the ratio

4, 4, 6, 10, 15, ... To get true probabilities these must be

divided by their total which is conveniently 1000.

(d) There are two other methoos, both connected with the last
so much

method but xgxxxxx not re lying ^on the special x features of

the problem. They willjbe discussed later.

Suppose then that the nrobabilit ies havc bean calculated

by one method or the other
( as in fact w^xT-fehBncExxxxfHr we

have done under (c)). We can then estimate the values of cribs.

Eet us suppose that a pos ible crib for a message beginning

ra^SXOWBVMMK was XMEXXXXKXXXX AMBASSADOR so that the slides

were 12, 9, 6, 22, 2, 0, 23, 11, 14, The slide of 12 gives

us some slight evidence in favour of the crib beding right, for



slides of 12 oeour with frequency 0.073 with right cribs,

whilst -ith wrong cribs they occur with frequency only 1/26.

The factor in favour of the crib is therefore 26x0.073

or about 1.9 . A similar calculation may be made for each

of the slides, but of course the work nry be greatly sneeded

up by having the values of the factors 26 C s /l000 in half

deoibsns tabulated: here C s is the coefficient of X S
in the

above polynomial X(*) . The table is given below (Fig 6)

1 0 -20

2 25 -16

3 24 -12

4 23 -8

5 22 -6

6 21 -3

7 20 -1

8 19 1

9 18 3

10 17 4

11 16 5

12 15 6

13 14 6

Fig 6. Scores in half decibans of the various slides.

Evaluating this crib by me-ns of this table we xxi score

y +3 - 3 - L - U -10 ~ $ +\" V L (*- - 33 )

i.e. the crib is worse by a fpctor of io-33/20 than it was
, #

before e.g. if the a priori odds of the crib were 2:1

against it becomes 98:1 against. This crimes in fact made up



at rando^’acKBrocisi x i.e. the lett rs of the cipher text were

chosen at random. Nov/ let us take one made up correctly, i.e.

really enciphered hy the method in question, but with a

random chosen key.

NYXLNXIQHHAMBASSADOR
13± 22 21 8 19

12 11 5 13 16 (slides)

This scores 15 so thet if it we re originally 2:1 against it

Having decided on a crib the natural way to test it is to

have a catalogue of tli~e positions in which a given series

of slides is obtained if the 91 period component is omitted,.

to this third componeh t, draw an inference as to v/hst

is the part of the slide arising from the components of

periods 95 and 99 combined. This we look up in the catalogue .

This process is fairly lengthy, and as the scoring of the
*

crib takes only a minute it is certainly worth diking.

We make 91 different hypotheses as



Theor:r of repeats

Suppose We a cipher in -hich there ere sevr r- 1 very

lone series of substitutions which can l5~e user’ for enciphering

a message, but th at one may sometimes get two messages

enciphered with tlfe same series of substitutions (or

nos ibly, the s ^iars of substitutions for one me s"age being

those ^or another —ith some at the be^in ing omit4 ed). In

such a case let us sav that the messages ’fit*, or th"t they

fit at such and such a distance, the distance being the number

of substitutions --hich have to be omitted from the one series to

obtain the other seried. One mil" frequently want td|cnow

r,hethet two messages fit or not, and me may find some evidence

about this by examining the repeats between them. 3y the repeats

between them I mean this. One writes out the cipher texts of

tlfe two messages with the letters which are thought to have been

enciphered 'dth the same substitution under one another. One then
(L

-•rites under these messa ;es a series of letters o and x, anfo

b ins ’"ritten ’"here the cipher texts differ and n n r ’ here they

agre-

.

Thessr series of letters o and x ,,r ili begin where the second

message begins and end where the first to end end". XcxKwmnlBtfl

thxxnfjdxkjxt±xx;-:xhout"ttig"Txr^i±t±mrrtlaoccE This series of letters

o and x may be called the repetition figure. It may be completed

by adding at the ends an indication of how many letters there

are hich do not overlap, a nd "'hich message they belong to.

As an example

0-IilLIKvoG-VBI'.IILAi
,lXivlvlOROGBYSKYXDAZCHI^IUlvIRK3ZLDLDOHGi,iVTIPRoD

VLOVDY' CEJSOPYGBi LBiCCCDAZNBI’IOPTT’CXDOD

8- 11XOOOOOOOOOOXOOXXOOXXXXXXOOOOOOOOOOXOX-1--1-



^3

On the ’-.hole one xpects that a fit is morelikely to

he right the nor- letters x there are in the repetition

figure, and that Ion series of letter-3 x ere especially

desirable. This is because xxy it would not be very

unusual for two fairly common words to lie directly under

one snotherjwhen the clear texts are written out, thus

TKEMAINCONV0YWILLARHIVE . . .

ALLCONV0Y5MJSTREP0RT . . .

xooxxxxxxoooooxoooo . . .

If the corresponding cipher texts realty fit, i.e. if the

letters in the same column are enciphered with the same

substitution, tlT'en the condition for an x in the repetition

figure of the cipher texts is that there be an x in the

repetition figure of the cor esponding clear text. Nov; series

of several consecutive letters x can occur quite easily as above

by two X0 identical words coning under one another, or by

such combinations as

ITISEASIERTOTEACHTIiAI'IALGEBRA . - .

THERAINWASSUCHTHATHECOULD . . .

ooooooooooooxxxxxoooooooo . •

if the messages really fit, but if not they c^n only oc ur

by complete coincidence. One therefore tends to believe that

there is a fit -hen one gets such series of letters® x . As

regards single cases of x the value of them is not so clear, but
plain language

one can see that if p* is the frequency ofjletters o< in x±sxx

then the frequency of letters x as a whole in comparisons of plain

language with plain language is J 1
,
whilst for wrong fits

of cipher text it is l/26 which is necessarily less. Given



a sufficiently Ion repetition figure one should therefore he

able to tell whether it Is a fit oijpot simply by countin the

letters x and o.

So much is well known. The real point of this section is

to show how these ide r-s can be developed into an accurate

method of estimating the probabilities of fits.

Simple form of theory . The complete theory takes r c ount.of

the various pos ible lengths of repeat. As this theory is

somewhat complicated it will be as well to give first tv/o

simplified forms of the theory. In xjrsDcfca: both xxx cases the

simplification arises by neglecting a part of the evidence.

In the first simplified form of theory we neglect ail

evidence except the number of letters x and the number of

letters o. In the other simplified form the evidence is the

number of series of (say) four consecutive letters x in a

repetition figure.
*

When our evidence is just the number of times x occurs

in the repetition figure/, and the length of the repetiti -n

figure (N srjr) ,
then the factor in favour of the fit is

Probability of a ri ht tit repetition figure of length N
having n ocur ences of x

As an ap 'roximetion we may as ume th° t xi fwjiaLXk the

numerator of this expression has the s^me v r lue as if the

by letter by h independent random choices, T "ith r certain

fixed probability of et' ing an x at each stage. This

Probability of a -wrong repetition figurc> of length N
having n occurrences of x

probability will



Ji

is then

(Number of repetition natterns with length N ^nd n occurrences ofsc x)

times ( Probability of retting a given ^repetit ion oattern

by tlf~e xmndmim process just mentioned )

which • re may "rite as R(N?n) Q,(N,n) . Nov; let us denote by the

the denominator, but here we must £^since all lett

oc ur ecu' 1 y frequently in the cipher. The denominator is then

decibans per unit length of repe+itionfi ure (’per unit overlap’).

An • lternative argument, leading to the same result, runs

a- folio' s. Having dedided to neglect all evidence except the

overlap and the number of rgneats re pretend that nothing else

matters, i.e. tirt the form of the figure is irrelevant. In

this care we can *ev,rd each letter of the repetition figure

' ndependent evidence about the fit. If "re get an x the

factor for the fit is

Probability of get' ing ° n x the fit is right
Probability of et ing ^n x if the fit is •'Ton T

such

given

In dividing to find the f ctor for the fit

cancels out, leaving

we score a factor of

hi-

i.e

.

Similarly une i c c or ior an o is



In either form of argument it is unnecessary to calculate

the number R(N,n) . In this particular c^se there is no

particular difficulty about it: it is the binomial coefficient

In 3ome similar problems t is cancelling out is a great boon,

as we ight not be able to find any simple form for the

factor which cancels. The cancelling out is a normal feature

of this kind of rpoblem, and it seems quite tip turel that it

should hap en -'hen we think of the second form of argument in

which v? think of the evidence as consisting of a number of

independent parts.

The device pfj&ssuming, as we have done here, that the

evidence vrhich is not ayr. ilab le is irrelevant c c n often

be used and usually leads to good results. It is of course

not supnosed that the evidence realty is irrelevant, but only

thr t the xcrixiciHx f•ntor er~or resulting from this as umotion

when used in this kind of way i^ likely to be small.

In th second fxrx simplified form of theory we take* a^ our

ev'denc^that a particular part of the repetition figure is

Oxxxxo (say, or alternatively oxxxxxo sajr) . The factor is

t' en

Frequency of oxxxxo ir right repetit ion figum g
F equency ’of o'-mm^o in •’Tong repetition figures

denominator
)

V

estimated by tekin-s a sc mole of lc nguage hexagrams and counting

the number of pairs that have the renet it ion figure oxxxxo. •

The expectation of the number of such oairs is the sum for

° 11 pairs of the xxtjbx probabilities of those naira hscxxx haying

the desired repetition figure i e. is the number of such oairs

(viz N(N-l)/2 ’ 'here N is the size of the )multiolied
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by the frequency of oxxxxo repetition figures. Thi£ frequency

me 7 therefore he obtained by division if we equate the
expected
xxixxjt number of the e r petition figures xixfe to the actual

number.

statistics of evr ry conceivable repetition figure. .<* must m^lce

some •' s umntion to reduce the variety thet ne r d be considered,

'he folio- inr c s umption is theoretically very convenient, and

r lo apje° rs to be a very good ap ’>roxin''-tion.

The prob - ~ il it ie s of repeats at two points known to be

sep r- ted by a poinu vThere there is xn kno~ n to be mi p e

independent .

We may also as une that ttfe probability of a repeat is

independent of an thing but the repetition figure in tis

neighbourhood. (We may ha- ver as e refinement produce

dif rent statistics for different types of messages, and

differiT'ent xetXx positions in a message) . 7/e can therefore

think of a repetition figure as being produced by selecting

the s-mbols of the igure consecutively, gyjtoiMiM the

probability of get -
’ ing -n x at each st^ge being determined by

the repetition figure from the point in question back as far as

the last o. Sometimes this ’"ill take us back as far as the beginning

of the message, and mill Include the number telling us how

many more letters there are which do not repeat at all. We need

in practice only distinguish t\ o cases, where this number is ± 0

and " rhen it is mor . therefore have to distinguish the

following cases /

no repeat



0 some fc. none C
o

ox some X b none x L
t

oxx Civ some XX tv none xx

oxxx

• • •

some

• •

XXX none xxx

• • •

s

The entries At J
C{
,) -^.opposite the repetition figures

are the notations we are adopting foi? the nrobabilitjr of

getting another x following Such a figure. Strictly speaking vb

should also bring in a notation for the probability of the

nes° age coming to an end after any given repetition figure.

As the repeats at the end of a comparison do not appear to

behave very differently fro-^those in the mein part of the

message I shall neglect this complication by assuming thfet the

probabilitjr of getting an o added to the probability of getting

an x is 1, end that afterward- one cuts off the end of the

series arbitrarily. , . .

»

Let us calculate the factor for the repeat figure

none x X X X o o 0 X 0 X X X o

C o c
» s “S l'*o

i-a, a
(

a
z-

'- a
2

1 i.
f

%<c vf , 1
\

2f
^ io 2-6 X6 v* t2 u. V(> VL u Zt

Underneath each sy bol has been written the probability that

on_e|would get that symbol, knowing the ones which precede^ both

for the case of a right snd of a v-urong repetition figure. The

factor for the fit is the product od the first row divided

by the product of the second. It is convenient to dixidac split

this up, as indicated by the vertical lines into the product of



C

'LL

I-

Izl
1-L

«T» « /

TlF
and this product may be put into

C » ‘‘ *>- C
.l
Q~ c

i.) f \'^

IM H '*1a l
^7-l

'

“• l -*,) ., <-«* y*~
( *yu I

yt.

the form of -the product of

whioh we call the factor for ,

an initial tetregram rep^et^ level

the factor for a single repeat

the factor for a trigramme

the correction for a final bigr^mme

the fector for an overlap Of 16.

CL, C l‘*
% )

la
I L

ft* J-iJu qk- • .
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fe shell neglect the correction for e final hi r° m e (or wlr tever

it may be). It is in any c c se rather smal 1
,

r-nd ±s vanishes if

the repetition figure ends with o; also with our conventions

the whole question of the ends of repetition figures has he -n

left rather in doubt.

Now let us put

a. a

,

0 f 1 I ~ ^ V * I )

«PM \

4 r

C r C «
-

The values of the *- ir can he obtained as follows. We take a

number of plain language messages and leave out t' ro or three

words at the beginning. Then combine the mes'^sages to form one

long message: this message may be made to f eet its own tail* i.e.

it sjmy be rit - en round a circle. If the mes^nge wiere compared

with itself in every possibl position, except lev^l, we should

expect to get repetition figures including which when divided

- vertical lines r-fter each o, aontain^ fit*- 0 ^ (V^)

parts which consist of r symbols x followed by an o, or as we may

N t
~ * - peats]/ £h±sxExnxi* T] W

w

given A
can be calculated fxxx t ’ pnarent number of r-gr repeats* /M ».

for each r. This apparent numb r of r-gwpae rape ts is the number

of series of r consecutive symbols x ir^the repetition figures

regardless of what precedes or follows the series. By considering

the way s in which an actual repe t can give rise to apparent

repeats of various lengths we see that

n „
*- < X ** 3

and therefore

Nr ~ NM |

+

k

fj c-K. O

(n ,., ' n„,x) -- iv,

and
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The calculation of j r may perhaps best be dome by

comparing the beginners of a number of mesca. es with
«

the long circular message, and the values of - r by

comparing the beginners among themselves. A similar

technique of actual and « parent numbersof repeats

can be used. I shall not go into this in detail.

The formulae required m^y no”’ be assembled.

decibanage for an r-grem e rarest

ri eg tive decibanege for unit overlap

number of occurrences in the statistics of

the r- gramme

SJ 2. total number of letters in the statistics

T4** h ,
* 4

/*
*(,,?

( /«,*-' 0/^-

N'r •* rv - a.,,.

4. *- -V,

/v *
N' r-4. A.

** **j 4 <-+-L /" tLi

+ ( '* A, ) + 4, ( (- < t ) f ...

kt + k, * /ru V. ^ s /

4 - N[
' 2 /

4 4

s. /

CM

( - a /V,

h, - / iCi-
)
+ (r.,)v

v- - 10 Ut *’)
*i '0

4* n,
4-2.0 nt

4- O.

2.4-



Transposlitions ciphers

in yaking calcula tions about substitution ciphers

we have often found it useful to treat the plain

language as if it were produced by independent choices

for the letters, using certain fired frequencies with

which the letters are chosen. Our method for Vigenere

and one ofjthe simplified forms of repeat theory could

be based on this sor t of assumption. With a transposition

cipher howev r such an assumption would be useless or

worse than useless, for it would result in the

conclusion that all transp sitions were equally likely.

Me have therefore to fcrnke a slightly less crude

assumption, and the one hich sug ests itself is that

the letters forming the plain language are chosen

consecutively, the probability of get^ ing a particular

letter depend in, only on whet the letter is and what

the preceding letter was. It is easily verified that

if ^ is the prouoxrtion of bigrammes in^la in

language and the frequency of the let er ^ then

the probability^of a let er ^ following an ie
'J

*

The probability of a piece of pis in language of length L-

<Xletters saying
i i

'ft, %,«, •• •

be writ en p
3 J-£ ^

is then

which may also

. We may

also calcu late the probability fof a niece of nla in language

having certHan given letters in given places, the remainder
message

of the ±xx± being unspecified. The nrobobility is given



2Yf, — S'-*' ) * * * > zu }

and if the d^ta is that the known letters ere

k, d*h
4 * a

\r - /

nr <Uh

it is approximately

C«

A mote or les^ ro^oro s deduction of this approximation

section. Foi? t£te present let us see how it can he ap lied.

and th e other brings the same letters in to oositions

in favour of th e first as compared -”ith the sea-ond is

»Ve can ap ily this straightforwardly to the case of bx^xxqbx

transposition by columns. The fol o- in text is known to
s irnple

be a ^transposition of a cert- in type of German text with

8 key length of not more than 15.

If we. have two theories xxxjtincfcinE sbout the transposition

of which the one requires the abova pattern of letters,

in • hich no t- o of tlffem are consecutive, then the factor
r

simple
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To solve this t ansposition we nay try comparing the
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Commentary on Alan M. Turing: The Applications
of Probability to Cryptography

SANDY ZABELL

Abstract In April 2012, two papers written by Alan Turing during the Second
World War on the use of probability in cryptanalysis were released by GCHQ.
The longer of these presented an overall framework for the use of Bayes’s theorem
and prior probabilities, including four examples worked out in detail: the Vige-
nère cipher, a letter subtractor cipher, the use of repeats to find depths, and simple
columnar transposition. (The other paper was an alternative version of the section
on repeats.) Turing stressed the importance in practical cryptanalysis of some-
times using only part of the evidence or making simplifying assumptions and pre-
sents in each case computational shortcuts to make burdensome calculations
manageable. The four examples increase roughly in their difficulty and cryptana-
lytic demands. After the war, Turing’s approach to statistical inference was cham-
pioned by his assistant in Hut 8, Jack Good, which played a role in the later
resurgence of Bayesian statistics.

Keywords Alan Turing, Bayes’s theorem, crib, cryptanalysis, deciban, depths,
factor theorem, half-deciban, I. J. Good, index of coincidence, Jerzy Neyman,
letter subtractor cipher, Markov chain, odds, prior probabilities, probability,
R. A. Fisher, simple columnar transposition, theory of repeats, Vigenère cipher

On 17 April 2012, Government Communications Headquarters (GCHQ; the U.K.
equivalent of the U.S. National Security Agency), released two documents on crypta-
nalysis written by Alan Turing during WWII. The first of these, ‘‘The Applications of
Probability to Cryptography’’ [14], is 44 pages long; it discusses the general use of
mathematical probability, specifically Bayes’s theorem, in cryptanalysis. The second
document, ‘‘Paper on the Statistics of Repetitions’’ [15], is much shorter (8 pages long)
and derives a specific technical result extending a classical technique worked on earlier
by cryptologists such as William Frederick Friedman; see, e.g., [13, pp. 68–70].

‘‘The Applications of Probability to Cryptography’’ consists of five parts: an
introduction, presenting Turing’s favored Bayesian approach, followed by the analy-
sis of four ‘‘Straightforward Cryptanalytic Problems’’ illustrating the use of this
method. The first section of the paper (‘‘Introduction’’) sets out Turing’s basic theor-
etical framework. That Turing took such an approach has been known in general
terms for some time. In 1979, I. J. (‘‘Jack’’) Good (Turing’s chief statistical assistant
in Hut 8 in 1941) wrote a paper describing for the first time, albeit only in very
general (and guarded) terms, how Turing used Bayesian methods of attack [6]. This
was, however, only at a very early stage in the declassification of information
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relating to Allied cryptanalytic efforts during World War II, and Good’s paper scru-
pulously avoided going into the concrete specifics of any of the cryptographic sys-
tems being attacked.

The interest of this paper, therefore, lies more in its practical examples: demon-
strating how Bayesian methods can be used to attack cryptographic systems by
examples involving systems of increasing complexity. It illustrates not only how such
methods can be used in the cryptanalytic setting, but also something else: that the
effective attack on a system requires a skillful blend of the theoretical and the prac-
tical—the awareness that sometimes the art of the cryptanalyst lies in being able to
find simplifying assumptions that transform an (apparently) intractable problem
into one that is feasible. Alan Turing may have been an outstanding pure mathema-
tician who made important contributions to mathematical logic and computer
science, but this paper gives us insight into a very different aspect of the man: the
serious practical cryptanalyst.

A note on the commentary itself. I have largely followed Turing’s notation and
examples, on occasion noting when this is not the case, but have not attempted to do
so in a systematic way. I have also silently changed spelling (e.g., ‘‘bigram’’ instead of
‘‘bigramme’’) and punctuation in quotations when I thought not to do so might be
distracting. Because the paper itself is now readily available online (at the website of
the U.K. National Archives), the reader can (and should) go back to see how Turing
himself put things. One of the aims of the commentary is to facilitate this process.

1. Introduction

The first eight pages of Turing’s paper give a brief synopsis of his view of probability
and its use in cryptology.

1.1. Probability and Odds

First of course, there is the question of just what is ‘‘probability’’? Turing begins by
giving a brief, informal definition of the term for the purposes of the paper:

The probability of an event on certain evidence is the proportion of cases
in which that event may be expected to happen given that evidence.

Turing’s definition blends elements of knowledge (‘‘on certain evidence’’), fre-
quency (‘‘the proportion of cases’’), and belief (the ‘‘may be expected to happen’’),
and so places him outside the purely physical view of probability as a frequency
having an objective if unknown value. This set Turing apart from the statistical
mainstream of his day but was central to his approach.

Probability on this view is conditional, not absolute. Turing gives as an example
using actuarial data to estimate the probability that Hitler will live to 70 given (a) we
just know that he is a man versus (b) that he is also known to be 52. This illustrates
Laplace’s famous dictum: ‘‘probability is relative in part to [our] ignorance, and in
part to our knowledge.’’ The 19th century French mathematician Joseph Bertrand
gave an even more piquant example of this dependence on our evidence: the king
of Siam is 40; what is the probability he will live another decade? It has one value
for those who have questioned his physician, yet another for the physician himself,
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a very different one for those conspirators who have undertaken to strangle him the
next day [2, pp. 90–91]!

In modern notation, if A denotes an event of interest, and E the evidence regard-
ing it, then P(AjE) is used to denote the probability of A given E. For reasons that will
become clear shortly, Turing often works in terms of the odds in favor of an event
rather than its probability; if p is the value of this probability, then the odds in its
favor is p=(1! p).

1.2. Probabilities Based on Part of the Evidence

One of the skills that separates the successful applied mathematician from the pure
theoretician is the ability to recognize the utility and power of carefully chosen sim-
plification. Thus Turing states:

When the whole evidence about some event is taken into account it may
be extremely difficult to estimate the probability of the event, even very
approximately, and it may be better to form an estimate based on a part
of the evidence, so that the probability may be more easily calculated.
[14, p. 2]

Turing evidently regards this as an important point, because it is the subject of an
entire (if brief) subsection. He makes the interesting remark:

Unless the traffic is very small indeed the theoretical answer to the
problem ‘what are the probabilities of the various keys?’ will be of the
form ‘The key . . . has a probability differing almost imperceptibly from
1 (certainty) and the other keys are virtually impossible’. But a direct
attempt to determine these probabilities would obviously not be a prac-
tical method. [14, p. 2]

This comment presumably has in mind both the computational challenge of exploit-
ing all the information available in intercepted messages and the enormous number
of possible keys for the German encryption systems, such as the Enigma. Bletchley
Park’s cryptanalytic counterparts in the German communications security organiza-
tions (such as Dr. Erich Hüttenhain of OKW=Chi) believed in the security of some of
the German systems not because they thought they were theoretically unbreakable,
but because they thought they were unbreakable in practice.

1.3. A Priori Probabilities

Effective cryptanalysis (and, more generally, any serious statistical analysis) involves
the synthesis of different forms of information.

The evidence concerning the possibility of an event occurring usually
divides into a part about which statistics are available, or some math-
ematical method can be applied, and a less definite part about which
one can only use one’s judgment. [14, p. 2]

The ‘‘less definite part about which one can only use one’s judgment’’ is where
so-called ‘‘a priori probabilities’’ enter the picture, and Turing’s willingness to use
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them put him apart from most statisticians at that time, who viewed them either as
arbitrary or putting numbers on something that could neither be measured nor
expressed in numerical form.

Contemporary distrust of prior probabilities was based in part on their use in
situations where little relevant information was available beforehand; in effect, it
was argued, you were pulling a rabbit out of a hat, creating something out of noth-
ing. If you did not know something, you should just acknowledge this. Surely it was
better to develop objective statistical methods based solely on the quantitative stat-
istical data at hand; in science, the scientist always has the option of performing
further experiments and generating more data.

Persuasive as this worldview was to many in the statistical profession of the time,
this was a totally inappropriate paradigm for Bletchley Park. There was often a sub-
stantial amount of directly relevant prior information available, such as the type of
message, its possible content, and who was sending it (so disregarding this would be
wasteful); collecting more data was impossible (all you had was the message or mes-
sages in front of you); and a decision one way or the other had to be made as to
whether the message should be attacked, and, if so, what the most promising next
step was.

There are some cases where such a priori reasoning seems harmless enough. In a
simple substitution cipher, if it is thought that the keys are chosen at random, it
seems reasonable to say in the absence of any further information that every letter
has an equal chance (i.e., 1 in 26) of being the cipher equivalent of E.

But in many cases, the process of assigning a prior probability can be much less
clear. Turing illustrates this process with a simple example. Suppose that three
messages are intercepted using a new form of encryption, and that it is observed that
in each case the letter V is found in the 17th place and G in the 18th, and that one
wishes to estimate the probability that this will be the case in other messages using
this form of encryption. In order to do this, one has to have an estimate of how likely
this would be a priori for a cipher; Turing estimates this to be about 1=5,000,000.

The estimation of the odds in favor of the rule can then be done by computing
the ratio of the expected number of favorable cases versus unfavorable cases. It may
be clearer if we generalize the example and consider the case of prior odds of p
(where, for Turing, p¼ 1=5,000,000). Consider a large number N of ciphers (not mes-
sages) ‘‘chosen at random.’’ Of these, we expect Np to obey the rule, and N(1! p) not
to obey. Suppose we are told that for one of the ciphers, VG has been observed in
places 17 and 18 in three separate messages. This will be seen in all of the Np ciphers
obeying the rule, but only in (1! p)N=6763 of the others. (The chance of this occur-
ring by chance in a single message is 1=262¼ 1=676; the chance in three messages is
1=6763.) Thus, the posterior odds in favor, thought of as the ratio of favorable to
unfavorable cases, is

Np
Nð1!pÞ
6763

¼ 6763
p

1! p

! "
¼ ð308; 915; 776Þ p

1! p

! "
:

(Note that the N has dropped out; it was merely a convenient concrete way of
thinking through the argument.)

Thus, the odds in favor are the product of 6763 and the prior odds p=(1! p).
What are the prior odds o in favor of the rule? This seems elusive, but Turing’s point
is this: within a wide range of latitude for o, we arrive at a useful conclusion. For
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example, Turing argues that a reasonable estimate for p is about 1=5,000,000, and
using this value gives odds in favor of

ð308; 915; 776Þ % 1

4;999;999
;

or about 60 to 1. Even if we took a value of p that was an order of magnitude larger
(so the odds would be about 600 to 1) or an order of magnitude less (so the odds
would be about 6 to 1), we would still conclude that there was some evidence in favor
of the rule (although, of course, the exact strength of that evidence would depend on
the prior odds).

Where did the estimate p¼ 1=5,000,000 itself come from? Here is where the mix
of guesswork, experience, and mathematics meets. Turing explains:

This judgment is not entirely a guess; some rather inaccurate mathemat-
ical reasoning has gone into it, something like this:

The chance of there being a rule that two consecutive letters somewhere
after the 10th should have certain fixed values seems to be about 1=500
(this is a complete guess). The chance of the letters being the 17th and
18th is about 1=15 (another guess, but not quite so much in the air).
The probability of the letters being V and G is 1=676 (hardly a guess at
all, but expressing a judgment that there is no special virtue in the
bigramme VG). Hence the chance is 1=(500& 15& 676) or about
1=5,000,000. This is however all so vague, that it is more usual to make
the judgment ‘‘1=5,000,000’’ without explanation. [14, p. 3]

One can well imagine why a professional statistician might be reluctant to base a
theory of statistical inference on such a foundation! They would have regarded this
as merely confirming their worst suspicions regarding the ‘‘arbitrary’’ nature of prior
probabilities. But that would miss the point; for Turing, the objective is come up
with some reasonable ‘‘ballpark’’ number:

The question as to what is the chance of having a rule of this kind might
of course be solved by statistics of some kind, but there is no point in hav-
ing this very accurate, and of course the experience of the cryptographer
itself forms a kind of statistics. [14, p. 3]

This point will be discussed further in the final section of the commentary.

1.4. The Factor Principle

Turing states that ‘‘[n]early all applications of probability to cryptography depend
on the ‘factor principle’ (or Bayes’s theorem).’’ This reflects Turing’s view of the sub-
ject rather than one an amateur would find in the published literature of the time;
perhaps nearly all applications of probability to cryptography at Bletchley Park
either explicitly or implicitly made use of this principle.

Turing’s factor principle is the so-called ‘‘odds ratio’’ version of Bayes’s
theorem. In the notation introduced earlier, if H0 and H1 are two ‘‘hypotheses’’ of
interest (for example, two possible keys used in the encryption of a message), and
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E represents some form of evidence or data (for example, the letters observed in an
encrypted message), then the odds form of this theorem states that

PðH1jEÞ
PðH0jEÞ

¼ PðEjH1Þ
PðEjH0Þ

% PðH1Þ
PðH0Þ

;

that is, the final or posterior odds forH1 versusH0 given E (the expression on the left)
equals the likelihood ratio (the first ratio on the right) times the initial or prior odds
(the second ratio on the right). Put another way, the likelihood ratio is precisely the
factor that transforms, by multiplying, the initial odds into the final odds.

Let H denote the negation of H, the hypothesis ‘‘not-H.’’ In the caseH1¼H and
H0 ¼ H, Turing called the likelihood ratio the factor in favor of the hypothesis H in
virtue of the evidence E.

How does one derive this formula? Let A \ B be shorthand for events ‘‘A and
B.’’ In mathematical probability, P(AjB) is then defined to be P(A \ B)=P(B); using
this, the odds version of Bayes’s theorem may be easily derived.

For further discussion of factors and likelihood ratios from the Turing perspec-
tive, see [8, Chapter 6, especially pp. 62–66] and [6].

1.5. Decibanage

Often the evidence E consists of several independent parts E1, E2,. . ., En. In this case,
the overall likelihood of the E for a theory Hj is then the product of the individual
likelihoods for Ej; that is, one has

PðE1 \ E2 \ . . .EnjHjÞ ¼ PðE1jHjÞ & PðE2jHjÞ & % % % & PðEnjHjÞ

for each competing theory Hj. (Turing uses the example of whether someone died of
heart failure, and the items of evidence are that he died in his bed, his father died of
heart failure, and his bedroom was on the ground floor (!); and we have statistics
relating to all of these.)

It is easier to add than to multiply, so Turing introduces the concept of the
deciban, 10 times the logarithm base 10 of the factor:

10 log10
PðEjH1Þ
PðEjH0Þ

¼ 10 log10
PðE1jH1Þ
PðE1jH0Þ

þ % % % þ 10 log10
PðEnjH1Þ
PðEnjH0Þ

¼
Xn

j¼1

10 log10
PðEjjH1Þ
PðEjjH0Þ

:

The factor of 10 was included to simplify the arithmetic, dropping everything after
the first decimal place. For example, in the cases p¼ 0.55 and p¼ 0.9, one has
log10(0.55=0.45)¼ 0.08715 and log10(0.9=0.10)¼ 0.95424, and these would be
reported in decibans as 0.9 and 9.5, respectively.

1.5.1. Half-Decibans
In 1941, there was a switch from decibans to ‘‘half-decibans,’’ i.e., using a factor of
20 rather than 10. There is no theoretical justification for working in units of
half-decibans; this was something arising from experience. This innovation was
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due to I. J. Good, who arrived at Bletchley Park in May 1941. Good said many years
later [1, p. 9]:

They were using decibans (weights of evidence), with one decimal point.
So I thought, why don’t we drop the decimal point and call the unit a cen-
tiban, thus saving a lot of writing. And then I noticed that if we used a
half deciban (hdb) [as the basic unit of measurement] we would save
much more time in both writing and arithmetic because most of the indi-
vidual scores would then be single digits . . .

This must have saved half the time of the work on Banburismus. Of course,
every numerical analyst knows that you shouldn’t carry more decimal
places than you need, in hand calculations, and it was essentially in that
spirit that I made this suggestion, but here were these highly intelligent
people, who for some weeks had been using the deciban with a decimal
point. [emphasis added]

Note: The ‘‘ban’’ in ‘‘deciban’’ derives from Banbury, a town in which sheets of paper
were printed for finding repeats (discussed later). I. J. Good later wrote [6, p. 394].
‘‘A deciban or half-deciban is about the smallest change in weight of evidence that is
directly perceptible to human intuition.’’ ‘‘Banburismus’’ was an essential part of the
attack on the Naval Enigma. For further discussion of Banburismus and the impact
of ‘‘half-decibans,’’ see Good [3, pp. 206–208].

2. Straightforward Cryptographic Problems

2.1. Vigenère

In the classical Vigenère cipher, the letters of plaintext are encrypted using a sequence
of different Caesar shift ciphers, repeating after a given period. Turing gives as an
example the following rectangular array of ciphertext; the period is assumed to be
known to be ten, hence the ten columns (Table 1). In this case, each column repre-
sents the encryption of nine plaintext letters using the same Caesar cipher, and the
task of the cryptanalyst is to determine the shift used for each column.

This is, of course, a classical problem whose solution was already known in the
19th century. Besides providing a simple illustration of the Bayesian approach, the
relatively short length of the columns makes it essential to use a statistically efficient

Table 1. Vigenère encrypted message, width of 10

D K Q H S H Z N M P
R C V X U H T E A Q
X H P U E P P S B K
T W U J A G D Y O J
T H W C Y D Z H G A
P Z K O X O E Y A E
B O K B U B P I K R
W W A C E J P H L P
T U Z Y F H L R Y C
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method that extracts the maximum amount of information present in the sample,
and this is precisely what the Bayesian method does.

Consider the first column. Let P(XjY) denote the probability of seeing letter X
given the key is Y, and P(Xj :Y) the probability of seeing X given the key is not
Y. Suppose the prior odds in favor of each key are 1:25. For the first letter D, the
factor in favor of key B (say), if the frequency of C in plaintext is 0.21, is

PðDjBÞ
PðDj:BÞ

¼ 1

25
% 25& 0:021

1! 0:021
:

As Turing explains, ‘‘The probability of getting D in the cipher with the key B is
just the probability of getting C in the clear, which (using the count on 1000 letters in
Fig 2) is 0.021. If however the key is not B, we can have any letter other than C in the
clear, and the probability is (1! 0.021)=25.’’ [14, p. 9]

One can then proceed in similar fashion for the other letters in the alphabet. If
we assume that the evidence of one letter is independent of another (‘‘This is not
quite correct, but is a useful approximation’’ [14, p. 10]), and pa is the frequency
of letter a in the language, then the final odds in favor of B being the key is

1

25

Y

i

25pai!1

1! pai!1
:

More generally (if letters and numbers are used interchangeably, the letters A, B,
C, . . . correspond to the numbers 1, 2, . . . , 26), the odds for letter b are

1

25

Y

i

25pai!bþ1

1! pai!bþ1
:

Given a table of empirical frequencies for letters (as in Table 2), one does the
one-time work of calculating decibans corresponding for each factor 25pa=(1! pa).
Given a message, it is then straightforward, if tedious, to decode the column using
the 26 different possible keys, look up the corresponding decibanages, and add
(Table 3).

The Bayesian approach may be efficient from a statistical perspective, but it can
be computationally demanding. Thus, Turing shows how the calculation can be
streamlined so it is easy to use. First, one prepares a table of half-decibans based
on a sample of letter frequencies. Next to each letter from A to Z, multiples of the
corresponding half-decibans are computed and rounded to the nearest integer. A
second copy of the resulting table is then written down immediately underneath

Table 2. Turing’s Figure 2, count on 1,000 letters, English text

A B C D E F G H I J K L M

84 23 21 46 116 20 25 49 76 2 5 38 34

N O P Q R S T U V W X Y Z

66 66 15 2 64 73 81 19 11 21 16 24 3
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the first. Table 4 gives the first four rows of Turing’s table. In all, there are 52 rows,
the letters of the alphabet being listed twice. (The reason for this will become appar-
ent shortly.) Note: the entries, given as they appear in Turing’s table, are often off by
one or two, for reasons noted later.

The calculation can be streamlined by preparing a transparent ‘‘gadget’’ consist-
ing of a sheet of paper with the letters of the alphabet displayed in a vertical column.
Holes are then punched next to each letter in the column of the message being
attacked. The distance of a hole from the alphabet column depends on the number
of times the corresponding letter appears in the message column. For example, since
B, D, P, R,W, and X appear once in the first message column, holes are punched in a
column immediately adjacent to the alphabet column. Similarly, since K appears
twice and T three times, the corresponding holes are punched in the second and third
column to the left of the alphabet column. For a given candidate decode letter, the
gadget is placed over the table of half-decibans and shifted up the appropriate
number of lines. If, for example, one wishes to test out key B for the first column,
the apparatus would be shifted up one line. (The reason for repeating the alphabet
twice in the table of decibans should now be clear.)

Turing concludes by noting that instead of viewing this as a case of just two rival
hypotheses (a key letter is or is not the key), it would be more accurate to view this as
a case of 26 rival hypotheses, corresponding to the 26 different possible keys A, B,. . .,
Z. In that case, the ‘‘factor principle’’ takes the form (in modern notation, D denotes
the data and Ai that the ith letter is the key)

PðA1jDÞ
PðA1ÞPðDjA1Þ

¼ PðA2jDÞ
PðA2ÞPðDjA2Þ

¼ % % % :

If the keys are judged a priori equally likely (P(Aj)¼ 1=26 for all j), then for any
pair of letters Aj, Ak, this reduces to

PðAjjDÞ
PðAkjDÞ

¼ PðDjAjÞ
PðDjAkÞ

;

that is, the relative posterior odds equals the relative factor in favor of Aj versus Ak.
The problem thus reduces to one of computing the probabilities of seeing the

column for each key. In terms of Turing’s notation, given key b, the probability

Table 4. Table for scoring a Vigenère in units of a half a deciban

31 26 20 13 7 A
!23 !18 !14 !9 !5 B
!26 !21 !16 !10 !5 C

7 6 4 3 1 D
..
. ..

. ..
. ..

. ..
. ..

.

Table 3. Turing’s calculation of half decibans

Ciphertext D R X T T P B W T
B decrypt C Q W S S O A V S
Odds 0.54 0.05 0.54 1.97 1.97 1.77 2.29 0.28 1.97
Half-deciban !5 !26 !5 6 6 5 7 !11 6

Commentary on Alan M. Turing 199

D
ow

nl
oa

de
d 

by
 [M

cG
ill

 U
ni

ve
rs

ity
 L

ib
ra

ry
] a

t 1
0:

29
 2

6 
A

ug
us

t 2
01

7 



of seeing the message is
Q

iðpai!bþ1Þ; and the posterior probability of key b is (insert-
ing a factor of 26 for convenience)

Q
ið26 pai!bþ1ÞP

b

Q
ið26 pai!bþ1Þ

:

This may be conveniently calculated by the method described earlier for

Y

i

25 pai!bþ1

1! pai!bþ1
:

It is at this point that Turing (rather annoyingly) only now tells us that the table in
his Figure 3 was computed using this method rather than the earlier one! The differ-
ence between the two tables, however, will be (as he notes) ‘‘rather slight.’’ This is
most easily seen by noting that the two quantities will in fact coincide if pai¼ 1=26
for all i (since then 25=(1! pai)¼ 26), and although the entire success of the attack
depends on this not being the case (that is, letter frequencies not being flat random),
it is both apparent and easily checked that the difference between 1! pai and 25=26 is
too small to matter.

2.2. A Letter Subtractor Problem

One vulnerability of the Vigenère cipher is the fact that its period is ordinarily much
shorter than the length of the message being encrypted. So it is natural to consider
practical methods of constructing polyalphabetic substitutions of a much longer per-
iod. Turing’s next example is of this type.

Consider three different Vigenère ciphers of (relatively prime) periods
91 (¼ 7%13), 95 (¼ 5%19), and 99 (¼ 32%11), respectively, each using ‘‘slides’’ from 0
to 9 (or equivalently, keys from A to J) occurring in roughly equal proportion. If
one superimposes the three resulting three substitutions (that is, applies one after
the other in some order), the result is equivalent to a single substitution using slides
ranging from 0 to 27, and having a period of 91%95%99¼ 855, 855, much longer than
even (say) the longest of Hitler’s rants to his generals.

One classical method of attack in this type of situation is to use a ‘‘crib,’’ or mot
probable—a word, phrase, or sentence thought likely or possible to occur at some
point in the message. For example, one might expect to find the word AMBASSA-
DOR at the beginning of a diplomatic message, based perhaps in part on past experi-
ence. Because there might be more than one candidate crib or the crib might not
occur, and in either case the use of an incorrect crib will lead to a substantial waste
of time, it is desirable to have some means of estimating the probability that the crib
is correct. This is Turing’s next example.

In the case of the composite letter subtractor, the vulnerability being exploited is
that because of the design of the cipher, not all slides are equally likely to occur. For
example, a slide of 25 can only arise as a sum of 9, 9, 7, or 9, 8, 8 (in each of three
different orders), while a slide of 15 can arise in many more, viz. (apart from order):

9, 6, 0 8, 7, 0 7, 7, 1 6, 6, 3
9, 5, 1 8, 6, 1 7, 6, 2 6, 5, 4
9, 4, 2 8, 5, 2 7, 5, 3
9, 3, 3 8, 4, 3 7, 4, 4
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Thus,

A crib will therefore, other things being equal, be more likely if it requires
a slide of 15 than if it requires a slide of 25. The problem is to make the
best use of this principle, by determining the probability of the crib with
reasonable accuracy, but without spending long over it. [14, p. 17, emphasis
added]

Noting the phrase ‘‘without spending long over it,’’ it is once again seen that the
concern is not theoretical purity but practical utility.

To use the Bayesian approach, one needs to know the probability of the different
slides. In modern notation and terminology, if X1, X2, and X3 are three independent
random variables having a discrete uniform distribution on the integers 0, 1,. . .,9,
find the distribution of S¼X1þX2þX3; that is, compute

PðS ¼ kÞ; k ¼ 0; 1; . . . ; 27:

Turing mentions three methods to do this. One is what would be termed the Monte
Carlo approach: produce a long stretch of key and tally the number of slides.
Another is the brute force method: there are 1,000 possible slide combinations; just
add, find the remainder dividing by 26, and again tally the number of slides. The
third is to use mathematics, which is very attractive from a mathematical standpoint.
Consider the polynomial

f ðxÞ ¼ ð1þ xþ x2 þ % % % þ x9Þ3:

Each partition of n¼ iþ jþ k into a sum of three terms, each summand permitted to
take values between 0 and 9, corresponds to a term xixjxk in the expansion of f(x).
Since xixjxk¼ xn, it follows that the number of different ways of partitioning n
corresponds to the coefficient of xn in f(x).

There is a very simple trick for computing this coefficient. Noting that
(1! x)(1þ xþ . . .þ x9)¼ (1! x10), it follows that

f ðxÞ ¼ ð1! x10Þ3

ð1! xÞ3
¼ ð1! 3x10 þ 3x20 ! x30Þð1! xÞ!3:

Using the general form of the binomial theorem to expand

ð1! xÞ!3 ¼ 1þ 3xþ 6x2 þ 10x3 þ 15x4 þ % % %

and multiplying, gives

f ðxÞ ¼ 1þ 3xþ 6x2 þ 10x3 þ 15x4 þ % % % þ 3x26 þ x27:

The full list of coefficients is

1 3 6 10 15 21 28 36 45 55 63 69 73 75 75 73 69 63 55 45 36 28 21 15 10 6 3 1;

Commentary on Alan M. Turing 201

D
ow

nl
oa

de
d 

by
 [M

cG
ill

 U
ni

ve
rs

ity
 L

ib
ra

ry
] a

t 1
0:

29
 2

6 
A

ug
us

t 2
01

7 



something that can be generated nowadays instantaneously using just a few lines of
code in one’s favorite computer language.

It is now a straightforward matter to compute the decibanages associated with
a candidate crib. For example, consider an enciphered message beginning
MVHWUSXOWBVMMK and the candidate crib AMBASSADOR. If the crib is
correct, then the associated slides are 12, 9, 6, 22, 0, 23, 11, 14, and the associated
deciban score is !33, a very poor fit indeed. (In fact, the cipher text letters had been
chosen at random and had no relation to the crib.) If, on the other hand, the message
was NYXLNXIQHH, the score in this case is 15, so if the initial odds were 2:1
against (say), then the final odds are almost 3:1 in favor of the crib.

2.2.1. Using a Crib
At the end of this section, Turing illustrates one possible use of a crib. Recall the
overall slide is a sum rþ sþ t of three components, r, s, and t having periods 91,
95, and 99, respectively. Suppose for each initial setting of the period 95 and period
99 components (that is, where in each period the initial slides s0 and t0 are), one con-
structs a catalog of the sequence of resulting sums sþ t (s0þ t0, s1þ t1, s2þ t2,. . .).
One then constructs a catalog having 95%99¼ 9, 405 lines, one for each (s0, t0) pair,
each line containing an initial segment of the sequence s0þ t0, s1þ t1, s2þ t2,. . .. The
catalog is ordered so as to facilitate looking up the sþ t sequences rather than the (s0,
t0) pairs.

If the crib is correct, then we know the total slide rþ sþ t, but not the individual
components r, s, and t. For each letter in the crib, there are 91 hypotheses about the
value of r, each resulting in a sequence of inferred values of sþ t. These sequences are
then looked up in the catalog. If the crib is indeed correct, then we will learn the
value of r0, s0, and t0 and can then generate the sequence of total slides rþ sþ t.

But why bother scoring the crib in the first place? ‘‘This process is fairly lengthy,
and as the scoring of the crib takes only a minute it is certainly worth doing’’ (p. 21).

2.3. Theory of Repeats

The letter subtractor system just discussed has the advantage over the Vigenère sys-
tem that the length of the key exceeds the length of the message, but the disadvantage
that the sum of the slides (the numbers 0, 1,. . ., 25) has a nonuniform distribution.
Suppose instead that one has a long series of substitutions not suffering from this
later defect. In such cases, it is often useful for purposes of cryptanalysis to identify
‘‘depths,’’ that is, two or more messages part or all of which have been enciphered
using the same key stream (that is, the same series of substitutions). (Turing does
not use the term ‘‘depth’’ but says the messages ‘‘fit.’’) In his next example, Turing
discusses how to identify depths using the Bayesian approach.

The classical approach to this problem, using, say, Friedman’s index of coinci-
dence, exploits the fact that two such series, correctly superimposed, will exhibit a
higher proportion of ‘‘repeats’’ in each series than otherwise expected. Thus, if the
two streams are generated at random, then at any one position, there is a (1=26)2

probability of finding an A in both series at that position, and similarly for B
through Z, for a total probability of 26(1=26)2¼ 1=26.

On the other hand, if the underlying plaintext is modeled as an independent
sequence of letters, with the letter a occurring with frequency pa, then the probability
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of a repeat is b ¼
P
a
p2a, which is always greater than 1=26 (unless all pa¼ 1=26, which

never happens in ordinary plaintext).
The problem is how to do better than this if a depth is present. Turing writes:

One writes out the cipher texts of the two messages with the letters which
are thought to have been enciphered with the same substitution under
one another. One then writes under these messages a series of letters o
and x, an o being written where the cipher texts differ and an x where
they agree. The series of letters o and x will begin where the second mess-
age begins and end where the first to end ends. This series of letters o and
x may be called the repetition figure. It may be completed by adding at
the ends an indication of how many letters there are which do not over-
lap, and which message they belong to. [14, p. 22]

For example, the repetition figure

8xooooooooooxooxxooxxxxxxooooooooooxox11

indicates that the depth begins at the 9th letter of the first message, continues for the
next 37 letters (during which time there are 12 repeats), and then the 2nd message
continues on for 11 more letters.

2.3.1. First Simplified Form of Theory
Suppose, as in the classical Friedman index of coincidence approach, that the letters
are regarded as a sequence of independent outcomes, so that ‘‘we neglect all evidence
except the number of letters x and the number of letters o.’’ Thus, suppose that in a
repetition figure of length N, there are n occurrences of x and the probability of a
repeat at any position is b ¼

P
a
p2a. In that case, the factor in favor of the fit is

ð26bÞn 26

25
ð1! bÞ

# $N!n

:

Turing derives this result in two different ways, one of which follows.
The factor in favor of a fit is just the ratio of the probability of seeing the pat-

tern, given a repeat rate of p¼ b versus a rate of p¼ 1=2. These are each of the form
R(N, n)Q(N, n), where

RðN; nÞ ¼ N!

n!ðN ! nÞ!

is a binomial coefficient that counts the number of different possible patterns having
exactly n repeats out of the total of N (note R(N, n) does not depend on p), and

QðN; nÞ ¼ pnð1! pÞN!n

is the probability of seeing any specific pattern of n repeats.
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For example, suppose the repetition figure is oxoxx. Then N¼ 5, n¼ 3, and

Rð7; 5Þ ¼ 5!

3!2!
¼ 10;

there are ten possible patterns with three repeats out of five. These are

ooxxx; oxoxx; oxxox; oxxxo; xooxx; xoxox; xoxxo; xxoox; xxoxo; xxxooo;

each has probability Q(5, 3)¼ p3(1! p)2.
Suppose the data D is that one observes a repetition figure with n repeats out of

N and the repeat rate b. Then the factor in favor of a fit is

PðDjp ¼ bÞ
PðDjp ¼ 1=26Þ

¼ RðN; nÞbnð1! bÞN!n

RðN; nÞ 1
26

% &n 25
26

% &N!n :

Turing comments:

The device of assuming, as we have done here, that the evidence which is
not available is irrelevant can often be used and usually leads to good
results. It is of course not supposed that the evidence really is irrelevant,
but only that the error resulting from this assumption when used in this
kind of way is likely to be small. [14, p. 26]

2.3.2 Second Simplified Form of Theory
Suppose the available evidence is that there is a sequence of r contiguous repeats
(such as oxxxo or oxxxxxo) in some part of the repetition figure. The point here
is that such an extended sequence if at all long is very unlikely to occur by chance
and therefore provides strong evidence in favor of a correct fit. For example, the
word ‘‘CONVOY’’ might occur in both messages at the same point (or ‘‘Heil Hitler,’’
or ‘‘Obersturmbannfuehrer,’’ or . . .).

It is instructive to compare the different competing statistical approaches here.
In a classical test of significance, one computes the probability of the data given a
‘‘null hypothesis,’’ for example, that the fit is incorrect. (The null hypothesis typically
represents the skeptical position that some state of affairs does not in fact obtain.) If
this ‘‘level of significance’’ or ‘‘P-value’’ is sufficiently small, this is taken as evidence
against the null. Thus, one would compute the probability of six repeats,

1

26

! "6

¼ 0:0000000032:

This is obviously very small, but the problem here is that even under the competing
alternative of a correct fit, the probability of a hexagram will still be quite small. For
example, in the case of the Naval Enigma, the repeat rate was roughly 1 in 17, giving

1

17

! "6

¼ 0:000000041:

This too is very small!
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The point is not the absolute magnitudes of P(DjH0) and P(DjH1), but their rela-
tive magnitudes or ratio:

L ¼ PðDjH1Þ
PðDjH0Þ

¼ 0:0000000414

0:0000000032
¼ 12:798 % % % :

Thus, the observed data is nearly 13 times as likely to occur given a correct fit versus
an incorrect one. (This corresponds to a value of 11 decibans.)

In the classical Neyman–Pearson theory of hypothesis testing in statistics
(developed in a series of papers from 1928 to 1938 by Jerzy Neyman and Egon Pear-
son), this problem would be viewed as one of deciding between two ‘‘simple’’ hypoth-
eses, say H0 and H1. There are two possible errors in that situation, corresponding to
accepting H1 when H0 holds (a ‘‘type 1 error’’) and accepting H0 when H1 holds (a
‘‘type 2’’ error). Each of these errors has an associated probability: P(rejectH0jH0)
and P(rejectH1jH1). The so-called Neyman–Pearson lemma states that in such cases,
for any fixed probability of type 1 error, one can minimize the occurrence of a type
2 error by choosing an appropriate cutoff c and rejecting H0 (= accept H1) whenever
the likelihood ratio exceeds that cutoff: L> c. (A paradigm for this might be some type
of acceptance or rejection procedure in industrial quality control.)

Such an approach would be completely useless here, because it entirely neglects
the prior odds for or against the correctness of the fit. For example, depending on the
circumstances, one might have more or less reason to believe the messages were in
depth and, depending on the length of the message, more or less reason to think they
were properly aligned. We will return to this point later.

2.3.3. General Form of Theory
The approach just discussed (based on r-grams) illustrates the inefficiency of the
classical attack based on the index of coincidence: it ignores relevant and useful
information. One needs instead a more detailed statistical model, one for which
the factor in favor of a fit can be both mathematically derived and readily computed.
As Turing notes,

It is not of course possible to have statistics of every conceivable rep-
etition figure. We must make some assumption to reduce the variety that
need to be considered. The following assumption is theoretically very
convenient, and also appears to be a good approximation.

The probabilities of repeats at two points known to be separated by a point
where there is known to be no repeat are independent.

We may also assume that the probability of a repeat is independent of
anything but the repetition figure in its neighborhood . . . . We can there-
fore think of a repetition figure as being produced by selecting the sym-
bols of the figure consecutively, the probability of getting an x at each
stage being determined by the repetition figure from the point in question
back as far as the last o. [14, p. 27]

In the case of the leftmost x, it may not be preceded by an o, in which case it is
noted whether there is any preceding text or not. Table 5 lists the possible cases, with
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Turing’s notation for the corresponding probability of seeing an x immediately after.
For example, consider the repetition figure

none xxxxojojojxojxxxojojxxj some;

where the vertical bars denote where a new block is computed (immediately after an
o). The factor in favor of the fit may be broken down into a product of factors cor-
responding to each block:

c0c1c2c3ð1! c4Þ
1
26

% &425
26

% 1! a0
25
26

" #3

% a0ð1! a1Þ
1
26 %

25
26

% a0a1a2ð1! a3Þ
1
26

% &325
26

% a0a1
1
26

% &2 :

In general, if one has a message having an r-gram of the a-type, and k0¼ 1! a0,
krþ1¼ a0a1 . . . ar(1! arþ1), then the appropriate decibanage is

lr ¼ 10 log10
26rþ1kr

25

! "
! ðrþ 1Þ10 log10

26ð1! a0Þ
25

:

2.3.4. Actual Versus Apparent r-Gram Repeats
If h is the probability of an o and L¼N(N! 1)=2, then one has the natural estimate
kr ( Nr=Lh.

The statistics Nr, the ‘‘actual’’ numbers of r-gram repeats, can be tedious to tally.
Turing discusses how these can be computed from quantities Mr, the ‘‘apparent’’
number of of r-gram repeats, which require less labor. The discussion of this in
[14] is only cursory, and [15] helps to understand what is happening.

Consider the case of tetragrams: there are 264¼ 456,976 of these, ranging from
AAAA, AAAB, . . ., to ZZZZ. Turing considers the example of EINS (German for
‘‘one’’), the most common tetragram in many forms of German military traffic, such
as that encrypted by the Enigma.

Now in the case of a genuine tetragram repeat (as opposed to a pentagram,
hexagram, or in general r-gram repeat, r) 5), precisely four letters match, and the
letters immediately before and the letters immediately after do not (for example,
as in as QEINSR, VEINSW). Turing calls this an ‘‘actual repeat’’ of EINS; the
grand total of all such repeats for all possible tetragrams is the ‘‘actual number of
tetragram repeats.’’ For any r) 0, Nr denotes the actual number of r-gram repeats.

Because Nr is not easily computed, Turing considers instead the ‘‘apparent
number of repeats’’ Mr and shows how Nr can be obtained from Mr. An apparent
r-repeat is a repeat of length r that may in fact form part of a longer s-gram repeat

Table 5. State space and probabilities for general mode

o a0 Some b0 None c0
ox a1 Some x b1 None x c1
oxx a2 Some xx b2 None xx c2
oxxx a3 Some xxx b3 None xxx c3
. . . . . . . . .

206 S. Zabell

D
ow

nl
oa

de
d 

by
 [M

cG
ill

 U
ni

ve
rs

ity
 L

ib
ra

ry
] a

t 1
0:

29
 2

6 
A

ug
us

t 2
01

7 



(s> r). For example, KLEINSORGE and KLEINSATZ are examples of an actual
hexagram repeat of KLEINS but also an apparent tetragram repeat of EINS. In gen-
eral, there is one apparent r-gram repeat for every actual r-gram repeat, two appar-
ent r-gram repeats for every actual rþ 1-gram repeat, three apparent r-gram repeats
for every actual rþ 2-gram repeat, and so on. Thus,

Mr ¼ Nr þ 2Nrþ1 þ 3Nrþ2 þ % % % ;

hence,

Mr !Mrþ1 ¼ Nr þNrþ1 þNrþ2 þ % % %

and

Nr ¼ ðMr !Mrþ1Þ ! ðMrþ1 !Mrþ2Þ ¼ Mr ! 2Mrþ1 þMrþ2:

Thus, the computation of Nr can be reduced to that of the Mr; these can in turn
be tallied in a fairly simple way:

It is therefore sufficient to calculate only apparent numbers and to carry
these two stages further than we want to go with the actual numbers.
[That is, to find Nr, you need to find Mrþ2.] In practice octagram repeats
are so certain to be right that it will be sufficient to have statistics only as
far as heptagrams. We therefore need statistics only as far as 9-grams. To
get these numbers of apparent repeats it is sufficient to take all the
9-grams in the material (i.e., on the circle) and put them into alphabetical
order. This can be done very conveniently by Hollerith [a punch-card
sorting device]. The number of trigram repeats say can then be found very
simply (although with a good deal of labour) by considering only the first
three letters of each 9-gram. [15, p. V1].

Note: Turing’s other paper, ‘‘Paper on the Statistics of Repetitions’’ [15], largely
repeats the material in this section of [14], although some of the formulas and math-
ematics are different.

The mathematical theory was later developed and published in the open litera-
ture by Good [7], who describes it as a theory of ‘‘regenerative Markov chains.’’
Good credits Turing (on p. 936) with the actual versus apparent distinction, and says
a special case of the models had been invented by Turing ‘‘for the analysis of certain
binary processes’’ (!). At Alexander’s suggestion, Good derived a more general form
of scoring (which Alexander humorously referred to as ROMSing, for the Resources
of Modern Science [4, p. 157]).

2.4. Transposition Ciphers

In a transposition cipher the order of the letters in a message is changed, but not the
letters themselves. In this case the simplifying assumption that the plaintext letters
are chosen independently according to some set of frequencies ‘‘would be useless
or worse than useless, for it would result in the conclusion that all transpositions
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were equally likely’’ (p. 32). That is, if H represents a possible transposition, and E
the letter frequencies in ciphertext, then P(EjH) is independent of H (because the
implied letter frequencies in the plaintext are the same for all transpositions), and
so the odds in favor of H are unchanged. It is precisely because P(EjH) varies from
one H to another that E furnishes evidence regarding H; if P(EjH) is independent of
H, then E is uninformative.

Instead, Turing assumes that successive letters form a Markov chain. In such a
model the frequency pab of a bigram ab is not the product papb of the individual let-
ters frequencies. (Indeed historically one of the earliest applications of such models,
by Markov himself, was to the analysis of letter frequencies in text.) The approxi-
mate score in this case is simple, and it will simplify matters if we reverse Turing’s
order and consider his example first, and only then his mathematics.

2.4.1. Turing’s Example
In a simple columnar transposition the plaintext is written down in rows of a given
width; and the resulting columns are then permuted. The ciphertext is then written
out going down successive columns from left to right. The width and permutation
constitute the key. Turing gives as an example the following ciphertext encrypted
using this method:

S A T P T W S F A S T A U T E
E A I E U F H W T J T D D C C
N L T S E F C U I E B O E Y Q
H G T J T E E F I E O R T A R
U R N L N N N N A I E O T U S
H L E S B F B R N D X G N J H
U A N W R

There are 95 letters in the message, and we are told the maximum possible key
length is 15. It follows that there are between 2 and 15 columns having between 2!
and 15! possible orders, for a total of 1, 401, 602, 636, 312 orders in all. Clearly a
brute force attack on this message, despite the simplicity of its encryption, is out
of the question.

The greater the key length, the shorter the columns. In the case of the maximum
width of 15, there will be 7 rows, the last row having 5 letters; the first 5 columns will
therefore have 7 letters, and the last 10 columns 6 letters. Thus the first 6 letters of
the ciphertext, SATPTW, must be the first six letters of some column; and similarly
the last six letters of the ciphertext, HUANWR, must be the last six letters of some
column.

The statistical attack in this case compares the first 6 letters SATPTW (say), with
every consecutive series of 6 letters, noting the resulting bigrams; when correctly
aligned, SATPTW will be juxtaposed with the 6 letters in the column of the plaintext
coming either immediately before or after it. When this happens the resulting
bigrams will exhibit the roughness found in plaintext. For example, comparing
SATPTW with FASTAU (starting at the 8th letter), and using SATPTW as the first
column, one sees the 6 bigrams SF, AA, TS, PT, TA, WU. The natural score in half-
decibans is then

20 log10
pSF
pSpF

þ 20 log10
pAA
pApA

þ % % % þ 20 log10
pWU

pWpU
:
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(If H is the hypothesis that the matching is correct, then P(abjH)¼ pab; if H that the
matching is incorrect, then Pðabj !HHÞ ¼ papb. Taking the sum of the individual bigram
scores assumes the bigrams are at least approximately independent; the justification
for this is the whole point of Turing’s mathematical analysis.)

This computation is then carried out for every series of 6; and the high scoring
series noted. The same process is then repeated using SATPTW as the second
column in the comparison, and similarly using HUANWR for the first and second
column. If an adjacent column is successfully identified this way, it can in turn be
used as the basis for identifying yet another column, and so on.

Turing’s Figure 6 (on p. 34) gives the bigram scores ‘‘for a certain kind of
German traffic;’’ using these, his Figure 7 illustrates the scoring for all possible
comparisons, the correct matchings being circled. Unfortunately the example itself
is not particularly clean. For example, using SATPTW as first column, the correct
match has a score of !4, but a number of incorrect comparisons in fact have positive
scores, the highest being 36. Turing says of this highest scoring but incorrect match:
‘‘It was not difficult to see that this one was wrong as most of the score came
from WO which requires Z to precede it, and there was no Z in the message’’.
The explanation of this cryptic comment is presumably that in German military traf-
fic ZWO (German for ‘‘two’’) was very common; but if so Turing’s ‘‘requires’’ seems
to overstate matters. Turing says one of the columns in Figure 7 gives the scores
using HUANWR as the second column in the comparison, but in the margin there
is the pencilled-in comment ‘‘I doubt it, S. W.;’’ and indeed, it is difficult to replicate
some of the numbers given. (GCHQ in their press release suggest that ‘‘S. W.’’ stands
for Shaun Wylie, who also worked in Hut 8 in 1941 and was later Chief Mathema-
tician in their postwar organization.)

Challenge: Turing does not give the actual underlying plaintex. Find it!

2.4.2. Markov Chain Model
Turing adopts as an alternative model to independence that the successive letters
form what is today termed a Markov chain; that is, ‘‘the letters forming the plain
language are chosen consecutively, the probability of getting a particular letter
depending only on what the letter is and what the preceding letter was’’ [14, p. 32].
The subsequent mathematics are straightforward. If pa is the frequency of the letter
a, and pab is the probability of the bigram ab, then (using the formula for conditional
probability discussed earlier) qab, the probability of seeing a b given the immediately
preceding letter is a, is qab¼ pab=pa. In the theory of Markov chains many other
quantities of interest may be computed from pa and qab, which are called the initial
distribution and transition matrix, respectively, of the chain.

For example, for a stretch of plaintext of length L, say a1, a2,. . ., aL, the prob-
ability of seeing the sequence of letters is

Jða1; a2; . . . ; aLÞ :¼ pa1 % qa1a2 % qa2a3 % qa3a4 % % % qaL!1aL :

By summing J over those sequences having given letters at certain places and not in
others, one can compute the probability of seeing specified letters at other places.
For example, if the data is that the known letters are

% % %
n1 dots

bn1 % % %
n2 dots

bn2 % % % % % % br!1 % % %
nr dots

br % % % ;
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then, as Turing notes, this quantity is approximately

Y

r

pbr %
Y

nrþ1¼0

pbrbrþ1

pbrpbrþ1

: ðAÞ

(The notation nrþ 1¼ 0 means that the second product is over all r such that
nrþ 1¼ 0; that is, for all letters br for which the next known letter is immediately
adjacent.)

If none of the known letters are adjacent in plaintext, this reduces to just the pro-
duct

Q
r pbr , that is independence. It follows that the factor in favor of a candidate

transposition being correct versus incorrect is

Y

nrþ1¼0

pbrbrþ1

pbrpbrþ1

:

Turing’s says his derivation of (A) is ‘‘something of a digression,’’ but it is an
interesting one.

2.4.3. Derivation
Let sn, ab denote the probability, in state a, of a transition to state b after n interven-
ing steps (n) 0). If Q¼ (qab) is the matrix of one-step a! b transition probabilities,
and, in general,Mij denotes the ijth entry of a matrixM (so that here Qab¼ qab), then
it is a basic result in Markov chain theory that

sn; ab ¼ ðQnþ1Þab;

that is, the probability of an a! b transition after (nþ 1) steps is just the a, b entry of
Qnþ1, the natural power of the single-step transition matrix Q.

Turing notes that (A) would hold exactly if one had (Qnþ 1)ab¼ pb for n> 0.
Although this is not generally true, it is true (‘‘except for very special values for
qab’’) that (Q

nþ 1)ab! pb as n!1 , ‘‘and this convergence is rather rapid’’ (p. 38).
This last point is very important, ensuring the approximation should be a reasonable
one.

Today this result is called the ergodic theorem for Markov chains; this states that
under appropriate conditions, such chains converge to a unique stationary distri-
bution p for the chain. That is, if Q is the matrix of one-step transition probabilities,
then

lim
n!1

Qnða; bÞ ¼ pðbÞ;

so that irrespective of where you start (the a), the probability of being in state b
eventually stabilizes to a value p(b); the resulting distribution p is ‘‘stationary’’ in
the sense that it is the (in this case unique) probability distribution p on the states
such that pQ¼ p (which means the distribution is unchanged from one transition
to the next). If you think of the successive states as describing some system in
statistical mechanics, then this says that there is a equilibrium distribution p
and that a system not in equilibrium converges to this equilibrium condition over
time.
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In the case of a finite number of states the ergodic theorem in this context is a
special case of the Perron–Frobenius theorem for matrices. Specifically, given a
matrix Q, the asserted convergence occurs if Q has nonnegative entries and if, for
some n, Qn has all positive entries. (In Turing’s setting, the later corresponds to
the innocuous assumption that for some n there is a positive probability of seeing
any n-step a! b transition.) For discussion of the history of the Perron–Frobenius
theorem and its connection to the earlier work of Markov, see [12].

Turing proceeds to show that lim
n!1

Qnða; bÞ ¼ pb, In modern terminology, Turing

proves the ergodic theorem under some appropriate set of conditions. It is unclear if
he was aware of this fact, or was just content to derive it for himself. (Perron’s
version of the theorem could certainly be found in some books of the era.)

Turing’s proof, in brief outline, is as follows: assume the eigenvalues of the
matrix Q have distinct moduli (absolute value). (This assumption is unnecessary;
making it may be why Turing refers to his proof as ‘‘more or less rigorous.’’) It is
then a standard result of linear algebra that one can ‘‘diagonalize’’ ’ Q: that is, find
another matrix U (for ‘‘unitary’’) having determinant one, and such that U!1QU is
diagonal:

M :¼ U!1QU ¼

l1 0 % % % 0
0 l2 % % % 0

..

. ..
. . .

. ..
.

0 0 % % % l26

0

BBB@

1

CCCA:

Turing shows after two pages of analysis that one of the eigenvalues lr equals 1 and
that the rest satisfy jlrj< 1. It follows immediately that limn!1Mn¼U!1XrU, where
Xr is a matrix ‘‘which has only one element different from 0, and that a 1 on the
diagonal, say in position rr.’’ Call this matrix Y; since it ‘‘is the one and only which
satisfies’’ the conditions YQ¼Y (the stationarity condition!), Y2¼Y, and Y 6¼ 0, it
is necessarily the matrix whose ab coefficient is pb.

It is apparent that the solution of a simple columnar transposition can be quite
tedious. For a classical discussion of its cryptanalysis, see Sinkov [13, Chapter 5].
Sinkov states

To assist in this step [the alignment of possible columns] we can record
the frequency of every digraph [i.e., pab] and assign the total of these fre-
quencies as a score to each possibility being considered. The highest score
will hopefully correspond to the correct juxtaposition. [13, p. 169]

Turing’s procedure is both more efficient from a statistical perspective and more
systematic that the one Sinkov described (as well as, of course, allowing one to factor
in an estimate of the prior odds of correct alignment).

3. Discussion

Turing’s paper is neither a general treatise on cryptology nor a detailed analysis of
the cryptanalysis of a specific device, such as the Enigma. Instead, it introduces
the use of the Bayesian method in cryptanalysis, illustrating it by a succession of
increasingly complex examples.
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It may, in fact, represent the first time Bayesian methods were discussed in the
cryptological literature. The Bayesian methodology itself was of course well-known
in the contemporary statistical literature of Turing’s day, but sometimes a technique
may be ‘‘well-known’’ in one field yet unknown in another. In such cases, just noting
the utility of the method may be an important development.

3.1. The Contemporary Statistical Background

What is interesting and striking is that this happy resort to Bayesian methods by
Turing would have been far less likely by someone having a detailed knowledge of
and training in the modern statistical methods of the day. For paradoxically, the
Bayesian methods that Turing found to be the perfect instrument for attacking
German systems had been under sharp attack within the outside statistical pro-
fession for more than two decades.

For Turing, probability was conditional (relative to ‘‘certain evidence’’), having
both objective elements (the frequency of occurrence of an event) and subjective ones
(our expectation about such frequencies). This was in contrast to the then dominant
view in the statistical world, which regarded probabilities as facts about the world,
manifested as frequencies in populations or repeated trials. In such a view, although
judgment may enter into an analysis, it does not do so in a quantitative way.

The key issue was the nature of the prior odds used in Bayes’s theorem, and
more generally the nature of probability itself. Now it should be stressed that Bayes’s
theorem is entirely uncontroversial if the prior probabilities it requires are either fre-
quencies or in some way objectively determined. But in the hands of those less skill-
ful than Laplace, the method had been frequently abused, as in the notorious
principle of insufficient reason.

The solution, some argued, was to recognize that probabilities were not subjec-
tive beliefs but objective facts about the world, the frequencies with which an event
occurred in repeated trials. This was, to differing degrees, the view of both R. A.
Fisher and Jerzy Neyman, perhaps the two most influential statisticians in England
in the 1930s. (Fisher and Neyman in fact had very different views about the nature
of statistical inference, but what is relevant here is that just about the only thing
they did agree on was a total rejection of Bayesian methods!) For discussion of
Fisher’s views on inverse probability, see [17,18]; for a summary of Neyman’s
frequentist views, see [11].

3.2. Outside Influence and Impact

Cryptanalytic advances seldom have a technical impact on the ‘‘outside’’ world; sig-
nals intelligence agencies are virtually unique in being averse to advertising their suc-
cesses, and one of the challenges for the historian of this area is that often key
information is only released decades later. (Turing’s paper is a case in point, of
course, appearing some 70 years after it was written.)

But for somewhat unusual reasons, Turing’s championing of Bayesian methods
at Bletchley did have an almost immediate impact on the outside statistical
profession. Fresh out of Bletchley Park in the fall of 1945, I. J. Good proceeded
to write a book setting out the philosophy, mathematics, and application of the
Bayesian approach that he had learned at Bletchley to a wide range of statistical
and inferential problems. (The book, Probability and the Weighing of Evidence [8],
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was published in 1950; its cryptanalytic origins were of course discreetly omitted.)
The book closely reflected Turing’s views; in its preface, Turing is acknowledged
as an influence, thanked for ‘‘illuminating conversations,’’ and listed as one of three
people who read and commented on the first draft of 1946. (The other two were Max
Newman and Donald Mitchie of the Newmanry, where Good worked for the last
two years of the war.)

During the next several decades, Good became a forceful advocate of the
Bayesian viewpoint, publishing both papers in the statistical literature (some of
which were elaborations of wartime statistical techniques due to Turing or Good,
Turing’s contribution being always carefully acknowledged) and in the philosophical
literature (urging the superiority of the subjective, personalist theories of Ramsey,
Savage, and de Finetti over the so-called objective frequentist theories of the time).
For a summary of his philosophy four decades later, and an extensive list of refer-
ences to many earlier papers, see [5].

There were other champions of the Bayesian view in the 1950s and later: initially
most notably L. J. Savage at the University of Chicago and Howard Raiffa and
Robert Schlaifer at the Harvard Business School. Despite their advocacy, it was
not until perhaps the 1980s that Bayesian methods began to regain a considerable
amount of professional respectability. Nor is this entirely surprising, given that a
whole generation had been brought up viewing matters from the hostile perspective
of Fisher and Neyman. Such a state of affairs must have been extraordinarily frus-
trating for Good, who for 30 years had to listen at conference after conference to
speakers scornfully rejecting the Bayesian approach as just a lot of useless theory,
having no real practical applications! (The author of this commentary once attended
such a conference where Good was in attendance.) But bound as he was by his
pledge of secrecy, Good had to remain silent about what can only be described as
one of the outstanding statistical success stories of the 20th century. And even after
1974, when the successes of Bletchley Park became known, Good felt constrained
not to reveal in detail just how central the Bayesian approach had been. (But the
release of documents over the last decade, most notably the ‘‘General Report on
Tunny’’ [9], now provides ample evidence about this.)

3.3. The Date and State of the Document

The document is undated, but internal evidence suggests a date of September 1941.
The reference to Hitler being 52 on p. 1 indicates that the paper was written some-
time between April 1941 and April 1942 (Hitler was born 20 April 1889); the refer-
ence to half-decibans suggests a date of no earlier than June 1941 (because they were
introduced by I. J. Good, who arrived at Bletchley Park in May 1941); and the date
of 12 September at the top of p. 11 further narrows this down to September of
that year.

The paper may be incomplete, since it contains references to material not
included. (For example, on p. 19, in the discussion of the letter subtractor problem,
Turing refers to two additional methods besides the ones he has given, and says
‘‘They will be discussed later,’’ but no such discussion appears.)

The posted manuscript has some notes and corrections, not all in Turing’s hand,
and it is unclear when these were made. (That is, whether made at the time Turing
originally wrote the paper, or later by a reader.) For example, on p. 30, the correc-
tion krþ1 (in place of kr) has inserted.
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