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The major concern in making causal inferences from comparative studies is 
that a proper standard of comparison be used. A proper standard of comparison 
(see Chapter 1) requires that the performance of the comparison group be an 
adequate proxy for the performance of the treatment group if they had not re- 
ceived the treatment. One approach to obtaining such a standard is to choose 
study groups that are comparable with respect to all important factors except 
for the specific treatment (i.e., the only difference between the two groups is the 
treatment). Matching attempts to achieve comparability on the important po- 
tential confounding factor(s) a t  the design stage of the study. This is done by 
appropriately selecting the study subjects to form groups which are as alike as 
is possible with respect to the potential confounding variable(s). Thus the goal 
of the matching approach is to have no relationship between the risk and the 
potential confounding variables in the study sample. Therefore, these potential 
confounding variables will not satisfy part 1 of the definition of a confounding 
variable given at the beginning of Chapter 2, and thereby will not be confounding 
variables in the final study sample. This strategy of matching is in contrast to 
the strategy of adjustment, which attempts to correct for differences in the two 
groups a t  the analysis stage. 

We stated that matching "attempts to achieve comparability" because it is 
seldom possible to achieve exact comparability between the two study groups. 
This is especially true in the case of several confounding variables. To judge how 

1 effective the various matching procedures can be in achieving comparability 
and thus reducing bias in the estimate of the treatment effect, it is necessary to 
model the relationship between the outcome or response variable and the con- 
founding variable(s) in the two treatment groups. Since much of the research 
has been done assuming a numerical outcome variable that is linearly related 
to the confounding variable, we will tend to emphasize this type of relationship. 
The reader should not believe, however, that matching is applicable only in this 
case. There are matching techniques which are relatively effective in achieving 
comparability and reducing bias in the case of nonlinear relationships. 

Before presenting the various matching techniques, we shall illustrate in 
Section 6.1 how making the two treatment groups comparable on an important 
confounding variable will eliminate the bias due to that variable in the estimate 
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of the treatment effect. Section 6.1 expands on material presented in Section 
3.2. 

The degree to which the two groups can be made comparable depends on (a) 
how different the distributions of the confounding variable are in the treatment 
and comparison groups, and (b) the size of the comparison population from 
which one samples. These factors influence the amount of bias reduction possible 
using any of the matching techniques, and are discussed in Section 6.2. 

In the last introductory section of this chapter, Section 6.3, we list and discuss 
the conditions under which the results for the various matching techniques are 
applicable. Although these conditions are somewhat overly restrictive, they are 
necessary for a clear understanding of the concepts behind the various tech- 
niques. 

Finally, the main emphasis of this chapter is on the reduction of the bias due 
to confounding. The other two sources of bias, bias due to model misspecification - 
and estimation bias, however, can also be present. See Sections 5.4 and 5.5 for 
a discussion of these other sources of bias. All of the theoretical results that we 
present are for the case of no model misspecification. This should be kept in mind 
when applying the results to any study. 

6.1 EFFECT OF NONCOMPARABILITY 

For the sake of illustration, reconsider the example introduced in Chapter 
3, the study of the association between cigarette smoking and high blood pres- 
sure. Recall that cigarette smoking is the risk variable and age is an important 
confounding variable. This last assumption implies that the age distributions 
of the smokers and nonsmokers must differ: otherwise, age would not be related 
to the risk variable (i.e., the groups would be comparable with respect to age). 
We shall further assume that the smokers are generally older (see Figure 3.3) 
and that the average blood pressure increases with age at the same%ate for both 
smokers and nonsmokers (see Figure 3.4). Let X denote, age in years and Y de- 
note diastolic blood pressure in millimeters of mercury (mm Hg). The effect 
of the risk factor, cigarette smoking, can be measured by the difference in av- 
erage blood pressure for any specific age, and because of the second assumption, 
this effect will be the same for all ages. 

These two assumptions can be visualized in Figure 6.1. Suppose that we were 
to draw large random samples of smokers and nonsmokers from the populations 
shown in Figure 3.3. The sample frequency distributions would then be as il- 
lustrated in Figure 6.1 by the histograms. The smokers in the sample tend to be 
older than the nonsmokers. In particular, the mean age of the smokers is larger 
than that of the nonsmokers, Xs > (Notice that the Y axis in Figure 6.1 
does not correspond to the ordinate of the frequency distributions.) 
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Figure 6.1 Estimate of the treatment effect for the blood pressure-smoking example. 

The second assumption, specifying that the relationship between age and 
diastolic blood pressure in both groups is linear, is represented by the lines labeled 
"Smokers" and "Nonsmokers" (as in Figure 3.4). Algebraically, these rela- 
tionships are: 

Ys = as + PX for smokers 

YNS = ~ N S  + PX for nonsmokers, (6.1) 

i where Ys and YNS represent the average blood pressure levels among persons 
of age X ,  and ,L? is the rate at which Y,  blood pressure, changes for each I-year 
change in X.  [Note that for simplicity of presentation, random fluctuations or 
errors (Section 2.2) will be ignored for now.] For a specified age, Xo, therefore, 
the effect of the risk factor is 

= (Yfj - (YNS (6.2) 

(see Figure 6.1 ). 
Let us first consider the simplest situation, where there is only one subject 

in each group and where each subject is age Xo. We will then have two groups 
that are exactly comparable with respect to age. The estimate of the treatment 
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effect is the difference between the blood pressures of the two subjects. Since 
the blood pressures of these two subjects are as given in (6.1) with X = Xo, the 
estimated treatment effect will be as given in (6.2). Thus exact comparability 
has led to an unbiased estimate of the treatment effect. (Note that the same result 
would also hold for any nonlinear relationship between X and Y.) 

Next consider the estimate of the treatment effect based on all subjects in the 
two samples. The estimate is found by averaging over all the values of Y in both 
groups and calculating the difference between these averages: 

Thus because of the noncomparability of the two groups with respect to age, 
the estimate of the risk effect is distorted or biased by the amount P(Xs - XNS). 
Since we do not know ,B, we cannot adjust for this bias. (An adjustment procedure 
based on estimating /3 is analysis of covariance; see Chapter 8.) Notice, however, 
that if we could equalize the two sample age distributions, or in the case con- 
sidered here of a linear relationship, restrict the sampling so that the two sample 
means were equal, we would then obtain an unbiased estimate of the treatment 
effect. By making the groups comparable, one would be assured of averaging 
over the same values of X .  

There are two basic approaches to forming matches to reduce bias due to 
confounding. These are referred to as pair and nonpair matching. Pair matching 
methods find a specific match (comparison.subject) for each treatment subject. 
It is clear that if we restrict the choice of subjects in the two groups such that 
for every treatment subject with age Xo there is a comparison subject with exactly 
the same age, then by (6.2) the difference in blood pressures between each 
matched pair is an unbiased estimate of the treatment effect. Hence the average 
difference will also be unbiased. 

Because of difficulties in finding comparison subjects with exactly the same 
value of a confounding variable as a treatment subject, various pair matching 
methods have been developed. For example, if the confounding varjable is nu- 
merical, it is practically impossible to obtain exact7,matches for all treatment 
subjects. An alternative method, caliper matching, matches two subjects if their 
values of X differ by only a small tolerance (Section 6.4). In the case of a cate- 
gorical confounding variable, one can use a pair matching method called 
stratified matching (Section 6.6). However, these methods cannot always 
guarantee the desired sample size, so another pair matching method, called 
nearest available pair matching (Section 6.5), was developed by Rubin 
(1973a). 

In the second approach to matching, nonpair matching, no attempt is made 
to find a specific comparison subject for each treatment subject. Thus there are 
no identifiable pairs of subjects. There are two nonpair matching methods: 
frequency and mean matching. In frequency matching, Section 6.7, the distri- 
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bution of the confounding variable in the treatment group is stratified and one 
attempts to equalize the two distributions by equalizing the number of treatment 
and comparison subjects in each stratum. Mean matching, Section 6.8, attempts 
to reduce the amount of bias by equating just the sample means rather than 
attempting to equalize the two distributions as in the previous methods. The 
comparison group, which is of the same size as the treatment group, thus consists 
of those subjects whose group mean is closest to the mean of the treatment 
group. 

6.2 FACTORS INFLUENCING BIAS REDUCTION 

None of the matching methods requires the fitting of a specific model for the 
relationship between the response and the confounding variables. The effec- 
tiveness of a matching procedure, however, will depend on the form of the re- 
lationship between the response and the confounding variables. In addition, the 
effectiveness depends on the following three factors: (a) the difference between 
the means of the treatment and comparison distributions of a confounding 
variable, (b )  the ratio of the population variances, and (c) the size of the control 
sample from which the investigator forms a comparison group. These three 
factors will now be discussed in detail. 

To understand how these three factors influence the researcher's ability to 
form close matches and hence to achieve the maximum bias reduction, consider 
the slightly exaggerated distributions of a confounding variable, X, in the 
treatment and comparison populations shown in Figure 6.2. Both distributions 
are normal with a variance of 2.25. The mean of the comparison population is 
3, and the mean of the treatment population is 0. 

Treatment Comparison 
~ o ~ u l a t i o n  ~ o ~ u l a t i o n  

Confounding variable 

Figure 6.2 Nonoverlapping samples, equal variances. 

Suppose that we have small random samples from both the treatment and 
the comparison populations and we wish to find a matched comparison group. 
Because of the assumed distribution, the treatment group is most likely to have 
values between -1 and + 1, the middle 50% of the distribution (shaded area on 
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the left in Figure 6.2). The sample from the comparison population is called the 
comparison or control reseruoir; it is the group of subjects from which one finds 
matches for the treatment group. Based on the assumed distribution of the 
confounding variable, the comparison reservoir is most likely to consist of subjects 
whose values of the confounding variable lie between 2 and 4 (shaded area on 
the right in Figure 6.2). Thus there would be little overlap between these two 
samples. 1 

With virtually no overlap between our samples, it is impossible to form 
matched groups which are,comparable. Using any of the pair matching tech- 
niques, we could not expect to  find many comparison subjects with values of X 
closer than 1 unit to any treatment subject. Similarly for the nonpair matching 
methods, regardless of the way one stratifies the treatment frequency distribu- 
tion, there will not be enough comparison subjects in each stratum. In addition, 
the means of the two groups would be about 3 units apart. Any attempt to match 
in this situation would be unwise, since only a small proportion of the two groups 
could be made reasonably comparable. 

Continuing this example, suppose that another, much larger sample is drawn 
from the comparison population such that the values of X in the reservoir lie 
between zero and 6. The treatment group remains fixed with values of X between 
+ 1 and - 1. The resulting overlap of the two samples is shown in Figure 6.3 
against the background of the underlying population distributions. Notice that 
by increasing the size of the comparison sample, we are more likely to have 
members of the comparison reservoir which have the same or similar values of 
X as members of the treatment group. The number and closeness of the possible 
pair matches has improved; for frequency matching we should be able to find 
more comparison subjects falling in the strata based on the treatment group; 
and th'e difference in the sample means, after mean matching, should be le'ss than 
the previous value of 3. Again, as was the case with nonoverlapping samples, 
we may still be unable to find adequate matches for all treatment grgup subjects. 
This "throwing away" of unmatchable subjects is a waste of information which 
results in a lower precision of the estimated treatment effect. 

Treatment Comparison 
population population 

Confounding variable 

Figure 6.3 Overlapping samples, equal variances 
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Now consider what would happen if the population variances of the con- 
founding variable were not equal. In particular, suppose that the variance of the 
treatment population, a:, remains at  2.25, while the variance of the comparison 
population, a;, is 9.0. (Again, this is a slightly exaggerated example but is useful 
to illustrate our point.) With the treatment sample fixed, random sampling from 
the comparison population would most likely result in a sample as shown by the 
shading in Figure 6.4. Notice the amount of overlap that now exists between 
the treatment group and the comparison reservoir. There are clearly more 
subjects in the comparison reservoir, with values of the confounding variable 
between + 1 or - 1, than in the previous example (Figure 6.3). 

Treatment 
population 

Confounding variable 

Figure 6.4 Overlapping samples. unequal variances. 

After comparing these examples, the relationship among the three fac- 
tors-the difference between the population means of the two distributions, the 
ratio of the population variances, and the size of the comparison reservoir- 
should be clear. The farther apart the two population means are, the larger the 
comparison reservoir must be to find close matches, unless the variances are such 
that the two population distributions overlap substantially. 

To determine numerically the bias reduction possible for a particular matching 
technique, it is necessary to quantify these three factors. Cochran and Rubin 
(1973) chose to measure the difference between the population means by a 
quantity referred to as the initial difference. This measure, Bx, may be viewed 
as a standardized distance measure between two distributions and is defined 
as 

The eta terms, vl and TO, denote the means of the treatment and the comparison 
populations, respectively. Similarly, u: and u; represent the respective population 
variances. 
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the variance of the comparison population increased to 9, however, the initial 
difference was equal to 1.3 and the two distributions overlapped more. 

The ratio of the treatment variance to the comparison variance, u:/ui, is the 
second important factor in determining the number of close matches that can 
be formed, and hence the bias reduction possible. Generally, the smaller the ratio, 
the easier it will be to find close matches. 

The last factor is the size of the comparison reservoir from which one finds 
matches. In the previous examples we assumed that the random sample from 
the treatment population was fixed. That is, we wanted to find a match for every 
subject in that sample and the subjects in the treatment group could not be 
changed in order to find matches. Removal of a treatment subject was the only 
allowable change if a suitable match could not be found. This idea of a fixed 
treatment group is used in the theoretical work we cite and is perhaps also the 
most realistic approach in determining the bias reduction possible. An alternative 
and less restrictive approach assumes that there exists a treatment reservoir from 
which a smaller group will be drawn to form the treatment group. Such an ap- 
proach would allow for more flexibility in finding close matches. 

In the following methodological sections the size of the comparison reservoir 
is stated relative to the size of the fixed treatment group. Thus a comparison 
reservoir of size r means that the comparison reservoir is r times larger than the 
treatment group. Generally, r is taken to be greater than 1. 

6.3 ASSUMPTIONS 

In discussing the various matching procedures, we shall make the following 
assumptions: 

1. There is one confounding variable. 
2. The risk variable in cohort studies or the outcome variable idcase-control 

studies is dichotomous. 
3. The treatment effect is constant for all values of the confounding variable. 

(This is the no interaction assumption of Section 3.3.) 
4. For cohort studies we wish to form treatment and comparison groups of 

equal size. (For case-control studies, we would construct case and control groups 
of equal size.) 1 

5. The treatment group (or case group) is fixed. 

The assumption of only one confounding variable is made for expository 
purposes. In Section 6.1 0 we will discuss matching in the case of multiple con- 
founding variables. The second assumption corresponds to the most common 
situation where matching is used. Matching cannot be used if the risk variable 
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in cohort studies or the outcome variable in case-control studies is numerical. 
The third assumption of no interaction, or parallelism, is crucial for estimating 
the treatment effect. Researchers should always be aware that implicitly they 
are making this assumption and when possible they should attempt to  verify it. 
For example, in Section 5.2, we discuss how the assumption of parallelism may 
be unjustified when one is dealing with fallible measurements. If this assumption 
is not satisfied, the researcher will have to reconsider the advisability of doing 
the study or else to report the study findings over the region for which the as- 
sumption holds. The fourth assumption, that the treatment and comparison 
groups are of equal size, is also made for expository purposes. In addition, the 
efficiency of matching is increased with equal sample sizes for a given total 
sample size. In Section 6.1 1 we consider the case of multiple comparison subjects 
per treatment subject. The last assumption of a fixed treatment group is one of 
the assumptions under which most of the theoretical work is done. A fixed 
treatment group is typically the situation in retrospective studies where the group 
to be studied, either case or exposed, is clearly defined. 

While the type of study has no effect on the technique of matching, the forms 
of the outcome and confounding variables do. The various matching techniques 
can be used in either case-control or cohort studies. The only difference is that 
in a cohort study one matches the groups determined by the risk or exposure 
factor, whereas in a case-control study, the groups aredetermined by the outcome 
variable. Throughout this chapter, any discussion of a cohort study applies also 
to a case-control study, with the roles of the risk and outcome variables re- 
versed. 

The form of the risk or outcome variable and the confounding variables (i.e., 
numerical or categorical) determines the appropriate matching procedure and 
whether matching is even possible. If the confounding variable is of the unordered 
categorical form, such as religion, there is little difficulty in forming exact 
matches. We  shall, therefore, make only passing reference to  this type of con- 

1 founding variable. Instead, we shall emphasize numerical and ordered categorical ' 
confounding variables, where the latter may be viewed as having an underlying 
numerical distribution. Numerical confounding variables are of particular im- 
portance because exact matching is very difficult in this situation. Most of the 
theoretical work concerning matching has been done for a numerical con- 
founding variable and dichotomous risk variable (cohort study). 

6.4 CALIPER MATCHING 

Caliper matching is a pair matching technique that attempts to achieve 
comparability of the treatment and comparison groups by defining two subjects 
to be a match if they differ on the value of the numerical confounding variable, 
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X, by no more thah a small tolerance, E .  That is, a matched pair must have the 
property that 

1x1 - Xol 5 E .  

The subscript 1 denotes treatment group and 0 denotes comparison group. By 
selecting a small-enough tolerance t, the bias can in principle be reduced to any 
desired level. However, the smaller the tolerance, the fewer matches will be 
possible, and in general, the larger must be the reservoir of potential comparison 
subjects. 

Exact matching corresponds to caliper matching with a tolerance of zero. In 
general, though, exact matching is only possible with unordered categorical 
confounding variables. Sometimes, however, the number of strata in a categorical 
variable is so large that they must be combined into a smaller number of strata. 
In such cases or in the case of ordered categorical variables, the appropriate pair 
matching technique is stratified matching (Section 6.6). 

6.4.1 Methodology 

To illustrate caliper matching we shall consider the cohort study of the as- 
sociation of blood pressure and cigarette smoking. 

Example 6.1 Blood pressure and cigarette smoking: Suppose that a tolerance of 2 
years is specified and that the ages in the smokers group are 37,38,40,45, and 50 years. 
(We shall assume that the smoker and nonsmoker groups are comparable on all other 
important variables.) A comparison reservoir twice the size ( r  = 2) of the smoking group 
consists of nonsmokers of ages 25, 27, 32, 36,38,40,42,43,49, and 53 years. The esti- 
mated means of the two'groups are 42.0 and 38.5 years, respectively. The ratio of the 
estimated variances, s$/sLs, is 0.37 = 29.50/79.78. 

The first step in forming the matches is to list the smokers and determine the corre- 
sponding comparison subjects who are within the 2-year tolerance from each smoker. 
For our example, this results in the possible pairing given in Table 6. la.  * 

Table 6.1a Potential Caliper Matches for Example 6.1 

Smokers Nonsrnokers 

It is clearly desirable to form matches for all the treatment subjects that are as close 
as possible. Thus the matched pairs shown in Table 6.lb would be formed. 
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Table 6. l b  Caliper-Matched Pairs 

Smokers Nonsmokers 

Notice that if the 49-year-old nonsmoking subject had not been in the reservoir, we 
would not have been able to match all five smokers. We might then have decided to keep 
the first four matches and drop the 50-year-old smoker from the study. This results in 
a loss of precision, because the effective sample size is reduced. Alternatively, the tolerance 
could beincreased to 3 years and the 50-year-old smoker matched with the 53-year-old 
nonsmoker. The latter approach does not result in lower precision, but the amount of bias 
may increase. Finally, had there been two or more comparison subjects with the same 
value of X, the match subject should be chosen randomly. 

In Example 6.1 we knew the composition of the comparison reservoir before 
the start of the study. Often, however, this is not the case. Consider, for example, 
a study of the effect of specially trained nurses aids on patient recovery in a 
hospital. Such a study would require that the patients be matched on impottant 
confounding variables as they entered the hospital. When the comparison res- 
ervoir is unknown, the choice of a tolerance value that will result in a sufficient 
number of matched pairs can be difficult. The researcher cannot scan the res- 
ervoir, as we did in the example, and discover that the choice of E is too small. 
For this reason, using caliper matching in a study where the comparison reservoir 
is unknown can result in matched sample sizes that are too small. In such a sit- 
uation, the researcher can sometimes attempt to get a picture of the potential 
comparison population through records (i.e., historical data). 

I 

6.4.2 Appropriate Conditions 

Caliper matching is appropriate regardless of the form of the relationship 
between the confounding and outcome variables (or risk variable in case-control 
studies). In this section we demonstrate how caliper matching is effective in 
reducing bias in both the linear and nonlinear cases. 

Linear Case. To understand how caliper matching works in the linear case, 
let us consider the estimate of the treatment effect or risk effect of smoking on 
blood pressure based on a 45-year-old smoker and a 43-year-old nonsmoker in 
Example 6.1. Assume that blood pressure is linearly related to age and that the 
relationships are the same for both groups, with the exception of the intercept 
values. Figure 6.5 represents this situation. 

F 
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! .f 
Blood pressure1 

effect, 

Figure 6.5 Esrirnafe of rrearmenr effecr-linear relarionship. 

The estimate of the risk effect is shown by the large brace to the left in Figure 
6.5. The amount of bias or distortion is shown by the small brace labeled "Bias." 
Relating this example to (6.3), we see that the bias is equal to the unknown re- 
gression coefficient p, multiplied by the difference in the values of the con- 
founding variable. In the case of these two subjects, the bias is 2p. This is the 
maximum bias allowable under the specified tolerance for each individual es- 
timate of the treatment effect, and consequently for the estimated treatment 
effect, based on the entire matched comparison group. 7 

When we average the ages in Table 6.16, we find that the mean age of the 
smokers is 42.0 years; of the nonsmokers comparison group, 41.2 years; and for 
the comparison reservoir, 38.5 years. Caliper matching thus reduced the dif- 
ference in means from 3.5 (= 42.0 - 38.5) to 0.8 (= 42.0 - 41.2). In general, 
the extent to which the bias after matching, 0.8P in this case, is less than the 
maximum possible bias, 2P in this case, will depend on the quantities discussed 
in Section 6.2: the difference between the means of the two populations, the ratio 
of the variances and the size of the comparison reservoir as well as the toler- 
ance. 

Nonlinear Case. Let us now consider the case where the response and the 
confounding variable are related in a nonlinear fashion. To illustrate the effect 
of caliper matching in this situation, we shall assume that blood pressure is re- 
lated to age squared. Algebraically this relationship between the response Y and 
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age, X, can be written as 

MATCHING 

where a is the intercept. The estimate of the treatment effect assuming that Y 
is numerical is 

- 
yS - YNs = as - aNs + P (3 -?&,I. (6.5) 

Hence any bias is a function of thedifference in the means of age squared. Note 
that the means of the squared ages are different from the squares of the mean 
ages. Again let us visualize this relationship in Figure 6.6. 

~ t o o d  pressure ! 

Estimated 
effect, 

'S - 'NS 

True 
effect 

13 ias 

I I I > 
43 45 Age 

I Figure 6.6 Estimate of treatment effect-nonlinear relationship. 

The individual estimate of the treatment effect determined from the matched 
pair of a 45-year-old smoker and a 43-year-old nonsmoker is shown in Figure 
6.6 by the large brace to the left. This estimate can be compared to the true 
treatment effect shown by the topmost smaller brace. The bias is the difference 
between the two and is indicated by the second small brace. From (6.5) we obtain 
the bias as 

If we were using the matched groups from Example 6.1, upon averaging over 
the two groups we would find that the estimate of the treatment effect would 

6.4 CALIPER MATCHING 83 

be biased by the amount 

P (z - sNs) = P(69.6). 

It is important to realize that equality of the means of the two groups is not 
enough to ensure an unbiased estimate of the treatment effect if the relationship 
between the response and the confounding variable is nonlinear. Equality of the 
means yields unbiased estimates only in the linear case. 

6.4.3 Evaluation of Bias Reduction 

So far we have only demonstrated how caliper matching can reduce the bias 
due to confounding. In this section we present theoretical results concerning the 
bias reduction one can expect using caliper matching in the linear case. The 
estimator of the treatment effect is the mean difference in response. The effec- 
tiveness of caliper matching and all other matching techniques is examined 
relative to estimating the treatment effect from random samples, where the 
confounding variable is not taken into account. (For a definition of the measure 
of effectiveness, the expected percent reduction in bias, see Cochran and Rubin, 
1973.) 

Table 6.2 gives an indication of the expected percent bias reduction for dif- 
ferent tolerance values. The results are independent of the sample size and res- 
ervoir size. They were derived assuming that the initial difference between the 
two populations is less than 0.5 (i.e., Bx < 0.5), thaythe distributions of the 
confounding variable are normal, and that the outcome is linearly related to the 
confounding variable. Notice that the tolerance is specified in terms of a pro- 
portion, a, of a standard deviation. It appears that tight caliper matchingii.e., 
a = 0.2) can be expected to remove nearly all the bias in the treatment effect 
relative to random sampling. It also appears that the ratio of the variances (i.e., 
crT/a;) has a negligible effect on the percent reduction in bias. , 

Table 6.2 Percent Bias Reduction for Caliper Matching* 

a uf / u; = '12 u:/u; = 1 u:/uf = 2 

0.2 99 99 98 
0.4 96 95 93 
0.6 9 1 89 86 
0 R 86 82 77 

Reprinted, by permission of the Statistical Publishing Society, from Cochran and Rubin (1973), 
Table 2.3.1. 

* Tolerance e = a d ( u :  + 4 1 2 .  
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One can use this table to get some indication of bias reduction to be expected 
for different tolerances if the values or estimates of the population variances are 
known and if Bx < 0.5. Suppose we knew that a:/ai = l/2, where a: = 4; then 
if we took a = 0.8, we could expect about 86% of the bias to be removed. The 
tolerance would be 0.8 4- = 1.96. If we used a = 0.4, we could expect 
to remove 96% of the bias over random sampling and the tolerance would be 
0.98. 

As we have mentioned previously, the major disadvantage of caliper matching 
is the need for the comparison reservoir to be large. In their theoretical work, 
Cochran and Rubin did not take into account the possibility that the desired 
number of matches would not be found from the comparison reservoir, although 
the probability of this occurrence is nonnegligible. Nor are the results known 
for distributions other than normal. Most likely, the results presented are ap- 
plicable to symmetric distributions, but the case of skew distributions has not 
been investigated for caliper matching. 

6.5 NEAREST AVAILABLE MATCHING 

In some situations when caliper matching is performed with a small tolerance, 
there is a nonnegligible probability that some individuals cannot be matched. 
To avoid this problem, Rubin (1973a, b) developed a method known as nearest 
available pair matching. We shall refer to this matching procedure as nearest 
available matching. This method ensures that the desired number of matches 
are obtained by being less restrictive in deciding what a match is. A match is 
formed by finding the closest possible comparison subject for each individual 
in the treatment group from the yet-unmatched individuals in the comparison 
reservoir. Since nearest available matching does not use a fixed tolerance as does 
caliper matching, the reservoir does not have to be larger than the treatment 

I 
group. However, the matches are not guaranteed to be as close as those found 
under caliper matching. 

6.5.1 Methodology 

There are three variants of nearest available matching, each based on a par- 
ticular ordering of the subjects in the treatment group with respect to the con- 
founding variable. The specification of the ordering completely defines the pair 
matching method. In one variant of the method, referred to as random-order 
nearest available matchjng, the N treatment subjects are randomly ordered on 
the values of the confounding variable, X. Let us denote these ordered values by 
X11 to X I N .  Starting with X l l ,  a match is defined as that subject from the 
comparison reservoir whose value Xoj is nearest X 1  1 .  The matches are therefore 
assigned to minimize 1x11 - XoJ 1 for all subjects in the comparison reservoir. 
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If there are ties (i.e., two or more comparison subjects for whom 1x1 - XoJ 1 
! is a minimum), the match is formed randomly. The nearest available partner 
1 for the next treatment subject with value X12 is then found from the remaining 

E subjects in the reservoir. The matching procedure continues in this fashion until 

t matches have been found for all N treatment subjects. 
, The other two variants of nearest available matching result from ranking the 
t- 

members of the treatment group on confounding variable values from the highest 
to the lowest (HL) value or from the lowest to the highest (LH) value. Matches 

: are then sought starting with the first ranked treatment subject, as for the ran- 
dom-order version. 

Example 6.2 Nearest available matching: Suppose that in a blood pressure study, 
\ 

there are three smokers with ages 40,45, and 50, and five nonsmokers in the reservoir 
with ages 30, 32,46,49, and 55. In addition, suppose that the randomized order of the 
smokers' ages is 40, 50, and 45. Then the random-order nearest available matching 
technique will match the 40-year-old smoker with the 46-year-old nonsmoker, the 50- 
year-old smoker with the 49-year-old nonsmoker, and the 45-year-old smoker with the 
55-year-old nonsmoker. 

In the case of the other two variants, the following matches would be made: for HL, 
' the 50-year-old with the 49-year-old, the 45-year-old with the 46-year-old, and the 

40-year-old with the 32-year-old; for LH, the 40-year-old with the 46-year-old, the 
45-year-old with the 49-year-old, and the 50-year-old with the 55-year-old. Notice in 
this example that each variant resulted in different matched pairs. 

6.5.2 Appropriate Conditions 
1 

Nearest available matching is similar to caliper matching except that there 
is no fixed tolerance. Based on the prior discussion of caliper matching and some 
theoretical results, it follows that nearest available matching is effective in re- 
moving bias due to confounding if the relationship between the response and 
confounding variables is linear. For nonlinear relationships, no results are 

Y 
available. 

The main-difficulty in discussing what conditions are most appropriate for 
using nearest available matching is the fact that the reduction in bias is so 
strongly influenced by the closeness of the distributions of the treatment group 
and the comparison reservoir. If there is a large overlap between the two groups 
of subjects, nearest available matching will be very similar to caliper matching 
with a suitably large tolerance. If, however,there is a moderate to small amount 
of overlap, the desired number of matches will be found, but the final amount 
of bias in the estimate of the treatment effect may be large. 

6.5.3 Evaluation of Bias Reduction 

In selecting a particular nearest available matching procedure, an investigator 
may want to base his or her choice primarily on the percent reduction in bias 
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obtainable. Assuming a linear relationship between the response and confounding 
variables, Cochran and Rubin (1973) performed a simulation study to determine 
which of the three nearest available matching estimators was least biased. They 
also assumed that the confounding variable was normally distributed with the 
mean of the treatment population greater than the mean in the comparison 
population (q l  > 90). Their results showed that the percent reduction in bias 
was largest for the low-high nearest available matching and smallest for the 
high-low variant. 

Because nearest available matching does not guarantee as close matches as 
are possible with caliper matching, Rubin (1973a) also compared the closeness 
of the matches obtained by the three procedures as measured by the average of 
the squared error ( X I  - X O ) ~  within pairs. When the procedures were judged 
by this criterion, the order of performance was reversed. The H L  nearest 
available matching had the lowest average squared error and the L H  had the 
largest. This result is not too surprising, considering the relationship between 
the population means (ql  > qo). The HL procedure would start with the treat- 
ment subject who is likely to be the most difficult to match: namely, the one with 
the largest value of X. This would tend to minimize the squared within-pair 
difference. 

Since the differences between the three matching procedures are small on 
both criteria, random-order nearest available matching appears to be a rea- 
sonable compromise. In Table 6.3, from Cochran and Rubin (1973), results of 
the percent reduction in bias are summarized for random-order nearest available 
matching as a function of the initial difference, the values of the ratio of the 
population variances, and sizes of the reservoir. Results for the number of 
matches N = 25 and N = 100 (not shown) differ only slightly from those for 
N = 50. 

j Table 6.3 Percent Bias Reduction for Random-Order Nearest Available 
Matching: X Normal: N = 50* 

- - 

2 99 98 84 92 87 69 66 59 51 
3 100 99 97 96 9 5 84 79 75 63 
4 100 100 99 98 97 89 86 81 71 

Reprinted, by permission of the Statistical Publishing Society, from Cochran and Rubin (1973), 
Table 2.4.1. 

* X = confounding variable; Bx = initial difference; r = ratio of the size of the comparison res- 
ervoir and the treatment group; = variance of confounding variable in the treatment population; 
a: = variance of confounding variable in the comparison population. 
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With this method, the percent reduction in bias decreases steadily as the initial 
difference between the normal distributions of the confounding variable increases 
from to 1 .  In contrast with results reported in Table 6.2 for caliper matching, 
the percent reduction in bias does depend on the ratio of the population variances. 
Based on Table 6.3, random-order nearest available matching does best when 
at/ai = v2. When 771 > 770 and a; > a:, large values of the confounding variable 
in the treatment group, the ones most likely to cause bias, will receive closer 
partners out of the comparison reservoir than if a; < a:. 

Investigators planning to use random-order nearest available matching can 
use Table 6.3 to obtain an estimate of the expected percent bias reduction. 
Suppose an estimate of the initial difference Bx is '12, with a:/a; = 1 ,  and it is 
known that the reservoir size is 3 times larger than the treatment group (r = 3). 
It follows that random-order nearest available matching results in an expected 
95% reduction in bias. 

6.6 STRATIFIED MATCHING 

Stratified matching is an appropriate pair matching procedure for categorical 
confounding variables. If, like sex or religious preference, the variable is truly 
categorical, with no underlying numerical distribution, the matches are exact 
and no bias will result. Often, however, the confounding variable is numerical 
but the investigator may choose to work with the variable in its categorical form. 
Suppose, for example, that in the study of smoking and blood pressure, all the 
subjects were employed and that job anxiety is an important confounding 
variable. The investigator has measured job anxiety by a set of 20 true-false 
questions so that each subject can have a score from 0 to 20. Such a factor is very 
difficult to measure, however, and the investigator may decide that it is more 
realistic and more easily interpretable to simply stratify the rangemf scores into 
low anxiety, moderate anxiety, and high anxiety. Having formed these three 
strata, the investigator can now randomly form individual pair matches within 
each stratum. An example of this procedure in the case of multiple confounding 
variables is given in Section 6.1 1 .  

The only theoretical paper discussing the bias reduction properties of stratified 
matching is that of McKinlay (1975). She compared stratified matching to 
various stratification estimators (Section 7.6) for a numerical confounding 
variable converted to a categorical variable. She considered various numbers 
of categories and a dichotomous outcome. She found that the estimator of the 
odds ratio from stratified matched samples had a larger mean squared error and, 
in some of the cases considered, a larger bias than did the crude estimator, which 
ignores the confounding variable. (Stratified matching is compared with 
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stratification in Section 13.2.2.) The mean squared error results are due in part 
to the loss of precision caused by an inability to find matches for all the treatment 
subjects. This point is considered further in Section 13.2. 

6.7 FREQUENCY MATCHING 

Frequency matching involves stratifying the distribution of the confounding 
variable in the treatment group and then finding comparison subjects so that 
the number of treatment and comparison subjects is the same within each 
stratum. This is not a pair matching method, and the number of subjects may 
differ across strata. 

For the sake of illustration we shall concentrate on the case of a numerical 
response. This will allow us to demonstrate more easily how frequency matching 
helps to reduce the bias. Because frequency matching is equivalent to stratifi- 
cation with equal numbers of comparison and treatment subjects within each 
stratum, we leave the discussion of the various choices of estimators in the case 
of a dichotomous response to Chapter 7. 

6.7.1 Methodology 

Frequency matching is most useful when one does not want to deal with pair 
matching on a numerical confounding variable or an ordinal measure of an 
underlying numerical confounding variable. An example of the latter situation 
is initial health care status, where the categories reflect an underlying continuum 
of possible statuses. In either case, the underlying dist$bution must be stratified. 
Samples are then drawn either randomly or by stratified sampling from the 
comparison reservoir in such a way that there is an equal number of treatment 
and comparison subjects within each stratum. Criteria for choosing the strata 

j are discussed in Section 6.7.3 after we have presented the estimator of the 
treatment effect. 

Example 6.3 Frequency matching: Let us consider the use of frequency matching 
in the smoking and blood pressure study. Suppose that the age distribution of the smokers 
was stratified into 10-year intervals as shown on the first line of Table 6.4, and that 100 
smokers were distributed across the strata as shown on the second line of the table. The 
third line of the table represents the results of a random sample of 100 nonsmokers from 
the comparison reservoir. Notice that since frequency matching requires the sample sizes 
to be equal within each stratum, the investigator needs to draw more nonsmokers in all 
strata except for ages 51 to 60 and 71 to 80. In these two strata the additional number 
of nonsmokers would be dropped from the study on a random basis. (Note that stratified 
sampling, if possible, would have avoided the problem of too few or too many persons 
in a stratum.) 

6.7 FREQUENCY MATCHING 

Table 6.4 Smokers and Nonsmokers Stratified by Age 

Age 11-20 21-30 31-40 41-50 51-60 61-70 71-80 Total 

Smokers 1 3 10 2 1 30 25 10 100 
Nonsmokers 0 2 8 20 32 20 18 100 

6.7.2 Appropriate Conditions 

Frequency matching is relatively effective in reducing bias in the parallel linear 
response situation provided that enough strata are used. We shall explain this 
by means of simple formulas for the estimator of the treatment effect assuming 
a numerical response. 

Recall from Section 6.1 that we can represent the linear relationship between 
the response Y and the confounding variable X by 

Y1 = a1 + OXl in the treatment group (6.6) 

Yo = QIO + PXo in the comparison group. 
1 

In general, the estimator of the treatment effect in the kth stratum is 

where a bar above the variables indicates the mean calculated for the kth stra- 
tum. The bias in the kth stratum is P(xlk - Xok). 

Clearly, the maximum amount of distortion in the estimate from the kth 
stratum occurs when Xlk - XOk is maximized. The maximum value is then P 
times the width of the kth stratum. 

One overall estimate of the treatment effect is the weighted combination of 
the individual strata differences in the response means: 

where nk is the number of treatment or comparison subjects in the kth stratum 
(k = 1, 2, . . . , K) and N is the total number of treatment subjects. Rewriting 
(6.8) in terms of treatment effect and regression coefficients, we obtain, using 
(6.71, 

From (6.9) we see that the amount of bias reduction possible using frequency 
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matching is determined by the difference in the distributions of the two groups 
within each stratum. This, in turn, is a function of the manner in which the strata 
were determined. The more similar the distributions of the treatment and 
comparison populations are within each stratum, the less biased the individual 
estimates of the treatment effect will be. 

6.7.3 Evaluation of Bias Reduction 

Assuming that both distributions of the confounding variable are normal with 
equal variances but the mean of the treatment population is zero and the mean 
of the comparison population is small but nonzero, Cox (1957) derived the 
percent reduction in bias for strata with equal number of subjects. Cochran and 
Rubin (1973) extended Table 1 of Cox, and these results are given in Table 6.5. 
The strata are based on the distribution of the treatment group. 

Table 6.5 Percent Bias Reduction with Equal-Sized Strata in Treatment 
Population: X Normal 

Number of strata: 2 3 4 5 6 8 10 

% reduction in bias: 64 79 86 90 92 94 96 

Reprinted, by permission of the Statistical Publishing Society, from Cochran and Rubin (1973), 
Table 4.2.1. 

These percentages are a t  most 2% lower than the maximum amount of bias 
reduction possible using strata with an unequal number of subjects. Cochran 
(1 968) extended these calculations for some nonnormal distributions: the chi- 
square, the t, and the beta, and he concluded that the results given in Table 6.5 
can be used as a guide to the best boundary choices even when the confounding 
variable is not normally distributed. 

! 
I From this information we can conclude that if the distributions of the con- 

founding variable are approximately normal and differ only slightly in terms 
of the mean, and based on the distribution of the treatment group we form four 
strata with equal numbers of subjects, we can expect to reduce the amount of 
bias in the estimate of the treatment effect by 86%. 

We stated a t  the beginning of Section 6.7.2 that frequency matching was 
relatively effective in reducing the bias in the linear parallel situation. No  the- 
oretical work has been done for the nonlinear parallel situation. Frequency 
matching does, however, have the advantage of allowing one to use the analysis 
of variance to test for interactions. One can test for parallelism as well as lin- 
earity, thus determining whether frequency matching was appropriate. 

5 

I 

6.8 MEAN MATCHING 

6.8 MEAN MATCHING 

A simple way of attempting to equate the distributions of the confounding 
variable in the study samples is to equate their means. This is called mean 
matching or balancing. The members of the comparison group are selected so 
that 1x1 -Xol is as small as possible. Although mean matching is very simple 
to employ, it depends strongly on the assumption of a linear parallel response 
relationship and we therefore do not recommend its use. One can employ analysis 
of covariance (Chapter 8) in this case and achieve greater efficiency. We include 
the following discussion of mean matching so that the reader can understand 
the basis for our recommendation. 

6.8.1 Methodology 
1 

There is more than one way to form matches in mean matching. However, 
the only algorithm which is guaranteed to find the comparison group that 
minimizes 1x1 - xol is to calculateXo for all possible groups of size N from the 
comparison reservoir. This is generally far too time-consuming. An easier al- 
gorithm uses partial means, and we shall demonstrate its use with the following 
example. 

Example 6.4 Mean matching: Suppose that we decided to use mean matching on 
age in the blood pressure study, where we have three smokers, aged 40,42, and 50 years. 
First, we would calculate the mean age of the smokers, which is 45 years (Xs = 45). Next, 
we would select successive subjects from the nonsmokers such that the means of the 
nonsmokers ages, calculated after the selection of each subject (partial means), are as 

E close as possible to 45. Suppose that the nonsmokers in the comparison reservoir have 
the following ages: 32,35,40,41,45,47, and 55 years. The first nonsmoker selected as 
a match would be age 45; the second subject selected would be 47 years old, since the 
partial mean, (45 + 47)/2 = 46, is closest to 45. The last nonsmoker to be selected would 
be 41 years of age, again since the partial mean, (2/d (461+ (It3) (41) = 44.3, is closest 
to&. Note that this algorithm did not minimize IXs - XNsl, since chgosing the non- 
smokers aged 35,45, and 55 would give equality of the two sample mean ages [(35 + 
45 + 5913 = 451. 

6.8.2 Appropriate Conditions 

Mean matching can be very effective in reducing bias in the case of a parallel 
linear response relationship. Suppose in the blood pressure example that the 
population means gs and ~ N S  for smokers and nonsmokers were 50 and 45, re- 
spectively. Then, for large enough random samples, we might expect to find that 
xNS = 45. and Xs = 50. 

From (6.3) it follows that the estimated treatment effect is biased by an 
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amount equal to P ( x s  - XNS) = 5P. However, if mean matching had been used 
to reduce -XNsJ to, say, 0.7, as in Example 6.4, then the bias in (Fs - FNs) 
would have been reduced by 86% (= 4.315.0). (The initial difference in the 
means due to random sampling is 5.0.) 

Mean matching is not effective in removing bias in the case of a parallel 
nonlinear response relationship (see Figure 6.7). Assume that in another blood 
pressure study three smokers of ages 30,35, and 40 years were mean-matched 
with three nonsmokers of ages 34, 35, and 36 years, respectively. Their blood 
pressures are denoted by X in Figure 6.7. Notice that unlike the previous linear 
situ-ations. FS and FNS do not correspond to the mean ages xs and dNs. They 
will both be greater than the values of Y which correspond to the means due to 
the nonlinearity. Here (Ys - YNS) is an overestimate of the treatment effect. 
The estimate should be equal to the length of the vertical line, which represents 
the treatment effect. In general, the greater the nonlinearity, the greater the 
overestimation or bias will be, in general. 

Blood pressure 

1 I 
Smokers 

Estimated 
effect, 

Y, - FNS 

Figure 6.7 Mean matching in a nonlinear parallel relationship. 
X, blood pressure for a specific age;@, blood pressure corresponding to mean age in either 
group. 
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6.8.3 Evaluation of Bias Reduction 

Cochran and Rubin (1973) have investigated the percentage of bias reduction 
possible using the partial mean algorithm presented in Section 6.8.1 under the 
assumptions of a linear parallel relationship, a normally distributed confounding 
variable, and a sample size of 50 in the treatment group. They found that, except 
in the cases where the initial difference Bx = 1, mean matching removes es- 
sentially all the bias. In addition, its effectiveness increases with the size of the 
comparison reservoir. The bias that results from improper use of mean matching 
(i.e., in nonlinear cases) has not been quantified. 

6.9 ESTIMATION AND TESTS OF SIGNIFICANCE 

In this section we indicate the appropriate tests of significance and estimators 
of the treatment effect for each matching technique. Because the choice of test 
and estimator depends on the form of the outcome variable, we begin with the 
numerical case followed by the dichotomous case. Also, in keeping with the 
general intent of this book, we do not give many details on the test statistics but 
rather cite references in which further disclission may be found. The tests and 
estimators for frequency-matched samples are the same as for stratification and 
are discussed in greater detail in Chapter 7. 

In the case of a numerical outcome variable for which one of the pair matching 
methods (caliper, nearest available, or stratified) has been used, the correct test 
of significance for the null hypothesis of no treatment effect is the paired-t test 
(see Snedecor and Cochran, 1967, Chap. 4). This test statistic is the ratio of the 
mean difference, which is the estimate of the treatment effect, to its standard 
error. The difference between the paired-t test and the usual t test for inde- 
pendent (nonpaired) samples is in the calculation of the standard error. 

If in the case of a numerical outcome variable, frequency matck$ng has been 
used, the standard t test is appropriate, with the standard error determined by 
an analysis of variance. (See Snedecor and Cochran, 1967, Chap. 10, for a dis- 
cussion of the analysis of variance.) The treatment effect is estimated by the 
mean difference. If, however, the within-stratum variances are not thought to 
be equal, then, as in the case of stratification, one should weight inversely to the 
variance (see Section 7.7 and Kalton, 1968). In the case of mean matching, the 
correct test is again the t test. The standard error, however, must be calculated 
from an analysis of covariance (see Greenberg, 1953). 

When the outcome variable is dichotomous, as discussed in Chapter 3, the 
treatment effect may be measured by the difference in proportions, the relative 
risk, or the odds ratio. The estimator of the difference in rates is the difference 
between the sample proportions, pl - po. This is an unbiased estimator if the 
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matching is exact. For estimating the odds ratio, the stratification estimators 
appropriate for large numbers of strata are applicable (see Section 7.6.1), with 
each pair comprising a stratum. In this case the conditional maximum likelihood 
estimator is easy to calculate and is identical to the Mantel-Haenszel (1959) 
estimator. For each pair (stratum), a 2 X 2 table can be created. For the jth pair, 
we have four possible outcomes: 

Control 

Subject 

Treatment Subject 1 a, 

6, 1 0 cj di 

For example, bj = 1 if, in the jth pair, the outcome for the control subject is 
and for the treatment subject it is 1. The estimator of the odds ratio, +, is then + = Zjbj/zjcj .  The estimator will be approximately unbiased if the matching 

is exact and the number of pairs is large. 
Because of the relationship between these measures of the treatment effect 

(difference of proportions, relative risk, and odds ratio) under the null hypothesis 
of no treatment effect (Section 3.1), McNemar's test can be used in the case 
of pair-matched samples, regardless of the estimator (see Fleiss, 1973, Chap. 
8). Similarly, when frequency matching is used, we have a choice of tests, such 
as Mantel-Haenszel's or Cochran's test, regardless of the estimator (see Fleiss, 
1973, Chap. 10). Since the analysis of a frequency-matched sample is the same 
as an analysis by stratification, the reader is referred to Chapter 7 for a more 
detailed discussion. 

6.10 MULTIVARIATE MATCHING 

So far we have limited the discussion of matching to a single confounding 
variable. More commonly, however, one must control simultaneously for many 
confounding variables. To date, all research has been on multivariate pair 
matching methods. To be useful, a multivariate matching procedure should 
create close individual matches on all variables. In addition, ideally, as in the 
univariate case, the procedure should not result in the loss of many subjects 
because of a lack of suitable matches. The advantage of constructing close in- 
dividual matches, as in the univariate case, is that with perfectly matched pairs 
the matching variables are perfectly controlled irrespective of the underlying 
model relating the outcome to the risk and confounding variables. 

6.10 MULTIVARIATE MATCHING 

Discussions of multivariate matching methods in the literature are quite 
limited. References include Althauser and Rubin (1 970), for a discussion of an 
applied problem; Cochran and Rubin (1973), for a more theoretical framework; 
Rubin (1976a, b), for a discussion of certain matching methods that are equal 
percent bias reducing (EPBR); Carpenter (1977), for a discussion of amodifi- 
cation of the Althauser-Rubin approach; and Rubin (1979), for a Monte Carlo 
study comparing several multivariate methods used alone or in combination 
with regression adjustment. 

In the following sections we first discuss straightforward generalizations of 
univariate caliper and stratified matching methods to the case of multiple con- 
founding variables. The methods included are multivariate caliper matching, 
and multivariate stratified matching. Then we discuss metric matching methods 
wherein the obkctive is to minimize the distance between the confounding 
variable measurements in the comparison and treatment samples. Several al- 
ternative distance definitions will be presented. 

Next we discuss discriminant matching. This matching method reduces the 
multiple confounding variables to a single confounding variable by means of 
the linear discriminant function. Any univariate matching procedure can then 
be applied to the linear discriminant function. 

In trying to rank the multivariate matchi& techniques according to their 
e is faced with the problem of how to'combine the 
confounding variable into a single measure so that 

the various methods can be compared. For example, the effectiveness of caliper 
matching depends, in part, on the magnitudes of all the tolerances that must be 

is problem of constructing a single measure of bias 
1979) introduced the notion of matching methods 

of the equal percent bias reducing (EPBR) type. For the linear case, Rubin 
hat the percent bias reduction of a multivariate-matching technique 

is related to the reduction in the differences of the means of eacbconfounding 
variable, and that if the percent reduction is the same for each variable, that 

uction for the matching method as a whole. EPBR 
matching methods are techniques used to obtain equal percent reduction on each 
variable and, hence, guarantee a reduction in bias. 

Discriminant matching and certain types of metric matching have the EPBR 
property, so that we can indicate which of these EPBR methods can be expected 
to perform best in reducing the treatment bias in the case of a linear response 
surface. 

6.10.1 Multivariate Caliper Matching 
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reducing bias provided that  the tolerances used for each confounding variable 
are small and the comparison reservoir is large, generally much larger than in 
the  univariate case. 

Suppose that  there a re  L confounding variables. A comparison subject is 
considered to be a match for a treatment subject when the difference between 
their measured l th  confounding variable (1 = 1, 2, . . . , L) is less than some 
specified tolerance, €1 (i.e., l X l l  - Xol I I €1) for all 1. 

Example 6.5 Multivariate caliper matching: Consider a hypothetical study com- 
paring two therapies effective in reducing blood pressure, where the investigators want 
to match on three variables: previously measured diastolic blood pressure, age, and sex. 
Such confounding variables can be divided into two types: categorical variables, such 
as sex, for which the investigators may insist on a perfect match ( E  = 0); and numerical 
variables, such as age and blood pressure, which require a specific value of the caliper 
tolerances. Let the blood pressure tolerance be specified as 5 mm Hg and the age tolerance 
as 5 years. Table 6.6 contains measurements of these three confounding variables. (The 
subjects are grouped by sex to make it easier to follow the example.) 

Table 6.6 Hypothetical Measurements on Confounding Variables for 
Example 6.6 

Treatment Group Comparison Reservoir 
Subject Diastolic Blood Subject Diastolic Blood 
Number Pressure (mm Hg) Age Sex Number Pressure (mm Hg) Age Sex 
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In this example there are 6 subjects in the treatment group and 20 subjects in the 
comparison reservoir. Given the specified caliper tolerances, the first subject in the 

, treatment group is matched with the fourth subject in the comparison reservoir. The 
difference between their blood pressures is 4 units, their ages differ by 2 years, and both 
are females. We match the second treatment subject with the seventh comparison subject 

I since their blood pressures and sex agree exactly and their ages differ by only 3 years. 
The remaining four treatment subjects, subjects 3,4, 5, and 6, would be matched with 
comparison subjects 10, 8, 19, and 18, respectively. Notice that if the nineteenth com- 
parison subject were not in the reservoir, the investigator would have to either relax the 
tolerance on blood pressure, say to 10 mm Hg, or discard the fifth treatment subject from 
the study. 

Expected Bias Reduction. Table 6.2 gives the expected percent of bias re- 
duction for different tolerances assuming a single, normally distributed con- 
founding variable and a linear and parallel response relationship. Table 6.2 can 
also be used in the case of multiple confounding variables if these variables or 
some transformation of them are  normally and  independently distributed, and  
if the relationship between the outcome and confounding variables is linear and 
parallel. T h e  expected percent of bias reduction is then a weighted average of 
the percent associated with each variable. 

If the investigators know (a) the form of t h e  linear relationship, ( b )  the  
population parameters of the distribution of each of the confounding variables, 
and (c) that  the  confounding variables or  some transformation of them a r e  in- 
dependent and  normally distributed, then the best set of tolerances in terms of 
largest expected treatment bias reduction in Y could theoretically be determined 
by evaluating equation (5.1.5) in Cochran and  ~ u b i n  (1973) for several com- 
binations of tolerances. In  practice, this would be very difficult to  do. 

6.10.2 Multivariate Stratified Matching 

T h e  extension of univariate stratified matching to  the  case of multiple con- 
founding variables is straightforward. Subclasses a r e  formed for each con- 
founding variable, and each member of the treatment group is matched with 
a comparison subject whose values lie in the same subclass on all confounding 
variables. 

Example 6.6 Multivariate stratified matching: Consider again the blood pressure 
data presented in Table 6.6. Suppose that the numerical confounding variable, diastolic 
blood pressure, i~~categorized as 580,  81-94, 95-104, and 1105,  and age as 30-40, 
41 -50, and 51 -60. Including the dichotomous variable, sex, there are in total (4 X 3 X 
2 =) 24 possible subclasses into which a subject may be classified. In Table 6.7 we enu- 
merate the 12 possible subclasses for males and females separately. Within each cell we 
have listed the subject numbers and indicated by the subscript t those belonging to the 
treatment group. 
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Table 6.7 Stratification o f  Subjects on Confounding Variables 
in Example 6. ha 

Diastolic 
Blood Age 
Pressure 30-40 41-50 5 1-60 

Males 
-80 51. 19 

8 1-94 6,. 18 20 17 
95-104 12.14 15 

105- 16 13 

Females 

-80 1.9 
81-94 11 41. 3,4, 5, 8, 11 6 
95- 104 31 

105- 2 I 0  21. 7 

a Within each cell the subject number from Table 6.6 is given. Those with a subscript t are the 
treatment group subjects. 

With this stratification, the second treatment subject is matched with the seventh 
comparison subject. The fifth treatment subject would be matched with the nineteenth 
comparison subject and the fourth treatment subject would be randomly matched with 
one of comparison subjects 3,4,5,8, or 11. The last treatment subject would be matched 
with the eighteenth comparison subject. Subjects 1 and 3 in the treatment group do not 
have any matches in the comparison reservoir and must therefore be omitted from the 
study, or else the subclass boundaries must be modified. 

It should be clear from this simple example that as the number of confounding 
variables increases, so does the number of possible subclasses, and hence the 
larger the comparison reservoir must be in order to find an adequate number 
of matches. 

The expected number of matches for a given number of subclasses and given 
! reservoir size r have been examined by McKinlay (1974) and Table 6.8 presents 

a summary of her results. The number of categories in Table 6.8 equals the 
product of the number of subclasses for each of the L confounding variables. 
In McKinlay's terminology we had 24 categories in Example 6.6. Her results 
are based on equal as well as markedly different joint distributions of the L 
confounding variables in the treatment and comparison populations (see 
McKinlay, 1974, Table 1, for the specific distributions). For example, in a study 
with 20 subjects in the treatment group and 20 in the comparison reservoir, 
stratified matching on 10 categories where the confounding variable distributions 
in the two populations are exactly the same will result in about 66 percent of the 
treatment group being matched (i.e., only 13 suitable comparison subjects would 
be expected to be fpund). Clearly, large reservoirs are required if multivariate 
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Table 6.8 Expected Percentages of  Matches in Multivariate Stratified 
Matching 

N, 
Size of 

Same Distribution Different Distribution 
10 20 10 20 

Treatment Group r Categories Categories Categories Categories 

100 I 84.3 -77.3 65.3 60.5 

2 99.1 96.8 90.3 83.7 
5 lO0.p 99.9 99.8 97.2 

Adapted, by permission of the Royal Statistical Society, from McKinlay (1974), Tables 2 and 
3. 

,stratified matching is to be used effectively. With 20 treatment subjects one 
would need more than 100 comparison subjects for matching with only negligible 
loss of treatment subjects. 

N o  information is available on the bias reduction one can expect for a given 
reservoir size, r, and given population parameters of the joint distribution of the 
L confounding variables in the treatment and comparison populations. 

6.10.3 Minimum Distance Matching. Y 

Both multivariate caliper matching and stratified matching are straightforward 
extensions of univariate techniques in that a matching restriction exists for each 
variable. In this section we discuss minimum distance matching techniques that 
take all of the confounding variables into account a t  one time, thus reducing 
multiple matching restrictions to one. For two subjects to be a match, their 
confounding variable values must be close as defined by some distance measure. 
The matching can be done with a "fixed" tolerance, as in univariate caliper 
matching, or as nearest available matching. We begin with the fixed tolerance 
case. Because distance is defined by a distance function or metric, these tech- 
niques are also referred to as metric matching. 

One distance function is Euclidean distance which is defined as 
















