Zika Virus and the Guillain–Barré Syndrome — Case Series from Seven Countries

TO THE EDITOR: Zika virus (ZIKV) disease had been described as a mild, self-limiting illness associated with fever, rash, joint pain, and conjunctivitis. However, during the outbreak in French Polynesia, 42 patients with ZIKV disease were found to have the Guillain–Barré syndrome, which represented a marked increase from the approximately 5 cases detected annually during the previous 4 years. A connection with the Guillain–Barré syndrome had previously been described in association with other flavivirus illnesses but not with ZIKV infection.

From April 1, 2015, to March 31, 2016, a total of 164,237 confirmed and suspected cases of ZIKV disease and 1474 cases of the Guillain–Barré syndrome were reported in Bahia, Brazil; Colombia; the Dominican Republic; El Salvador; Honduras; Suriname; and Venezuela. To examine the temporal association between ZIKV disease and the Guillain–Barré syndrome, graphical and time-series analyses were applied to these two independent data sets, which were collected through official International Health Regulations channels or from ministry of health websites (see the Supplementary Appendix, available with the full text of this letter at NEJM.org). The data obtained from country reports contained no personally identifiable information and were collected as part of routine public health surveillance; therefore, the analysis was exempt from review by an ethics board. Differences between the observed and expected numbers of cases of the Guillain–Barré syndrome during the ZIKV transmission period, as well as differences in the incidence of the Guillain–Barré syndrome and ZIKV disease according to age and sex, were analyzed with the use of Poisson regression models (see the Supplementary Appendix).

The analysis suggests that changes in the reported incidence of ZIKV disease during 2015 and early 2016 were closely associated with changes in the incidence of the Guillain–Barré syndrome. During the weeks of ZIKV transmission, there were significant increases in the incidence of the Guillain–Barré syndrome, as compared with the pre-ZIKV baseline incidence, in Bahia State (an increase of 172%), Colombia (211%), the Dominican Republic (150%), El Salvador (100%), Honduras (144%), Suriname (400%), and Venezuela (877%) (Table 1). When the incidence of ZIKV disease increased, so did the incidence of the Guillain–Barré syndrome (Fig. 1A). In the six countries that also reported decreases in the incidence of ZIKV disease, the incidence of the Guillain–Barré syndrome also declined. When the seven epidemics of ZIKV disease are aligned according to week of peak incidence, the total number of cases of ZIKV disease and the Guillain–Barré syndrome are closely coincident (Fig. 1B), although the period from acquiring infection to reporting disease is approximately 2 weeks longer for ZIKV than for the Guillain–Barré syndrome, a pattern that is especially visible in data from Colombia and Venezuela. Whether the 2-week difference can be explained in terms of incubation periods or reporting delays is not yet known. We explored the potential effect of dengue virus circulation on the incidence of the Guillain–Barré syndrome and found no link (see the Supplementary Appendix). In any event, we infer from these two series of cases,
Table 1. Expected and Observed Numbers of Cases of the Guillain–Barré Syndrome.*

<table>
<thead>
<tr>
<th>Region</th>
<th>Population</th>
<th>Pre-ZIKV Period</th>
<th>ZIKV Transmission Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no.</td>
<td>Mean Annual Cases of GBS (95% CI)</td>
<td>Annual Cumulative Incidence of GBS (95% CI)</td>
</tr>
<tr>
<td></td>
<td>no.</td>
<td>(per 100,000)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>Bahia, Brazil</td>
<td>15,203,934</td>
<td>57 (37 to 77)</td>
<td>0.37 (0.30 to 0.46)</td>
</tr>
<tr>
<td>Colombia</td>
<td>49,529,208</td>
<td>242 (48 to 436)</td>
<td>0.49 (0.44 to 0.54)</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>10,652,135</td>
<td>73 (47 to 114)‡</td>
<td>0.69 (0.56 to 0.83)‡</td>
</tr>
<tr>
<td>El Salvador</td>
<td>6,426,002</td>
<td>170 (99 to 241)</td>
<td>2.65 (2.27 to 3.06)</td>
</tr>
<tr>
<td>Honduras</td>
<td>8,423,917</td>
<td>110 (83 to 137)</td>
<td>1.31 (1.08 to 1.57)</td>
</tr>
<tr>
<td>Suriname</td>
<td>548,456</td>
<td>4 (1 to 10)</td>
<td>0.73 (0.24 to 1.73)</td>
</tr>
<tr>
<td>Venezuela</td>
<td>31,292,702</td>
<td>214 (139 to 336)‡</td>
<td>0.69 (0.60 to 0.78)‡</td>
</tr>
</tbody>
</table>

* CI denotes confidence interval, GBS the Guillain–Barré syndrome, and ZIKV Zika virus.
† Rate ratios are based on the incidence of GBS during the ZIKV transmission period as compared with that during the pre-ZIKV period.
‡ Values are estimates based on the median rates obtained from countries with information available.

Figure 1 (Facing page). Cases of ZIKV Virus (ZIKV) Disease and Guillain–Barré Syndrome (GBS) in six countries and in Bahia, Brazil, 2015 to 2016. Panel A shows weekly case reports of ZIKV disease and GBS in six countries and in Bahia, Brazil, 2015 to 2016. Panel B shows case series of ZIKV disease and GBS aligned to the week of peak incidence of ZIKV disease.
A Weekly Case Reports of ZIKV Disease and GBS in Six Countries and Bahia, Brazil, 2015–2016

Bahia

Colombia

Dominican Republic

El Salvador

Honduras

Suriname

Venezuela

B Case Series of ZIKV Disease and GBS Aligned to the Week of Peak Incidence of ZIKV Disease
Thais dos Santos, M.S.
Angel Rodriguez, M.D.
Maria Almiron, M.S.
Antonio Sanhueza, Ph.D.
Pilar Ramon, M.D., Ph.D.
Pan American Health Organization
Washington, DC
Wanderson K. de Oliveira, M.D.
Giovanini E. Coelho, M.D.
Ministry of Health
Brasília, Brazil
Roberto Badaró, M.D.
Federal University of Bahia
Salvador, Brazil
Juan Cortez, M.D.
Pan American Health Organization
Washington, DC
Martha Ospina, M.D.
Ministry of Health
Bogotá, Colombia
Raquel Pimentel, M.D.
Ministry of Health
Santo Domingo, Dominican Republic
Rolando Masis, M.D.
San Salvador, El Salvador
Franklin Hernandez, M.D.
Pan American Health Organization
Washington, DC
Bredy Lara, M.D.
Ministry of Health
Tegucigalpa, Honduras
Romeo Monteoya, M.D.
Pan American Health Organization
Washington, DC

Beatrix Jubithana, M.D.
Ministry of Health
Paramaribo, Suriname
Angel Melchor, M.D.
Ministry of Health
Caracas, Venezuela
Angel Alvarez, M.D.
Sylvain Aldighieri, M.D.
Pan American Health Organization
Washington, DC
Christopher Dye, D.Phil.
World Health Organization
Geneva, Switzerland
Marcos A. Espinal, M.D., Dr.P.H.
Pan American Health Organization
Washington, DC
espinalm@paho.org

Disclosure forms provided by the authors are available with the full text of this letter at NEJM.org.

This letter was published on August 31, 2016, at NEJM.org.

DOI: 10.1056/NEJMc1609015
Correspondence Copyright © 2016 Massachusetts Medical Society.
Supplementary Appendix

This appendix has been provided by the authors to give readers additional information about their work.

Zika virus and Guillain-Barré syndrome: case series from seven countries

Supplementary Appendix

Pan American Health Organization

Contents

Pan American Health Organization .. 1

1. Surveillance and Case Definitions ... 1

 Zika virus disease ... 1

 Guillain-Barré syndrome ... 2

2. Statistical Analysis .. 3

3. Zika virus disease, Dengue fever, Chikungunya, and GBS ... 3

4. Patterns of Zika virus disease and Guillain-Barré syndrome by age and sex 6

1. Surveillance and Case Definitions

Zika virus disease

PAHO has been collecting data on confirmed and suspected cases of Zika virus disease from its Member States through official International Health Regulations (IHR) channels or from ministry of health websites, including the countries in this study. Zika virus disease was not a notifiable disease at the national level in Brazil until 17 February 2016, so there are no case counts for 2015. Since national data on cases of Zika virus disease were not systematically available, we restricted our analysis to the State of Bahia, which initiated mandatory notification of rash illness in April 2015.

Case definition for Zika virus disease. A suspected case is a patient with rash or elevated body temperature (> 37.2 °C) with at least one of the following symptoms not explained by other medical conditions: arthralgia or myalgia, non-purulent conjunctivitis or conjunctival hyperemia, headache or
malaise. A confirmed case of Zika virus disease is a patient in whom the virus was identified by molecular or serologic methods.

Guillain-Barré syndrome

Data for GBS are publically available for all states in Brazil via the Universal Health System online record of hospital discharges. In the context of the ZIKV epidemic, Colombia, the Dominican Republic, El Salvador, Honduras, Suriname, and Venezuela have provided data on GBS through IHR channels. In the seven countries included in the study, GBS was not a notifiable condition for weekly reporting, therefore there is an unspecified delay involved in collecting data at the national level. Even though timeliness of reporting is affected by this delay, notifications are made by date of onset of symptoms, so they can be attributed retroactively to the epidemiological week when they occurred.

Case definitions for GBS used by countries in the Americas are based on the criteria outlined by the Brighton collaboration. In the context of ZIKV transmission, however, reporting for GBS has been reviewed and revised in many countries. In the absence of established surveillance protocols specifically for Zika-associated GBS, data from the countries were slightly different, but all data sets included the total number of GBS cases detected. For all the countries included in this analysis, between 25% and 75% of GBS cases presented signs and symptoms compatible with Zika virus disease. In each country, at least one case of GBS was confirmed by laboratory means as having ZIKV infection since the introduction of the virus. The detection of cases of GBS per 1,000 cases of Zika virus disease detected by surveillance ranged from 4.1 (in Honduras) to 31.8 (in the Dominican Republic).

2. Statistical Analysis

Cases of GBS and Zika virus disease per 100,000 population for the countries were calculated using the number of incident cases of GBS and Zika virus disease during the period of Zika virus circulation as the numerator and the annual mid-period population by age and sex (provided by the United Nations Population Division) as denominator. We obtained baseline values for GBS incidence in each country by averaging observed rates of GBS in the years preceding the introduction of ZIKV. For countries (Dominican Republic and Venezuela) without historical GBS data available, we used the median rate reported for countries that did provide data. Using the baseline values, we also estimated how many cases would have been observed if the detection of GBS had remained constant for the period of ZIKV transmission and determined the percent increase in the detection of GBS based on the expected, baseline values. Statistical significance of this increase was conducted by testing the null hypothesis that there is no difference between the baseline values and the observed values of GBS during the period of Zika circulation at a level of p<0.05. A Poisson regression model was used to assess the ratio of cases of GBS per 100,000 population in the pre-Zika years compared with the number of cases of GBS for the period of known ZIKV circulation.

For the comparison of sex and age groups, a Poisson regression model was also used to fit the cases per 100,000 population of GBS and Zika virus disease as the response variable and sex and age groups as categorical covariates. The ratio of the rates of GBS per 100,000 population by sex and age group, including 95% confidence intervals (95% CI) and p-values, were also calculated, using the youngest age group as a reference.

3. Zika virus disease, Dengue fever, Chikungunya, and GBS

In the Brazilian State of Bahia no cases of GBS were identified during a second peak of Zika virus disease in December 2015 (Figure 1a, Research Letter). There are at least two possible explanations. First, there
were indeed cases of GBS, but they had not been reported by 31 March 2016. GBS is not a notifiable
disease; and hospital discharges, including GBS cases, can be reported with delays of several months.
A second possibility is that the increased incidence of illness in December 2015 was not due to ZIKV but
rather to another arbovirus, such as dengue or chikungunya.

Figure S1 suggests that dengue fever is not the cause of the epidemics of GBS. The 2015 dengue
epidemic in Bahia State, Brazil, preceded the Zika epidemic by approximately 17 weeks. It also shows
that dengue started to increase in Bahia in December 2015.

Similarly Figure S2 shows that chikungunya started to increase in Bahia in December 2015. Both
dengue and chikungunya coincided with the second peak of Zika virus disease, which suggest that cases
of dengue and chikungunya may have been misclassified as Zika virus disease (no cases were confirmed
as ZIKV) thereby the lack of concurrence between the observed second peak of Zika virus disease and
GBS in Bahia in late 2015.
In Honduras, a similar pattern was observed. Circulation of dengue fever in previous years (2010-2015), especially an epidemic year in 2010, did not appear to result in a corresponding increase in the cases of GBS detected (Figure S3). Furthermore, when dengue, zika, and GBS were plotted for the first 26 weeks of 2016, the peak of GBS coincided with the peak of Zika (Figure S4).
4. Patterns of Zika virus disease and Guillain-Barré syndrome by age and sex

Cases of Zika virus disease were reported by age and sex in Bahia State, Brazil, and in El Salvador. For GBS, age and sex data were available for Bahia State, Colombia, El Salvador, and Honduras. Sex was reported for 603 of the cases of GBS in these four settings, of which 55.2% were males. Table S1 shows the ratio of cumulative incidence of GBS and Zika virus disease, comparing the incidence among males and females.
Table S1. Rate Ration of Guillain-Barré Syndrome (GBS) and Zika incidence by gender.

<table>
<thead>
<tr>
<th>Country or State</th>
<th>Gender</th>
<th>GBS Rate Ratio (95%CI)</th>
<th>P-value</th>
<th>Gender</th>
<th>Zika Rate Ratio (95%CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>1.16 (0.85, 1.59)</td>
<td>0.3468</td>
<td>Male</td>
<td>1.84 (1.80, 1.89)</td>
<td><.0001</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>-</td>
<td>-</td>
<td>Female</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bahia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>1.37 (1.11, 1.70)</td>
<td>0.0033</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>-</td>
<td>-</td>
<td>Female</td>
<td>1.41 (1.33, 1.49)</td>
<td><.0001</td>
</tr>
<tr>
<td>Colombia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>1.29 (0.80, 2.09)</td>
<td>0.2937</td>
<td>Male</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>-</td>
<td>-</td>
<td>Female</td>
<td>1.75 (1.71, 1.79)</td>
<td><.0001</td>
</tr>
<tr>
<td>El Salvador</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>0.99 (0.49, 2.01)</td>
<td>0.9808</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Honduras</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>1.28 (1.09, 1.50)</td>
<td>0.0025</td>
<td>Male</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>-</td>
<td>-</td>
<td>Female</td>
<td>1.75 (1.71, 1.79)</td>
<td><.0001</td>
</tr>
<tr>
<td>All Countries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Among females, those aged 20-29, 30-39, and 40-49 years were reported to have the highest cumulative incidence of Zika virus disease, with 241 (95% CI 234 to 248), 271 (95% CI 263 to 279), and 266 (95% CI 257 to 274) cases per 100,000 population, respectively (Figure S5a). The reported incidence of Zika virus disease per 100,000 population among males did not vary systematically among age groups. The cumulative incidence of GBS during the period of Zika virus circulation increased with age for males and females, with males over 60 years having the highest rates at 1.88 cases of GBS (95% CI 1.46 to 2.37) per 100,000 population (Figure S5b). The incidence was also greater for males than females in all but one age class (30-39 years), and overall.
Figure S4a. Reported total cases of Zika virus disease per 100,000 population (and CI 95%) by sex and age group in Bahia State (Brazil) and El Salvador.

Figure S4b. Guillain Barré Syndrome (GBS) incidence per 100,000 population (and 95%CI) by gender and age group for the period of Zika virus circulation. Bahia state (Brazil), Colombia, El Salvador, and Honduras.