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The major concern in making causal inferences from comparative studies is
that a proper standard of comparison be used. A proper standard of comparison
(see Chapter 1) requires that the performance of the comparison group be an
adequate proxy for the performance of the treatment group if they had not re-
ceived the treatment. One approach to obtaining such a standard is to choose
study groups that are comparable with respect to all important factors except
for the specific treatment (i.e., the only difference between the two groups is the
treatment). Matching attempts to achieve comparability on the important po-
tential confounding factor(s) at the design stage of the study. This is done by
appropriately selecting the study subjects to form groups which are as alike as
is possible with respect to the potential confounding variable(s). Thus the goal
of the matching approach is to have no relationship between the risk and the
potential confounding variables in the study sample. Therefore, these potential
confounding variables will not satisfy part 1 of the definition of a confounding
variable given at the beginning of Chapter 2, and thereby will not be confounding
variables in the final study sample. This strategy of matching is in contrast to
the strategy of adjustment, which attempts to correct for differences in the two
groups at the analysis stage.

We stated that matching “attempts to achieve comparability”’ because it is
seldom possible to achieve exact comparability between the two study groups.
This is especially true in the case of several confounding variables. To judge how
effective the various matching procedures can be in achieving comparability
and thus reducing bias in the estimate of the treatment effect, it is necessary to
model the relationship between the outcome or response variable and the con-
founding variable(s) in the two treatment groups. Since much of the research
has been done assuming a numerical outcome variable that is linearly related
to the confounding variable, we will tend to emphasize this type of relationship.
The reader should not believe, however, that matching is applicable only in this
case. There are matching techniques which are relatively effective in achieving
comparability and reducing bias in the case of nonlinear relationships.

Before presenting the various matching techniques, we shall illustrate in
Section 6.1 how making the two treatment groups comparable on an important
confounding variable will eliminate.the bias due to that variable in the estimate
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of the treatment effect. Section 6.1 expands on material presented in Section
3.2.

The degree to which the two groups can be made comparable depends on (a)
how different the distributions of the confounding variable are in the treatment
and comparison groups, and (b) the size of the comparison population from
which one samples. These factors influence the amount of bias reduction possible
using any of the matching techniques, and are discussed in Section 6.2.

In the last introductory section of this chapter, Section 6.3, we list and discuss
the conditions under which the results for the various matching techniques are
applicable. Although these conditions are somewhat overly restrictive, they are
necessary for a clear understanding of the concepts behind the. various tech-
niques.

Finally, the main emphasis of this chapter is on the reduction of the bias due
to confounding. The other two sources of bias, bias due to model misspecification
and estimation bias, however, can also be present. See Sections 5.4 and 5.5 for
a discussion of these other sources of bias. All of the theoretical results that we
present are for the case of no model misspecification. This should be kept in mind
when applying the results to any study.

6.1 EFFECT OF NONCOMPARABILITY

For the sake of illustration, reconsider the example introduced in Chapter
3, the study of the association between cigarette smoking and high blood pres-
sure. Recall that cigarette smoking is the risk variable and age is an important
confounding variable. This last assumption implies that the age distributions
of the smokers and nonsmokers must differ: otherwise, age would not be related
to the risk variable (i.e., the groups would be comparable with respect to age).
We shall further assume that the smokers are generally older (see Figure 3.3)
and that the average blood pressure increases with age at the same "rate for both
smokers and nonsmokers (see Figure 3.4). Let X denotgage in years and ¥ de-
note diastolic blood pressure in millimeters of mercury (mm Hg). The effect
of the risk factor, cigarette smoking, can be measured by the difference in av-
erage blood pressure for any specific age, and because of the second assumption,
this effect will be the same for all ages.

These two assumptions can be visualized in Figure 6.1. Suppose that we were
to draw large random samples of smokers and nonsmokers from the populations
shown in Figure 3.3. The sample frequency distributions would then be as il-
lustrated in Figure 6.1 by the histograms. The smokers in the sample tend to be
older than the nonsmokers. In particular, the mean age of the smokers is larger
than that of the nonsmokers, Xs > Xns. (Notice that the ¥ axis in Figure 6.1
does not correspond to the ordinate of the frequency distributions.)
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Figure 6.1 Estimate of the treatment effect for the blood pressure-smoking example.

.The' second assumpt.ion, specifying that the relationship between age and
diastolic blood pressure in both groups is linear, is represented by the lines labeled

"‘.Smollcers” and “Nonsmokers” (as in Figure 3.4). Algebraically, these rela-
tionships are:

Ys=as+ BX for smokers
Yns = ans + 8X for nonsmokers, 6.1)

where ¥s and Y Ns represent the average blood pressure levels among persons
of age X and {3 is the rate at which ¥, blood pressure, changes for each I-year
change in X. [Note that for simplicity of presentation, random fluctuations or

errors (Section 2.2) will be ignored for now.] For a specified age, X,
‘ » Xo, th S
the effect of the risk factor is P ge, Xo, therefore

Ys—Yns

as — ans + B(Xp — Xo)

= (g — aNS§ (62)
(see Figure 6.1).
Let us first consider the simplest situation, where there is only one subject

in each group and where each subject is age X,. We will then have two groups
that are exactly comparable with respect toage. The estimate of the treatment
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effect is the difference between the blood pressures of the two subjects. Since
the blood pressures of these two subjects are as given in (6.1) with X = X, the
estimated treatment effect will be as given in (6.2). Thus exact comparability
has led to an unbiased estimate of the treatment effect. (Note that the same result
would also hold for any nonlinear relationship between X and Y.) _

Next consider the estimate of the treatment effect based on all subjects in the
two samples. The estimate is found by averaging over all the values of ¥ in both
groups and calculating the difference between these averages:

Ys— Yns = as — ans + B(Xs — Xns)- (6.3)

Thus because of the noncomparability of the two groups with respect to age,
the estimate of the risk effect is distorted or biased by the amount 8(Xs — Xns)-
Since we do not know 8, we cannot adjust for this bias. (An adjustment procedure
based on estimating {3 is analysis of covariance; see Chapter 8.) Notice, however,
that if we could equalize the two sample age distributions, or in the case con-
sidered here of a linear relationship, restrict the sampling so that the two sample
means were equal, we would then obtain an unbiased estimate of the treatment
effect. By making the groups comparable, one would be assured of averaging
over the same values of X.

There are two basic approaches to forming matches to reduce bias due to
confounding. These are referred to as pair and nonpair matching. Pair matching
methods find a specific match (comparison-subject) for each treatment subject.
It is clear that if we restrict the choice of subjects in the two groups such that
for every treatment subject with age X, there is a comparison subject with exactly
the same age, then by (6.2) the difference in blood pressures between each
matched pair is an unbiased estimate of the treatment effect. Hence the average
difference will also be unbiased.

Because of difficulties in finding comparison subjects with exactly the same
value of a confounding variable as a treatment subject, various pair matching
methods have been developed. For example, if the confounding varjable is nu-
merical, it is practically impossible to obtain exact matches for all treatment
subjects. An alternative method, caliper matching, matches two subjects if their
values of X differ by only a small tolerance (Section 6.4). In the case of a cate-
garical confounding variable, one can use a pair matching method called
stratified matching (Section 6.6). However, these methods cannot always
guarantee the desired sample size, so another pair matching method, called
nearest available pair matching (Section 6.5), was developed by Rubin
(1973a).

In the second approach to matching, nonpair matching, no attempt is made
to find a specific comparison subject for each treatment subject. Thus there are
no identifiable pairs of subjects. There are two nonpair matching methods:
frequency and mean matching. In frequency matching, Section 6.7, the distri-
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bqtion of the confounding variable in the treatment group is stratified and one
attempts to equalize the two distributions by equalizing the number of treatment
and comparison subjects in each stratum. Mean matching, Section 6.8, attempts
to reduce the amount of bias by equating just the sample means rather than
attemp%ing to equalize the two distributions as in the previous methods. The
comparison group, which is of the same size as the treatment group, thus consists
of those subjects whose group mean is closest to the mean of the treatment
group.

6.2 FACTORS INFLUENCING BIAS REDUCTION

None of the matching methods requires the fitting of a specific model for the
rfelationship between the response and the confounding variables. The effec-
tiveness of a matching procedure, however, will depend on the form of the re-
lationship between the response and the confounding variables. In addition, the
effectiveness depends on the following three factors: (a) the difference between
the means of the treatment and comparison distributions of a confounding
variable, (&) the ratio of the population variances, and (c) the size of the control
sample from which the investigator forms a comparison group. These three
factors will now be discussed in detail.

To understand how these three factors influence the researcher’s ability to
form close matches and hence to achieve the maximum bias reduction, consider
the slightly exaggerated distributions of a confounding variable, X, in the
treatment and comparison populations shown in Figure 6.2. Both distributions
are normal with a variance of 2.25. The mean of the comparison population is
3, and the mean of the treatment population is 0.

Treatment Comparison
population population

Confounding variable

Figure 6.2 Nonoverlapping samples, equal variances.

Suppose _th‘at we have small random samples from both the treatment and
the comparison populations and we wish to find a matched comparison group
Because of the assumed distribution, the treatment group is most likely to have;
values between —1 and +1, the middle 50% of the distribution (shaded area on
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the left in Figure 6.2). The sample from the comparison population is called the
comparison or control reservoir; it is the group of subjects from which one finds
matches for the treatment group. Based on the assumed distribution of the
confounding variable, the comparison reservoir is most likely to consist of subjects
whose values of the confounding variable lie between 2 and 4 (shaded area on
the right in Figure 6.2). Thus there would be little overlap between these two
samples. . )

~ With virtually ho overlap between our samples, it is impossible to form
matched groups which are.comparable. Using any of the pair matching tech-
niques, we could not expect Yo find many comparison subjects with values of X
closer than 1 unit to any treatment subject. Similarly for the nonpair matching
methods, regardless of the way one stratifies the treatment frequency distribu-
tion, there will not be enough comparison subjects in each stratum. In addition,
the means of the two groups would be about 3 units apart. Any attempt to match
in this situation would be unwise, since only a small proportion of the two groups
could be made reasonably comparable.

Continuing this example, suppose that another, much larger sample is drawn
from the comparison population such that the values of X in the reservoir lie
between zero and 6. The treatment group remains fixed with values of X between
+1 and —1. The resulting overlap of the two samples is shown in Figure 6.3
against the background of the underlying population distributions. Notice that
by increasing the size of the comparison sample, we are more likely to have
members of the comparison reservoir which have the same or similar values of
X as members of the treatment group. The number and closeness of the possible
pair matches has improved; for frequency matching we should be able to find
more comparison subjects falling in the strata based on the treatment group;
and the difference in the sample means, after mean matching, should be less than
the previous value of 3. Again, as was the case with nonoverlapping samples,
we may still be unable to find adequate matches for all treatment group subjects.
This “throwing away” of unmatchable subjects is a waste of information which
results in a lower precision of the estimated treatment effect. ’

Treatment Comparison
population population

Confounding variable

Figure 6.3 Overlapping samples, equal variances.
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No?v consider what would happen if the population variances of the con-
founding variable were not equal. In particular, suppose that the variance of the
treatment population, o7, remains at 2.25, while the variance of the comparison
population, 03,i89.0. (Again, thisisa slightly exaggerated example but is useful
to illustrate our point.) With the treatment sample fixed, random sampling from
the cpmparison population would most likely result in a sample as shown by the
shading in Figure 6.4. Notice the amount of overlap that now exists between
the .treat.rnent group and the comparison reservoir. There are clearly more
subjects in the comparison reservoir, with values of the confounding variable
between +1 or —1, than in the previous example (Figure 6.3).

Treatment
population

Comparison
population

—4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
Confounding variable

Figure 6.4  Overlapping samples, unequal variances.

After comparing these examples, the relationship among the three fac-
tor§—the difference between the population means of the two distributions, the
ratio of the population variances, and the size of the comparison rescrvo’ir——
should bc clear. Thp farther apart the two population means are, the larger the
comparison reservoir must be to find close matches, unless the variances are such
that the two population distributions overlap substantially.

To 'deterr.nipc numerically the bias reduction possible for a particular matching
technique, it is necessary to quantify these three factors. Cochran and Rubin
(1973) chose to measure the difference between the population means by a
quantity referred to as the initial difference. This measure, By, may be vievglcd

as a standardized distance measure between two distributions and is defined
as

N1~ "No
By=—Fr—rn"—
V(o1 + Uo)/z 64
The eta terms, #; and 7o, denote the means of the treatment and the comparison

pOlelatIODS l'CSpCCtl \% cl y . Slmllarl y g1a d p P PO
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In the first example of this section, the initial difference was equal to 2.0. With
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the variance of the comparison population increased to 9, however, the initial
difference was equal to 1.3 and the two distributions overlapped more.

The ratio of the treatment variance to the comparison variance, o}/ 03, is the
second important factor in determining the number of close matches that can
be formed, and hence the bias reduction possible. Generally, the smaller the ratio,
the easier it will be to find close matches. .

The last factor is the size of the comparison reservoir from which one finds
matches. In the previous examples we assumed that the random sample from
the treatment population was fixed. That is, we wanted to find 2 match for every
subject in that sample and the subjects in the treatment group could not be
changed in order to find matches. Removal of a treatment subject was the only
allowable change if a suitable match could not be found. This idea of a fixed
treatment group is used in the theoretical work we cite and is perhaps also the
most realistic approach in determining the bias reduction possible. An alternative
and less restrictive approach assumes that there exists a treatment reservoir from
which a smaller group will be drawn to form the treatment group. Such an ap-
proach would allow for more flexibility in finding close matches.

In the following methodological sections the size of the comparison reservoir
is stated relative to the size of the fixed treatment group. Thus a comparison
reservoir of size 7 means that the comparison reservoir is # times larger than the
treatment group. Generally, r is taken to be greater than 1.

6.3 ASSUMPTIONS

In discussing the various matching procedures, we shall make the following
assumptions:

1. There is one confounding variable.

2. The risk variable in cohort studies or the outcome variable irf case-control
studies is dichotomous. )

3. The treatment effect is constant for all values of the confounding variable.
(This is the no interaction assumption of Section 3.3.)

4. For cohort studies we wish to form treatment and comparison groups of
equal size. (For case-control studies, we would construct case and control groups
of equal size.) 1

5. The treatment group (or case group) is fixed.

The assumption of only one confounding variable is made for expository
purposes. In Section 6.10 we will discuss matching in the case of multiple con-
founding variables. The second assumption corresponds to the most common
situation where matching is used. Matching cannot be used if the risk variable
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in cohort studies or the outcome variable in case-control studies is numerical.
The third assumption of no interaction, or parallelism, is crucial for estimating
the treatment effect. Researchers should always be aware that implicitly they
are making this assumption and when possible they should attempt to verify it.
For example, in Section 5.2, we discuss how the assumption of parallelism may
be unjustified when one is dealing with fallible measurements. If this assumption
is not satisfied, the researcher will have to reconsider the advisability of doing
the study or else to report the study findings over the region for which the as-
sumption holds. The fourth assumption, that the treatment and comparison
groups are of equal size, is also made for expository purposes. In addition, the
efficiency of matching is increased with equal sample sizes for a given total
sample size. In Section 6.11 we consider the case of multiple comparison subjects
per treatment subject. The last assumption of a fixed treatment group is one of
the assumptions under which most of the theoretical work is done. A fixed
treatment group is typically the situation in retrospective studies where the group
to be studied, either case or exposed, is clearly defined.

While the type of study has no effect on the technique of matching, the forms
of the outcome and confounding variables do. The various matching techniques
can be used in either case-control or cohort studies. The only difference is that
in a cohort study one matches the groups determined by the risk or exposure
factor, whereas in a case-control study, the groups are determined by the outcome
variable. Throughout this chapter, any discussion of a cohort study applies also
to a case-control study, with the roles of the risk and outcome variables re-
versed.

The form of the risk or outcome variable and the confounding variables (i.e.,
numerical or categorical) determines the appropriate matching procedure and
whether matching is even possible. If the confounding variable is of the unordered
categorical form, such as religion, there is little difficulty in forming exact
matches. We shall, therefore, make only passing reference to this type of con-
founding variable. Instead, we shall emphasize numerical and ordered categorical
confounding variables, where the latter may be viewed as having an underlying
numerical distribution. Numerical confounding variables are of particular im-
portance because exact matching is very difficult in this situation. Most of the
theoretical work concerning matching has been done for a numerical con-
founding variable and dichotomous risk variable (cohort study).

6.4 CALIPER MATCHING

Caliper matching is a pair ' matching technique that attempts to achieve
comparability of the treatment and comparison groups by defining two subjects
to be a match if they differ on the value of the numerical confounding variable,
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X, by no more thah a small tolerance, €. That is, a matched pair must have the
property that

[X1 —X()I <e

The subscript 1 denotes treatment group and 0 denotes comparison group. By
selecting a small-enough tolerance ¢, the bias can in principle be reduced to any
desired level. However, the smaller the tolerance, the fewer matches will be
possible, and in general, the larger must be the reservoir of potential comparison
subjects.

Exact matching corresponds to caliper matching with a tolerance of zero. In
general, though, exact matching is only possible with unordered categorical
confounding variables. Sometimes, however, the number of strata in a categorical
variable is so large that they must be combined into a smaller number of strata.
In such cases or in the case of ordered categorical variables, the appropriate pair
matching technique is stratified matching (Section 6.6).

6.4.1 Methodology

To illustrate caliper matching we shall consider the cohort study of the as-
sociation of blood pressure and cigarette smoking.

Example 6.1 Blood pressure and cigarette smoking: Suppose that a tolerance of 2
years is specified and that the ages in the smokers group are 37, 38, 40, 45, and 50 years.
(We shall assume that the smoker and nonsmoker groups are comparable on all other
important variables.) A comparison reservoir twice the size (» = 2) of the smoking group
consists of nonsmokers of ages 25, 27, 32, 36, 38, 40, 42, 43, 49, and 53 years. The esti-
mated means of the two groups are 42.0 and 38.5 years, respectively. The ratio of the
estimated variances, ss/st, is 0.37 =29.50/79.78.

The first step in forming the matches is to list the smokers and determine the corre-
sponding comparison subjects who are within the 2-year tolerance from each smoker.
For our example, this results in the possible pairing given in Table 6.1q. *

Table 6.1a Potential Caliper Matches for Example 6.1

Smokers Nonsmokers
37 36, 38
38 38, 40
40 40, 42
45 43
50 49

1t is clearly desirable to form matches for all the treatment subjects that are as close
as possible. Thus the matched pairs shown in Table 6.16 would be formed.
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Table 6.1b  Caliper-Matched Pairs

Smokers Nonsmokers
37 36
38 38
40 40
45 43
50 49

Notice that if the 49-year-old nonsmoking subject had not been in the reservoir, we
would not have been able to match all five smokers. We might then have decided to-keep
the first four matches and drop the 50-year-old smoker from the study. This results in
a loss of precision, because the effective sample size is reduced. Alternatively, the tolerance
could be increased to 3 years and the 50-year-old smoker matched with the 53-year-old

nonsmoker. The latter approach does not result in lower precision, but the amount of bias -

may increase. Finally, had there been two or more comparison subjects with the same
value of X, the match subject should be chosen randomly.

In Example 6.1 we knew the composition of the comparison reservoir before
the start of the study. Often, however, this is not the case. Consider, for example,
a study of the effect of specially trained nurses aids on patient recovery in a
hospital. Such a study would require that the patients be matched on impoftant
confounding variables as they entered the hospital. When the comparison res-
ervoir is unknown, the choice of a tolerance value that will result in a sufficient
number of matched pairs can be difficult. The researcher cannot scan the res-
ervoir, as we did in the example, and discover that the choice of € is too small.
For this reason, using caliper matching in a study where the comparison reservoir
is unknown can result in matched sample sizes that are too small. In such a sit-
uation, the researcher can sometimes attempt to get a picture of the potential
comparison population through records (i.e., historical data).

6.4.2 Appropriate Cond}itions

Caliper matching is appropriate regardless of the form of the relationship
between the confounding and outcome variables (or risk variable in case-control
studies). In this section we demonstrate how caliper matching is effective in
reducing bias in both the linear and nonlinear cases.

Linear Case. To understand how caliper matching works in the linear case,
let us consider the estimate of the treatment effect or risk effect of smoking on
blood pressure based on a 45-year-old smoker and a 43-year-old nonsmoker in
Example 6.1. Assume that blood pressure is linearly related to age and that the
relationships are the same for both groups, with the exception of the intercept
values. Figure 6.5 represents this situation.
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Blood pressure
Smokers

Nonsmokers
True )
Estimated effect
effect,
Y; — Y, .
s ne Bias{

43 45 . Age

Figure 6.5 Estimate of treatment effect—linear relationship.

The estimate of the risk effect is shown by the large brace to the left in Figure
6.5. The amount of bias or distortion is shown by the small brace labeled “Bias.”
Relating this example to (6.3), we see that the bias is equal to the unknown re-
gression coefficient 3, multiplied by the difference in the values of the con-
founding variable. In the case of these two subjects, the bias is 23. This is the
maximum bias allowable under the specified tolerance for each individual es-
timate of the treatment effect, and consequently for the estimated treatment
effect, based on the entire matched comparison group.

When we average the ages in Table 6.15, we find that the mean age of the
smokers is 42.0 years; of the nonsmokers comparison group, 41.2 years; and for
the comparison yeservoir, 38.5 years. Caliper matching thus reduced the dif-
ference in means from 3.5 (= 42.0 — 38.5) t0 0.8 (= 42.0 — 41.2). In general,
the extent to which the bias after matching, 0.88 in this case, is less than the
maximum possible bias, 23 in this case, will depend on the quantities discussed
in Section 6.2: the difference between the means of the two populations, the ratio
of the variances and the size of the comparison reservoir as well as the toler-
ance. '

Nonlinear Case. Let us now consider the case where the response and the
confounding variable are related in a nonlinear fashion. To illustrate the effect
of caliper matching in this situation, we shall assume that blood pressure is re-
lated to age squared. Algebraically this relationship between the response ¥ and
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age, X, can be written as

Y=oa+8x2

.where « is the intercept. The estimate of the treatment effect assuming that ¥’
1s numerical is

Ys — ¥ns = as — ans + 8 (X3 — Xis). (6.5)

Hence any bias is a function of the difference in the means of age squared. Note
that the means of the squared ages are different from the squares of the mean
ages. Again let us visualize this relationship in Figure 6.6.

Blood pressure
Smokers
Nonsmokers
Estimated . 'fl;rue
effect, effect
Ys — Y
s Bias [
43 45 Age

Figure 6.6 Estimate of treatment effect—nonlinear relationship.

The individual estimate of the treatment effect determined from the matched
pair of a 45-year-old smoker and a 43-year-old nonsmoker is shown in Figure
‘6.6 by the large brace to the left. This estimate can be compared to the true
treatment effect shown by the topmost smaller brace. The bias is the difference

be,twe:.en the two and is indicated by the second small brace. From (6.5) we obtain
the bias as

B(452 — 432) = B(176).

If we were using the matched groups from Example 6.1, upon averaging over
the two groups we would find that the estimate of the treatment effect would
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be biased by the amount
B (X — Xks) = B(69.6).

It is important to realize that equality of the means of the two groups is not
enough to ensure an unbiased estimate of the treatment effect if the relationship
between the response and the confounding variable is nonlinear. Equality of the
means yields unbiased estimates only in the linear case.

6.4.3 Evaluation of Bias Reduction

So far we have only demonstrated how caliper matching can reduce the bias
due to confounding. In this section we present theoretical results concerning the
bias reduction one can expect using caliper matching in the linear case. The
estimator of the treatment effect is the mean difference in response. The effec-
tiveness of caliper matching and all other matching techniques is examined
relative to estimating the treatment effect from random samples, where the
confounding variable is not taken into account. (For a definition of the measure
of effectiveness, the expected percent reduction in bias, see Cochran and Rubin,
1973.)

Table 6.2 gives an indication of the expected percent bias reduction for dif-
ferent tolerance values. The results are independent of the sample size and res-
ervoir size. They were derived assuming that the initial difference between the
two populations is less than 0.5 (i.e., Bx < 0.5), that the distributions of the
confounding variable are normal, and that the outcome is linearly related to the
confounding variable. Notice that the tolerance is specified in terms of a pro-
portion, a, of a standard deviation. It appears that tight caliper matching {i.e.,
a = 0.2) can be expected to remove nearly all the bias in the treatment effect
relative to random sampling. It also appears that the ratio of the variances (i.e.,
01/ 03) has a negligible effect on the percent reduction in bias.

Table 6.2 Percent Bias Reduction for Caliper Matching*

2 ot/ al =1 . aijof=1 o}/of=2
0.2 99 99 98
0.4 96 . 95 93
0.6 , 91 89 86
0.8 86 82 7
1.0 79 74 69

Reprinted, by permission of the Statistical Publishing Society, from Cochran and Rubin (1973),
Table 2.3.1.
* Tolerance € = a+/ (o3 + 03)/2 -
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One can use this table to get some indication of bias reduction to be expected
for different tolerances if the values or estimates of the population variances are
known and if Bx < 0.5. Suppose we knew that 02/03 = 1, where o2 = 4; then
if we took @ = 0.8, we could expect about 86% of the bias to be removed. The
tolerance would be 0.8 /(4 + 8)/2 = 1.96. If we used a = 0.4, we could expect
to remove 96% of the bias over random sampling and the tolerance would be
0.98.

As we have mentioned previously, the major disadvantage of caliper matching
is the need for the comparison reservoir to be large. In their theoretical work,
Cochran and Rubin did not take into account the possibility that the desired
number of matches would not be found from the comparison reservoir, although
the probability of this occurrence is nonnegligible. Nor are the results known
for distributions other than normal. Most likely,. the results presented are ap-
plicable to symmetric distributions, but the case of skew distributions has not
been investigated for caliper matching.

6.5 NEAREST AVAILABLE MATCHING

In some situations when caliper matching is performed with a small tolerance,
there is a nonnegligible probability that some individuals cannot be matched.
To avoid this problem, Rubin (1973a, b) developed a method known as nearest
available pair matching. We shall refer to this matching procedure as nearest
available matching. This method ensures that the desired number of matches
are obtained by being less restrictive in deciding what a match is. A match is
formed by finding the closest possible comparison subject for each individual
in the treatment group from the yet-unmatched individuals in the comparison
reservoir. Since nearest available matching does not use a fixed tolerance as does
caliper matching, the reservoir does not have to be larger than the treatment
group. However, the matches are not guaranteed to be as close as those found
under caliper matching.

6.5.1 Methodology

There are three variants of nearest available matching, each based on a par-
ticular ordering of the subjects in the treatment group with respect to the con-
founding variable. The specification of the ordering completely defines the pair
matching method. In one variant of the method, referred to as random-order
nearest available matching, the NV treatment subjects are randomly ordered on
the values of the confounding variable, X. Let us denote these ordered values by
X1 to X;y. Starting with X;,, a match is defined as that subject from the
comparison reservoir whose value Xy j is nearest X ;. The matches are therefore
assigned to minimize | X1; — Xo;| for all subjects in the comparison reservoir.
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If there are ties (i.e., two or more comparison subjects for whom | X, — X0j|
is a2 minimum), the match is formed randomly. The nearest available partner
for the next treatment subject with value X1, is then found from the remaining
subjects in the reservoir. The matching procedure continues in this fashion until
matches have been found for all V treatment subjects.

The other two variants of nearest available matching result from ranking the
members of the treatment group on confounding variable values from the highest
to the lowest (HL) value or from the lowest to the highest (LH) value. Matches
are then sought starting with the first ranked treatment subject, as for the ran-
dom-order version.

Example 6.2 Nearest available matching: Suppose that in a blood pressure study,
there are three smokers with ages 40, 45, and 50, and five nonsmokers in the reservoir
with ages 30, 32, 46, 49, and 55. In addition, suppose that the randomized order of the
smokers’ ages is 40, 50, and 45. Then the random-order nearest available matching
technique will match the 40-year-old smoker with the 46-year-old nonsmoker, the 50-
year-old smoker with the 49-year-old nonsmoker, and the 45-year-old smoker with the
55-year-old nonsmoker.

In the case of the other two variants, the following matches would be made: for HL,
the 50-year-old with the 49-year-old, the 45-year-old with the 46-year-old, and the
40-year-old with the 32-year-old; for LH, the 40-year-old with the 46-year-old, the
‘45-year-old with the 49-year-old, and the 50-year-old with the 55-year-old. Notice in
this example that each variant resulted in different matched pairs.

6.5.2 Appropriate Conditions
i

Nearest available matching is similar to caliper matching except that there
is no fixed tolerance. Based on the prior discussion of caliper matching and some
theoretical results, it follows that nearest available matching is effective in re-
moving bias due to confounding if the relationship between the response and
confounding variables is linear. For nonlinear relationships, n’o results are
available.

The main-difficulty in discussing what conditions are most appropriate for
using nearest available matching is the fact that the reduction in bias is so
strongly influenced by the closeness of the distributions of the treatment group
and the comparison reservoir. If there is a large overlap between the two groups
of subjects, nearest available matching will be very similar to caliper matching
with a suitably large tolerance. If, however,there is a moderate to small amount
of overlap, the desired number of matches will be found, but the final amount
of bias in the estimate of the treatment effect may be large.

6.5.3 Evaluation of Bias Reduction

In selecting a particular nearest available matching procedure, an investigator
may want to base his or her choice primarily on the percent reduction in bias
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obtainable. Assuming a linear relationship between the response and confounding
variables, Cochran and Rubin (1973) performed a simulation study to determine
which of the three nearest available matching estimators was least biased. They
also assumed that the confounding variable was normally distributed with the
mean of the treatment population greater than the mean in the comparison
population (n; > 1). Their results showed that the percent reduction in bias
was largest for the low-high nearest available matching and smallest for the
high-low variant.

Because nearest available matching does not guarantee as close matches as
are possible with caliper matching, Rubin (1973a) also compared the closeness
of the matches obtained by the three procedures as measured by the average of
the squared error (X; — Xo)? within pairs. When the procedures were judged
by this criterion, the order of performance was reversed. The HL nearest
available matching had the lowest average squared error and the LH had the
largest. This result is not too surprising, considering the relationship between
the population means (11y > n0). The HL procedure would start with the treat-
ment subject who is likely to be the most difficult to match: namely, the one with
the largest value of X. This would tend to minimize the squared within-pair
difference. ’ '

Since the differences between the three matching procedures are small on
both criteria, random-order nearest available matching appears to be a rea-
sonable compromise. In Table 6.3, from Cochran and Rubin (1973), results of
the percent reduction in bias are summarized for random-order nearest available
matching as a function of the initial difference, the values of the ratio of the
population variances, and sizes of the reservoir. Results for the number of
matches N = 25 and NV = 100 (not shown) differ only slightly from those for
N = 50.

Table 6.3 Percent Bias Reduction for Ra ndom-Order Nearest Available
Matching: X Normal; N = 50*

x o=t EE sifo=2

r Yy % 1 Ya Y 1 a Yo 1

2 99 98 84 92 87 69 66 59 51
3 100 99 97 96 95 84 79 5 63
4 100 100 99 98 97 89 86 81 71

Reprinted, by permission of the Statistical Publishing Society, from Cochran and Rubin (1973),
Table 2.4.1.

* X = confounding variable; Bx = initial difference; r = ratio of the size of the comparison res-
ervoir and the treatment group; o = variance of confounding variable in the treatment population;

o} = variance of confounding variable in the comparison population.
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With this method, the percent reduction in bias decreases steadily as the initial
difference between the normal distributions of the confounding variable increases
from Y, to 1. In contrast with results reported in Table 6.2 for caliper matching,
the percent reduction in bias does depend on the ratio of the population variances.
Based on Table 6.3, random-order nearest available matching does best when
o3/} = 1. Whenn; > no and 63 > o3, large values of the confounding variable
in the treatment group, the ones most likely to cause bias, will receive closer
partners out of the comparison reservoir than if 03 < ol.

Investigators planning to use random-order nearest available matching can
use Table 6.3 to obtain an estimate of the expected percent bias reduction.
Suppose an estimate of the initial difference Bx is 15, with q%/ o= 1,anditis
known that the reservoir size is 3 times larger than the treatment group (r = 3).
It follows that random-order nearest available matching results in an expected
95% reduction in bias. ,

6.6 STRATIFIED MATCHING

Stratified matching is an appropriate pair matching procedure for categorical
confounding variables. If, like sex or religious preference, the variable is truly
categorical, with no underlying numerical distribution, the matches are exact
and no bias will result. Often, however, the confounding variable is numerical
but the investigator may choose to work with the variable in its categorical form.
Suppose, for example, that in the study of smoking and blood pressure, all the
subjects were employed and that job anxiety is an important confounding
variable. The investigator has measured job anxiety by a set of 20 true-false
questions so that each subject can have a score from 0 to 20. Such a-factor is very
difficult to measure, however, and the investigator may decide that it is more
realistic and more easily interpretable to simply stratify the rangeof scores into
low anxiety, moderate anxiety, and high anxiety. Having formed these three
strata, the investigator can now randomly form individual pair matches within
each stratum. An example of this procedure in the case of multiple confounding
variables is given in Section 6.11.

The only theoretical paper discussing the bias reduction properties of stratified
matching is that of McKinlay (1975). She compared stratified matching to
various stratification estimators (Section 7.6) for a numerical confounding
variable converted to a categorical variable. She considered various numbers
of categories and a dichotomous outcome. She found that the estimator of the
odds ratio from stratified matched samples had a larger mean squared error and,
in some of the cases considered, a larger bias than did the crude estimator, which
ignores the confounding variable. (Stratified matching is compared with
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stratification in Section 13.2.2.) The mean squared error results are due in part

to the loss of precision caused by an inability to find matches for all the treatment
subjects. This point is considered further in Section 13.2.

6.7 FREQUENCY MATCHING

Frequency matching involves stratifying the distribution of the confounding
variable in the treatment group and then finding comparison subjects so that
the number of treatment and comparison subjects is the same within each
stratum. This is not a pair matching method, and the number of subjects may
differ across strata.

For the sake of illustration we shall concentrate on the case of a numerical
response. This will allow us to demonstrate more easily how frequency matching
helps to reduce the bias. Because frequency matching is equivalent to stratifi-
cation with equal numbers of comparison and treatment subjects within each
stratum, we leave the discussion of the various choices of estimators in the case
of a dichotomous response to Chapter 7. '

6.7.1 Methodology

Frequency matching is most useful when one does not want to deal with pair
matching on a numerical confounding variable or an ordinal measure of an
underlying numerical confounding variable. An example of the latter situation
is initial health care status, where the categories reflect an underlying continuum
of possible statuses. In either case, the underlying distribution must be stratified.
Samples are then drawn either randomly or by stratified sampling from the
comparison reservoir in such a way that there is an equal number of treatment
and comparison subjects within each stratum. Criteria for choosing the strata
are discussed in Section 6.7.3 after we have presented the estimator of the
treatment effect.

Example 6.3 Frequency matching: Let us consider the use of frequency matching
in the smoking and blood pressure study. Suppose that the age distribution of the smokers
.was stratified into 10-year intervals as shown on the first line of Table 6.4, and that 100
smokers were distributed across the strata as shown on the second line of the table. The
third line of the table represents the results of a random sample of 100 nonsmokers from
the comparison reservoir. Notice that since frequency matching requires the sample sizes
to be equal within each stratum, the investigator needs to draw more nonsmokers in all
strata except for ages 51 to 60 and 71 to 80. In these two strata the additional number
of nonsmokers would be dropped from the study on a random basis. (Note that stratified
sampling, if possible, would have avoided the problem of too few or too many persons
in a stratum.)
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Table 6.4 Smokers and Nonsmokers Stratified by Age

Age . 11-20 21-30 31-40 41-50 51-60 61-70 71-80 Total
Smokers 1 3 10 21 30 25 10 100
Nonsmokers 0 2 8 20 32 20 18 100

6.7.2 Appropriate Conditions

Frequency matching is relatively effective in reducing bias in the paralle] linear
response situation provided that enough strata are used. We shall explain this
by means of simple formulas for the estimator of the treatment effect assuming
a numerical response. :

Recall from Section 6.1 that we can represent the linear relationship between
the response Y and the confounding variable X by

Y1 =a; + BX, in the treatment group (6.6)
iYo = ag + 3Xo in the comparison group.
In general, the estimator of the treatment effcc; in the kth stratum is
Yie— Yox = (a1 — ) + B(X1x — Xox). (6.7)

where a bar above the variables indicates the mean calculated for the kth stra-
tum. The bias in the kth stratum is 8(X1x — Xox).

" Clearly, the maximum amount of distortion in the estimate from the kth
stratum occurs when Xz — Xox is maximized. The maximum value is then 8
times the width of the kth stratum.

One overall estimate of the treatment effect is the weighted combination of
the individual strata differences in the response means:

_ — 1 X — —
Yi-Yo=— % m(Yix—Yu), (6.8)
N k=1
where ny is the number of treatment or comparison subjects in the kth stratum
(k=1,2,...,K)and N is the total number of treatment subjects. Rewriting
(6.8) in terms of treatment effect and regression coefficients, we obtain, using

(6.7),

_ _ 1K _ _
Yi=Yo== % mlog—ao+ B(Xik — Xok)]
N k=1

= (a1 — ap) +1%[ f B X1k — Xok)- (6.9)
£=1 -

From (6.9) we see that the amount of bias reduction possible using frequency
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matching is determined by the difference in the distributions of the two groups
within each stratum. This, in turn, is a function of the manner in which the strata
were determined. The more similar the distributions of the treatment and

comparison populations are within each stratum, the less biased the individual
estimates of the treatment effect will be.

6.7.3 Evaluation of Bias Reduction -

Assuming that both distributions of the confounding variable are normal with
equal variances but the mean of the treatment population is zero and the mean
of the comparison population is small but nonzero, Cox (1957) derived the
percent reduction in bias for strata with equal number of subjects. Cochran and
Rubin (1973) extended Table 1 of Cox, and these results are givén in Table 6.5.
The strata are based on the distribution of the treatment group.

Table 6.5 Percent Bias Reduction with Equal-Sized Strata in Treatment

Population: X Normal
Number of strata: 2 3 4 5 -6 8 10
% reduction in bias: 64 79 86 90 92 94 96

Reprinted, by permission of the Statistical Publishing Society, from Cochran and Rubin (1973),
Table 4.2.1. :

These percentages are at most 2% lower than the maximum amount of bias
reduction possible using strata with an unequal number of subjects. Cochran
(1968) extended these calculations for some nonnormal distributions: the chi-
square, the ¢, and the beta, and he concluded that the results given in Table 6.5
can be used as a guide to the best boundary choices even when the confounding
variable is not normally distributed. .

From this information we can conclude that if the distributions of the con-
founding variable are approximately normal and differ only slightly in terms
of the mean, and based on the distribution of the treatment group we form four
strata with equal numbers of subjects, we can expect to reduce the amount of
bias in the estimate of the treatment effect by 86%.

We stated at the beginning of Section 6.7.2 that frequency matching was
relatively effective in reducing the bias in the linear parallel situation. No the-
oretical work has been done for the nonlinear parallel situation. Frequency
matching does, however, have the advantage of allowing one to use the analysis
of variance to test for interactions. One can test for parallelism as well as lin-
earity, thus determining whether frequency matching was appropriate.
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6.8 MEAN MATCHING

A simple way of attempting to equate the distributions of the confounding
variable in the study samples is to equate their means. This is called mean
matching or balancing. The members of the comparison group are selec?ed S0
that |X; — Xp| is as small as possible. Although mean matching is very simple
to employ, it depends strongly on the assumption of a linear parallel response
relationship and we therefore do not recommend its use. One can employ analysis
of covariance (Chapter 8) in this case and achieve greater efficiency. We include
the following discussion of mean matching so that the reader can understand
the basis for our recommendation. '

6.8.1 Method(;logy

There is more than one way to form matches in mean matching. However,
the dnly algorithm which is guaranteed to find the comparison group that
minimizes |X; — Xo| is to calculate X, for all possible groups of size V from the
comparison reservoir. This is generally far too time-consuming. An easier al-
gorithm uses partial means, and we shall demonstrate its use with the following
example. :

Example 6.4 Mean matching: Suppose that we decided to use mean matching on
age in the blood pressure study, where we have three smokers, aged 40, 45, and 50 years.
First, we would calculate the mean age of the smokers, which is 45 years (X5 = 45). Next,
we would select successive subjects from the nonsmokers such that the means of the
nonsmokers ages, calculated after the selection of each subject (partial means),. are as
close as possible to 45. Suppose that the nonsmokers in the comparison reservoir have
the following ages: 32, 35, 40, 41, 45, 47, and 5SS years. The first nonsmoker self:cted as
a match would be age 45; the second subject selected would be 47 years old, since the
partial mean, (45 + 47)/2 = 46, is closest to 45. The last nonsmoker to be select;d would
be 41 years of age, again since the partial mean, (%) (46) + (}5) (41) = 44.3,1s closest
to Xs. Note that this algorithm did not minimize |Xs — Xns|, since choosing the non-
smokers aged 35, 45, and 55 would give equality of the two sample mean ages [(35 +

“45 + 55)/3 = 45].

6.8.2 Appropriate Conditions

Mean matching can be very effective in reducing bias in the case of a parallel
linear response relationship. Suppose in the blood pressure example that the
population means g and 7ns for smokers and nonsmokers were 50 and 45, re-
spectively. Then, for large enough random samples, we might expect to find that
Xns = 45 and Xs = 50.

From (6.3) it follows that the estimated treatment effect is biased by an



92
MATCHING

amount equal to é (Xs — Xns) = 56. However, if mean matching had been used
to reduce | Xs — Xns| to, say, 0.7, as in Example 6.4, then the bias in (Ys — Yns)
would have been reduced by 86% (= 4.3 /5.0). (The initial difference in the
means due to random sampling is 5.0.)

Mcan matching is not effective in removing bias in the case of a parallel
nonlinear response relationship (see Figure 6.7). Assume that in another blood
pressure study three smokers of ages 30, 35, and 40 years were mean-matched
with three nonsmokers of ages 34, 35, and 36 years, respcctﬁzely. Their blood
pressures are denotEd by X in Figure 6.7. Notice that unlike the previous linear
situations, ¥'s and ¥'ns do not correspond to the mean ages Xs and Xng. They
will bot}} be greater than the values of ¥ which correspond to the Iﬁeans ;;1ue to
the non'lmearlty. Here (¥'s — Y'ns) is an overestimate of the treatment effect
The estimate should be equal to the length of the vertical line, which reprcsent;

the trca}tmept effect. In general, the greater the nonlinearity, the greater the
overestimation or bias will be, in general. '

Blood pressure A
Smokers

Nonsmokers

%
Estimated

effect,
Ys — Ys X

True treatment effect

| | |
30 35 40

Age
Figure 6.7 Mean matching in a nonlinear parallel relationship.

X, blood pressure for a specific age;

group. ®. blood pressure corresponding to mean age in either
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6.8.3 Evaluation of Bias Reduction

Cochran and Rubin (1973) have investigated the percentage of bias reduction
possible using the partial mean algorithm presented in Section 6.8.1 under the
assumptions of a linear parallel relationship, a normally distributed confounding
variable, and a sample size of 50 in the treatment group. They found that, except
in the cases where the initial difference By = 1, mean matching removes es-
sentially all the bias. In addition, its effectiveness increases with the size of the
comparison reservoir. The bias that results from improper use of mean matching
(i.e., in nonlinear cases) has not been quantified.

6.9 ESTIMATION AND TESTS OF SIGNIFICANCE

In this section we indicate the appropriate tests of significance and estimators
of the treatment effect for each matching technique. Because the choice of test
and estimator depends on the form of the outcome variable, we begin with the
numerical case followed by the dichotomous case. Also, in keeping with the
general intent of this book, we do not give many details on the test statistics but
rather cite references in which further discussion may be found. The tests and
estimators for frequency-matched samples are the same as for stratification and
are discussed in greater detail in Chapter 7.

In the case of 2 numerical outcome variable for which one of the pair matching
methods (caliper, nearest available, or stratified) has been used, the correct test
of significance for the null hypothesis of no treatment effect is the paired-z test
(see Snedecor and Cochran, 1967, Chap. 4). This test statistic is the ratio of the
mean difference, which is the estimate of the treatment effect, to its standard
error. The difference between the paired- test and the usual ¢ test for inde-
pendent (nonpaired) samples is in the calculation of the standard error.

If in the case of a numerical outcome variable, frequency matching has been
used, the standard ¢ test is appropriate, with the standard error determined by
an analysis of variance. (See Snedecor and Cochran, 1967, Chap. 10, for a dis-
cussion of the analysis of variance.) The treatment effect is estimated by the
mean difference. If, however, the within-stratum variances are not thought to
be equal, then, as in the case of stratification, one should weight inversely to the
variance (see Section 7.7 and Kalton, 1968). In the case of mean matching, the
correct test is again the ¢ test. The standard error, however, must be calculated
from an analysis of covariance (see Greenberg, 1953).

When the outcome variable is dichotomous, as discussed in Chapter 3, the
treatment effect may be measured by the difference in proportions, the relative
risk, or the odds ratio. The estimator of the difference in rates is the difference
between the sample proportions, p; — po. This is an unbiased estimator if the
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matching is exact. For estimating the odds ratio, the stratification estimators
appropriate for large numbers of strata are applicable (see Section 7.6.1 ), with
each pair comprising a stratum. In this case the conditional maximum likelihood
estimator is easy to calculate and is identical to the Mantel-Haenszel (1959)

estimator. For each pair (stratum), a 2 X 2 table can be created. For the Jth pair,
we have four possible outcomes:

Control
Subject

Treatment Subject 1
0

For example, b; = 1 if, in the jth pair, the outcome for the control subject is

- 0 and for the treatment subject it is 1. The estimator of the odds ratio, Y, is then -

¥ = 2;b;/Zjc;. The estimator will be approximately unbiased if the matching
is exact and the number of pairs is large.

Because of the relationship between these measures of the treatment effect
(difference of proportions, relative risk, and odds ratio) under the null hypothesis
of no treatment effect (Section 3.1), McNemar’s test can be used in the case
of pair-matched samples, regardless of the estimator (see Fleiss, 1973, Chap.
8). Similarly, when frequency matching is used, we have a choice of tests, such
as Mantel-Haenszel’s or Cochran’s test, regardless of the estimator (see Fleiss,
1973, Chap. 10). Since the analysis of a frequency-matched sample is the same

asan analysis by stratification, the reader is referred to Chapter 7 for a more
detailed discussion.

6.10 MULTIVARIATE MATCHING

So far we have limited the discussion of matching to a single confounding
variable. More commonly, however, one must control simultaneously for many
confounding variables. To date, all research has been on multivariate pair
matching methods. To be useful, a multivariate matching procedure should
create close individual matches on all variables. In addition, ideally, as in the
univariate case, the procedure should not result in the loss of many subjects
because of a lack of suitable matches. The advantage of constructing close in-
dividual matches, as in the univariate case, is that with perfectly matched pairs
the matching variables are perfectly controlled irrespective of the underlying
model relating the outcome to the risk and confounding variables.
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Discussions of multivariate matching methods in the literature are quite
limited. References include Althauser and Rubin (1970), for a discussion of an
applied problem; Cochran and Rubin (1973), for a more theoretical framework;
Rubin (19764, b), for a discussion of certain matching methods that are equal
percent bias reducing (EPBR); Carpenter (1977), for a discussion of a modifi-
cation of the Althauser-Rubin approach; and Rubin (1979), for a Monte Carlo
study comparing several multivariate methods used alone or in combination
with regression adjustment.

In the following sections we first discuss straightforward generalizations of
univariate caliper and stratified matching methods to the case of multiple con-
founding variables. The methods included are multivariate caliper matching,
and multivariate stratified matching. Then we discuss metric matching methods
wherein the obfective is to minimize the distance between the confounding
variable measurements in the comparison and treatment samples. Several al-
ternative distance definitions will be presented.

Next we discuss discriminant matching. This matching method reduces the
multiple confounding variables to a single confounding variable by means of
the linear discriminant function. Any univariate matching procedure can then
be applied to the linear discriminant function.

In trying to rank the multivariate matching techniques according to their
ability to reduce the bias, one is faced with the problem of how to’combine the
reduction in bias due to each confounding variable into a single measure so that
the various methods can be compared. For example, the effectiveness of caliper
matching depends, in part, on the magnitudes of all the tolerances that must be
chosen.

To partially circumvent this problem of constructing a single measure of bias
reduction, Rubin (1976a, b; 1979) introduced the notion of matching methods
of the equal percent bias reducing (EPBR) type. For the linear case, Rubin
showed that the percent bias reduction of a multivariate matching technique
is related to the reduction in the differences of the means of eaclyconfounding
variable, and that if the percent reduction is the same for each variable, that
percentage is the percent reduction for the matching method as a whole. EPBR
matching methods are techniques used to obtain equal percent reduction on each
variable and, hence, guarantee a reduction in bias.

Discriminant matching and certain types of metric matching have the EPBR
property, so that we can indicate which of these EPBR methods can be expected
to perform best in reducing the treatment bias in the case of a linear response
surface.

6.10.1 Multivariate Caliper Matching

Multivariate caliper matching, like its univariate counterpart, is effective in
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reducing bias provided that the tolerances used for each confounding variable
are small and the comparison reservoir is large, generally much larger than in
the univariate case.

Suppose-that there are L confounding variables. A comparison subject is
considered to be a match for a_ trcatmenf subject when the difference between
their measured /th confounding variable (! = 1,2, ..., L) is less than some
specified tolerance, € (i.e., | X1 — Xo/] < ¢) forall /.

Example 6.5 Multivariate caliper matching: Consider a hypothetical study com-
paring two therapies effective in reducing blood pressure, where the investigators want
to match on three variables: previously measured diastolic blood pressure, age, and sex.
Such confounding variables can be divided into two types: categorical variables, such
as sex, for which the investigators may insist on a perfect match (e = 0); and numerical
variables, such as age and blood pressure, which require a specific value of the caliper
tolerances. Let the blood pressure tolerance be specified as 5 mm Hg and the age tolerance
as 5 years. Table 6.6 contains measurements of these three confounding variables. (The
subjects are grouped by sex to make it easier to follow the example.)

Table 6.6 Hypothetical Measurements on Confounding Variables for
Example 6.6

Treatment Group Comparison Reservoir
Subject Diastolic Blood Subject Diastolic Blood
Number Pressure (mm Hg) Age Sex Number Pressure (mm Hg) Age Sex

1 94 39 F 1 80 35 F

2 108 56 F 2 120 37 F

3 100 50 F 3 85 50 F

4 92 42 F 4 90 4] F

5 65 45 M 5 90 47 F

6 90 37 M 6 - 90 56 F
7 108 53 F~

8 94 46 F

9 78 32 F

10 105 50 F

11 88 43 F

12 100 42 M

13 110 56 M

14 100 46 M

15 100 54 M

16 110 48 M

17 85 60 M

18 90 35 M

19 70 50 M

20 M

90 49
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In this example there are 6 subjects in the treatment group and 20 subjects in the
comparison reservoir. Given the specified caliper tolerances, the first subject in the
treatment group is matched with the fourth subject in the comparison reservoir. The
difference between their blood pressures is 4 units, their ages differ by 2 years, and both
are females. We match the second treatment subject with the seventh comparison subject
since their blood pressures and sex agree exactly and their ages differ by only3 years.
The remaining four treatment subjects, subjects 3, 4, 5, and 6, would be matched with
comparison subjects 10, 8, 19, and 18, respectively. Notice that if the nineteenth com-
parison subject were not in the reservoir, the investigator would have to either relax the
tolerance on blood pressure, say to 10 mm Hg, or discard the fifth treatment subject from
the study.

Expected Bias Reduction. Table 6.2 gives the expected percent of bias re-
duction for different tolerances assuming a single, normally distributed con-
founding variable and a linear and parallel response relationship. Table 6.2 can
also be used in the case of multiple confounding variables if these variables or
some transformation of them are normally and independently distributed, and
if the relationship between the outcome and confounding variables is linear and
parallel. The expected percent of bias reduction is then a weighted average of
the percent associated with each variable.

If the investigators know (a) the form of the linear relationship, (b) the
population parameters of the distribution of each of the confounding variables,
and (c) that the confounding variables or some transformation of them are in-
dependent and normally distributed, thén the best set of tolerances in terms of
largest expected treatment bias reduction in ¥ could theoretically be determined
by evaluating equation (5.1.5) in Cochran and Rubin (1973) for several com-
binations of tolerances. In practice, this would be very difficult to do.

6.10.2 Multivariate Stratified Matching

The extension of univariate stratified matching to the case of multiple con-
founding variables is straightforward. Subclasses are formed for each con-
founding variable, and each member of the treatment group is matched with
a comparison subject whose values lie in the same subclass on all confounding
variables.

Example 6.6 Multivariate stratified matching: Copnsider again the blood pressure
data presented in Table 6.6. Suppose that the numerical confounding variable, diastolic
blood pressure, is-icategorized as <80, 81-94, 95-104, and =105, and age as 30-40,
41-50, and 51-60. Including the dichotomous variable, sex, there are in total (4 X 3 X
2 =) 24 possible subclasses into which a subject may be classified. In Table 6.7 we enu-
merate the 12 possible subclasses for males and females separately. Within each cell we

_have listed the subject numbers and indicated by the subscript ¢ those belonging to the

treatment group.
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Table 6.7  Stratification of Subjects on Confounding Variables

in Example 6.6°
Diastolic
Blood Age
Pressure 30-40 41-50 ) 51-60
. Males
-80 5, 19
81-94 6,, 18 20 17
95-104 12,14 15
105- 16 13
Females
-80 1,9
81-94 1, 4, 3,4,5,8,11 6
95-104 3,
105- 2 10 2,7

@ Within each cell the subject number from Table 6.6 is given. Those with.a subscript ¢ are the
treatment group subjects.

With this stratification, the second treatment subject is matched with the seventh
comparison subject. The fifth treatment subject would be matched with the nineteenth
comparison subject and the fourth treatment subject would be randomly matched with
one of comparison subjects 3, 4, 5, 8, or 11. The last treatment subject would be matched
with the eighteenth comparison subject. Subjects 1 and 3 in the treatment group do not
have any matches in the comparison reservoir and must therefore be omitted from the
study, or else the subclass boundaries must be modified.

It should be clear from this simple example that as the number of confounding
variables increases, so does the number of possible subclasses, and hence the
larger the comparison reservoir must be in order to find an adequate number
of matches.

The expected number of matches for a given number of subclasses and given
reservoir size r have been examined by McKinlay (1974) and Table 6.8 presents
a summary of her results. The number of categories in Table 6.8 equals the
product of the number of subclasses for each of the 7. confounding variables.
In McKinlay’s terminology we had 24 categories in Example 6.6. Her results
are based on equal as well as markedly different joint distributions of the L
confounding variables in the treatment and comparison populations (see
McKinlay, 1974, Table 1, for the specific distributions). For example, in a study
with 20 subjects in the treatment group and 20 in the comparison reservoir,
stratified matching on 10 categories where the confounding variable distributions

_ in the two populations are exactly the same will result in about 66 percent of the

treatment group being matched (i.e., only 13 suitable comparison subjects would
be expected to be found). Clearly, large reservoirs are required if multivariate
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Table 6.8 Expected Percentages of Matches in Multivariate Stratified
Matching
N Same Distribution Different Distribution
Size of 10 20 ' 10 ' 20 .
Treatment Group r Categories Categories Categories Categories
20 1 66.0 53.0 55.0 43.5
2.5 94.0 84.5 84.5 72.5
5 98.5 96.0 96.5 89.0
10 100.0 99.0 99.5 96.5
50 1 78.0 _68.6 62.4 55.2
2 97.0 91.6 86.6 78.0
4 99.8 98.8 98.0 92.8
10 100.0 100.0 100.0 99.0
- 65.3 60.5
100 1 84.3 71.3
2 99.1 96.8 90.3 83.7
5 1000 99.9 99.8 97.2

Adapted, by permission of the Royal Statistical Society, from McKinlay (1974), Tables 2 and
3.

_stratified matching is to be used effectively. With 20 treatment subjects one

would need more than 100 comparison subjects for matching with only negligible
loss of treatment subjects. .

No information is available on the bias reduction one can expect for a given
reservoir size, 7, and given population parameters of the joint distrib‘ution of the
L confounding variables in the treatment and comparison populations.

6.10.3 Minimum Distance Matching. y

Both multivariate caliper matching and stratified matching are straightforward
extensions of univariate techniques in that a matching restriction exists for each
variable. In this section we discuss minimum distance matching techniques that
take all of the confounding variables into account at one time, thus reducin.g
multiple matching restrictions to one. For two subjects to be a match, their
confounding variable values must be close as defined by some distance measure.
The matching can be done with a “fixed” tolerance, as in univariate caliper
matching, or as nearest available matching. We begin with the fixed tolerance
case. Because distance is defined by a distance function or metric, these tech-
niques are also referred to as metric matching.
One distance function is Euclidean distance which is defined as
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I_il (X1 — Xor)%, (6.10)

where X is the value of the /th confounding variable for a subject in the treat-
ment (i = 1) or the comparison (i = 0) group. A major problem with the use of
Euclidean distance is that the measure (6.10) and hence choice of matched
subjects strongly depend on the scale used for measuring the confounding
variables. For example, measuring a variable in centimeters rather than in meters
would increase that variable’s contribution to the Euclidean distance 10,000-
fold.

A common technique for eliminating this problem of choice of scale is to
convert all variables to standardized scores. A standardized score (Z) is the
observed value of a confounding variable (X), divided by that confounding
variable’s standard deviation (s): Z = X/s. Equation (6.10) then would be-
come

™~

. (Zu = Zo)? (6.11)

~
]

where Z;; is the standardized score of the /th confounding variable (/ = 1,. . .,
L) for a subject in the treatment (i = 1) or the comparison (i = 0) group. Use
of (6.11) as a matching criterion has been termed circular matching (Carpenter,
1977). '

To better understand circular matching and its relation to multivariate caliper
matching, consider the case of two confounding variables shown in Figure 6.8.
Suppose that the two confounding variables have been transformed to stan-
dardized scores. Point A is a treatment subject with standardized scores of a,
for the first confounding variable and a; for the second. If we were to use mul-
tivariate caliper matching with a common tolerance €, we would search for a
comparison subject with a standardized score of the first confounding variable
in the interval [a@; — €, a; + €], and at the same time, a value of the second
standardized score in the interval [a2 — €, a; + ¢€]. Thus the search is for a
comparison subject like subject B, with confounding variable values within the
square shown in Figure 6.8.

In circular matching with tolerance €, the search is for a comparison subject
whose confounding variable values satisfy

(Zn—Zn)+ (Z12—Zp)?* < ¢

that i_s, for values in the circle of radius € centered at 4. In Figure 6.8, subject
B would not be a match for subject A if circular matching with tolerance € were
used.

There have been several suggestions for calculating the standard deviation
to be used in the standardized scores. Cochran and Rubin (1973) suggest using
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z,

d2+6—4

as—

a, — €—

| | f >

a; — € ay

Figure 6.8 Caliper matching on standardized scores. € = tolerance.

the standard deviations calculated from the comparison group only, yvh}le Srr%lttlh
et al. (1977) suggest using only the treatinent group standz'lrd' devxatxonbs. ‘ lc_
advantage of the latter suggestion is that the s.-tandarq deviations m(;ly e cat

culated before identifying the comparison Sub_]Cf:tS. Finally, a poo_le estlr;lah,e
of the standard deviation can be used if one believes that the variances o thc
two groups are similar. All three suggestions suffer.from the restrlct{(l)n btlhat t _c;,
measurements fof calculating the standard deviations must be available prio

to any matching. .
Equation (6.11) can be rewritten as

L

3 (Xu — Xor)/st-

=1 ‘
As can be seen from this, circular matching only tgkcs the vari.ances of the
confounding variables into account and neglects possﬂ)_le corrc%atlons between
these variables. An alternative metric matching technique which takes corre-
lations into account is Mahalanobis metric matching, based on the following

measure of distance in matrix notation:
(X1 — Xo)' S~} X1 — Xo)s (6.12)
where S is the matrix of sample variances and covariances (specifically, the

pooled within-sample covariance matrix) and X represel}ts a column vec‘tor of
values of the confounding variables. This distance function can be used in the
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same way as Euclidean distance using a fixed tolerance to define a match.

Circular and Mahalanobis metric matching with tolerance € can resultin a
loss of information, however, since there is no guarantee of matching all treat-
ment subjects, even when the comparison reservoir is large. One approach to
overcome this potential loss of treatment subjects is to generalize the method
of nearest available matching (Section 6.5). Cochran and Rubin (1973) suggest
randomly ordering the treatment subjects and then assigning as a match the
comparison subject who is not yet matched and who is nearest as measured by
some distance function, such as (6.10), (6.11), or (6.12). Such methods are called
nearest available metric matching methods. Smith et al. (1977) proposed nearest
available circular matching. Rubin (1979) compared the percent bias reduction
of nearest available Mahalanobis metric matching with that of nearest available
discriminant matching (Section 6.10.4). Rubin’s study is discussed in Section
6.10.5.

6.10.4 Discriminant Matching

Another approach for dealing with multiple confounding variables is to
transform the many variables to a single new variable and then to apply a uni-
variate matching procedure to this single variable. One such transformation is
the linear discriminant function. Basically, the linear discriminant function is
a linear combination of the confounding variables that best predicts group
membership. In a sense, it is the variable on which the groups differ the most.*
By matching on this single variable, it is hoped to achieve the maximum amount
of bias reduction. Using one of the univariate matching procedures described
above on the linear discriminant function, those cases will be selected whose
discriminant function values are the.closest. For more detailed references on
discriminant matching, see Cochran and Rubin (1973) and Rubin (1976a, b;
1979). Snedecor and Cochran (1967, Chap. 13) show how to use multiple re-
gression to calculate the discriminant function.

6.10.5 Multivariate Matching with Linear Adjustment k

Rubin (1979) empirically examined the nearest available Mahalanobis metric
and nearest available discriminant matching methods, alone and in combination
with regression adjustment on the matched pair differences for various sampling
situations, and for various underlying models, both linear and nonlinear. (See
Section 13.3.1 for a discussion of matching with regression adjustment.) Rubin
selected these two methods because, under certain distributional assumptions,

*A good survey paper on discriminant analysis is that of Lachenbruch and Goldstein (1979). In this
paper a discussion is given of discriminant analysis on numerical variables, categorical variables, and
multivariate data containing both numerical and categorical variables.
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they are equal percent bias reducing (EPBR); that is, they yield the same percent
reduction in bias for each matching variable. As a result, this percent bias re-
duction is a straightforward criterion of how well the EPBR matching method
has reduced bias in the estimate of the treatment effect.

The broad conclusion of Rubin (1979) is that nearest available pair matching
using the Mahalanobis metric, together with regression adjustment on the

_ matched pair differences, is an effective plan for controlling the bias due to the

confounding variables, even for moderately nonlinear relationships.* Over a
wide range of distributional conditions used in his Monte Carlo study, this metric
matching method reduced the expected squared bias by an average of 12% more
than did random sampling with no matching. (Notice that for univariate
matching methods, the results given in Tables 6.2, 6.3, and 6.5 all relate t.o
percent bias reduction and not to percent squared bias reduction.) This ‘metrlc
matching reduces more than 90% of the squared bias. Without regression ad-
justment, nearest available discriminant matching is equivalent to nearest
available Mahalanobis metric matching, although Rubin finds that Mahalanobis
metric matching is more robust against alternative model and distributional
specifications.

6.11 MULTIPLE COMPARISON SUBJECTS

Occasionally, matched samples may be generated by matching each treatment
subject with more than one comparison subject. Matching with multiple controls
is especially advantageous when the number of potential comparison subjects
is large relative to the number of available treatment subjects or when the unit
cost for obtaining the comparison subjects is substantially lower than that of
obtaining treatment subjects: .

The present discussion concentrates on the dichotomous outcopne case. As-
sume that each treated subject is matched with the same number, say g, of
comparison subjects. The selection of a particular multivariate matching pro-
cedure should be based on the same principles explained in previous sections for
a single comparison subject. For an example of pair matching using multiple
controls, see Haddon et al. (1961).

Let the data from the jth matched group,j = 1,2, ..., N, be represented in
terms of a 2 X 2 frequency table, Table 6.9. Here a; = 1 if the treatment subjects
have the outcome factor present and a; = O otherwise; b; is the number of
comparison subjects who have the outcome factor present.

* For univariate matching, an extreme example of a moderately nonlinear relationship is ¥' =
exp (X), whereas ¥ = exp (X/2) is more reasonable. In multivariate matching, a similar statement
can be made.
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Table 6.9 Multiple Comparison Subjects Data from Jth Matched Sample

Treatment Comparison
Outcome Subjects Subjects Total
Factor present (= 1) - a by a; + by
Factor absent (= 0) 1~a q—b 1+q—(aj+85)
Total 1 q 1+g¢q

For simplicity, let us make the following definitions:

N
A= Z a;,
=1

where A is the total number of treatment subjects who have the outcome factor
present, and

N
B=ij

Jj=1

where B is the total number of control subjects who have the outcome factor
present. Therefore, the rate at which the outcome factor is present among the
treatment group is p1 = A/N, and the rate at which it is present among the
comparison group is pg = B/gN. The difference in rates, as a measure of treat-
ment effect, is then estimated by p1 — po.

To estimate the odds ratio, each set of ¢ + 1 subjects is considered a stratum,
and es_timators appropriate to stratified samples are applied. (See Section 7.6.1
for a more detailed discussion of estimators of the odds ratio that are appropriate
when the number of strata becomes large.) Two such estimators, the conditional
maximum likelihood and Mantel-Haenszel estimators, are given by Miettinen
(¥970). For g 2 3, the conditional maximum likelihood estimator becomes
difficult to use because it requires an iterative solution. For the case of exact
matching, the conditional maximum likelihood estimator will be approximately
unbiased for large N; Miettinen conjectures that the same is true for the Man-
tel-Haenszel estimator. No comparison of these two estimators as applied to
multiple comparison subjects has been made. McKinlay’s (1978) results for
- stratification (Section 7.6.2) imply that the Mantel-Haenszel estimator will
be less biased than the conditional maximum likelihood estimator will be. For
the case of a single comparison subject for each treatment subject (g = 1), the
two estimators are identical (and are given in Section 6.9). ’

. To test the null hypothesis of no treatment effect, we wish to consider the
difference between p; and po. An appropriate test statistic is -
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__P1=Po
.SE(p1 — po)
qA— B

@+ DA+B) ~ £ (@b
P2

where SE(p| — po) is the standard error of the difference. Miettinen (1969) has
shown for large IV that T has a standard normal distribution under the null
hypothesis. He has also studied the power of the test and has given criteria, in
terms of reducing cost, for deciding on an appropriate value of g, the number

" of comparison subjects per treatment subject.

When the outcome variable is continuous, one could compare the value for
each treatment subject with the mean value of the corresponding controls, re-
sulting in NV differences. For a discussion of this approach, see Ury (1975).

Ury (1975) also presents an analysis of the statistical efficiency that can be
gained by matching each case with several independent controls. For the di-
chotomous as well as the.continuous outcome variables, the efficiency of using
g controls versus a single control is approximately equal to 2¢/(g + 1). For ex-
ample, using 2 controls would increase the efficiency by about 33%; using 3
controls, by about 50%.

6.12 OTHER CONSIDERATIONS

This section includes three miscellaneous topics regarding matching. Sections
6.12.1 and 6.12.2 present results for matching that relate to general problems
discussed in Sections 5.1 and 5.2, respectively: omitted confounding variables
and measurement error. Some ideas regarding judging the quality of matches

when exact matching is not possible are given in Section 6.12.3.
y

6.12.1 Omitted Confounding Variables

A common criticism investigators must face is that all the important con-
founding variables have not been taken into account. Unfortunately, with respect
to matching, there are only very general indications of the effect of an omitted

confounding variable.
Should the omitted confounding variable Z have a linear, parallel relationship

with the included confounding variable X in the two populations, then matching
solely on X removes only that part of the bias which can be attributed to the linear
regression of Z on X. The amount of bias removed depends on the value of the
regression coefficient of Z on X. ‘
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Af:cording to Cochran and Rubin (1973), if the regression of Z on X are
nonlinear but parallel, then in large samples, matching solely on X will remove
only that part of the bias due to Z that corresponds to the linear component of

the regression of Z on X. These results generalize to the case of multiple con-
founding variables.

6.12.2 Errors of Measurement in Confounding Variables

If we assume that the response is linearly related to the correctly measured
or true, confounding variable in both populations, but that we can only matcl;
on va}lyes which are measured with error, then except under certain special
con_dltlons, the relationship between the response and fallible confounding
variable will not be linear.

As an indication of the effect of measurement error on matching, consider
the case where the response and the fallible confounding variable are linearly
related. Then matching on the falliblé variable has the effect of multiplying the
expected percent reduction in bias by the ratio of 8% /8 (Cochran and Rubin,’
1973). In this ratio, 8* is the regression coefficient of the response on the falliblé
confounding variable and  is the regression coefficient of the response on the
true confounding variable. Since this ratio is usually less than 1, matching on
a confounding variable measured with error results in less bias reduction than

dgfs matching on the corresponding accurately measured confounding vari-
able. |

6.12.3 Quality of Pair Matches

'In the case of pair matching the investigator can be lead to significant errors
of 1nt§rpretation if the quality of the matches is poor. Quality is judged by the
magnitude of the differences between the values of the confounding variables
for the comparison and treatment subjects. In this section we discuss a general
approach that uses stratification to investigate any imperfect matching and its
effect. We also discuss two approaches suggested by Yinger et al (1967) for
the case of a numerical outcome variable, .

Perhaps the obvious first step in determining the overall quality of the pair
mat(.:hes obtained is to employ simple summary statistics such as the mean or
me(.ilan of the absolute differences between pairs for each particular confounding
variable. Such statistics, however, do not give the investigator any indication

- of a relationship between the response and the closeness of matches. It is the

existenf:e of such a relationship which should be taken into account when in-
t,erpretlpg the findings of a study. For example, if in a study on weight loss
(numerical ¥esponse) the pairs which show the greatest difference in weight loss
were the pairs who were most imperfectly matched, the investigator should be
suspicious of the apparent effect of the treatment.
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How can investigators determine if there is any relationship between response
and the quality of the matches? In-the case of a categorical response, the in-
vestigators can take one of two approaches, depending on the number of con-
founding variables. If there are only a few variables, they can determine sum-
mary statistics for each response category. This may be viewed as analyzing the
effect of possible imperfect matching by stratifying on the response. The sum-
mary statistics should be nearly equivalent for all response categories.

- If there are several confounding variables, the investigators may instead wish
to determine a single summary statistic of the quality of the matches for each
response category. This can be done in a two-step procedure. First, for each
confounding variable, the differences between matched pairs are categorized
and weights are assigned to each category. For example, in the weight-loss study,
if age is one of the confounding variables, a difference of 0 to 6 months may re-
ceive a weight of 0, and a difference of 7 to 11 months a weight of 1, while a
difference of 12 months or more may receive a weight of 3. For the second step,
the weights are summed across all confounding variables for each matched pair
in a response strata and again we could either take the mean or the median as
a summary statistic of the closeness of the matches. These numbers should agree
across response sttata. We wish to point out that these weights are arbitrary and
are only meant to be used for within-study comparisons.

Yinger et al. (1967) have two methods for studying the effects of imperfect
matching in the case of a numerical outcome. The first of their methods consists
of forming a rough measure of the equivalence of the treatment and comparison
groups by the weighting method discussed above for a categorical outcome. They
call this measure the index of congruence.

Consider a study of reading ability, where age, sex, and birth order are con-
founding variables. Table 6.10 illustrates the calculation of the index of con-
gruence for such a study. Here the index of congruence can range from O to 8
points, where a score of 0 indicates close matching and a score of 8 indicates the
maximum possible difference between a treatment and control suBject. Again,
these scores are arbitrary and only meant as descriptive measures for within-
study comparisons.

To determine if there is any relationship between the response and the quality
of the matches, we can either calculate the correlation coefficient between the
estimated treatment effect and the index of congruence, or plot the relationship.
Ideally, both the correlation coefficient and the slope of the plotted curve should
be close to zero, indicating no relationship.

The index of congruence gives only a rough measure of the group equivalence,
in part because it does not take into account any directional influences of the
confounding variables. The second of the Yinger et al. methods forms a direc-
tional measure of congruence which takes this factor into account.

The investigator may have prior knowledge (e.g., from previous research)
of the directional influence of the confounding variables on the outcome. Con-
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Table 6.10 Index of Congruence Calculation

Range of
Possible Point.

Confounding Differences between

Variable _ Score Matched Pairs
Age difference
* 0-6 months =
7-11 months =1 0-3
12+ months =3
Sex
Same =0 0-3
Different =3
Birth order
Both either firstborn
or not firstborn =0 0-2
Otherwise =2
Total . ‘ 0-8

51de:r.again the study of reading ability and suppose that increasing age had a
positive influence while increasing rank of birth had a negative influence. In
addl_t‘lon, suppose the matching on sex was exact, so that we need not consi.der
the directional influence. For the directional measure of congrucﬁce we will use
only scores —1, 0, and 1, where ~1 indicates that the treatment subject has a
valqe of' the confounding variable implying that the response for the treatment
subject is expected to be inferior to that of the comparison subject; O indicates
that they are expected to be the same; and 1 indicates that the treatr;lent subject
response is expected to be superior. Then, the directional index of congruence
for matching a 12-year-old firstborn treatment subject with a 14-year-old sec-
ond‘-born comparison subject of the same sex would be zero, since the treatment
:‘:rtj)f)e(':tts (sjupir_ior;'ty due to a lower birth order would be offset by his or her in-
‘ rity due to a lower age. In co i :
6.10 for sum s Llowe wium o ;trast, the index of congruence based on Table
The nvestigator may also plot the estimated treatment effect versus the value
ot.” the directional measure of congruence for each pair. By considefiilg the scatter
diagram and regression curve, the investigator can judge to what degree the
treatment cffgct is related to differences between the matched pairs. Ideall
the plot should again show no relationship. patts, Sealy.

6.13 Conclusions

. l’f‘he most practical of the pair matching methods is nearest available matching.
t has the advantage that matches can always be found. However, because of
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the varying tolerance, it will not be as effective as caliper matching in reducing
the bias in the estimation of the treatment effect.
The pair matching methods are the best methods to use when the relationship

- is nonlinear. Rubin (1973a) found that the percentage reduction in bias for

random-order nearest available matching in the linear case (Table 6.2) was
overestimated by less than 10 percent in most nonlinear cases. Pair matching
methods do require a large control reservoir, however, and are therefore difficult
to use in studies with a large treatment group or where it takes a long time to
find comparison subjects. They seem to be the most effective when o3/03 is
approximately 1 and to be least effective when o7/ 03 is approximately 2 or more,
with 71 > 1. Rubin also concludes that matching with » > 2 generally improves
the estimate of the treatment effect, especially if the variance of the confounding
variable is greater in the comparison population than in the treatment popula-
tion.

Nonpair matching methods—mean and frequency-—are quicker than are pair
matching methods. However, mean matching is not used often because of its
strong dependence on the assumption of linearity. If the investigator feels very
confident that the relationship is a linear parallel one, and if the treatment and
comparison groups are about the same size, mean matching may be considered
as a fast matching procedure which has the same precision as pair matching in
such a situation.

APPENDIX 6A: SOME MATHEMATICAL DETAILS

6A.1 Matching Model

The general mathematical model used to analyze the effect of matching with

a numerical outcome variable can be represented as
r

Y,-j=R,~(X,-j)+e,~j [= 1,0;j=1,2,...,n,-, (613)

where { = | represents the treatment.group, { = 0 the comparison group, and
J is the jth observation in each group. Furthermore, Yj; is the response variable
and is a function of the confounding variable X;;. The residual e;; has mean zero
and variance ¢7, and X;; has mean 7;. We assume that the Y and X are numerical
variables.

We now consider the specific forms of the response function R; (-) that cor-
respond to the linear parallel and quadratic parallel relationships.

6A.2 Parallel Linear Regression

For the parallel linear regression, the model (6.13) becomes
' V.
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Kj=#i+5(ij—77i)+e,j i=1,0j=12,...,n (6.14)

or
Y=o+ BX;+ey,

where

;= p; — ;.

Notice that the slope is the same for both the treatment and the comparison

g g . .ff
IOUpS Ill th]s case tlle Ir eatn’le)lt ejfect al X 1S dCflnCd as the dlffel €nce in
0

& = Qo = (41— o) = B(n1 — o). (6.15)

Since the estimator of the treatment eff i i
It effect (6.15) is the difference in the mean
responses between the two groups, ¥; — ¥, with mean response defined as
E(Y:| X)) = a; + BX;, the.expected value of the estimator is
E(Y1 —?0'21,20) = al—a0+ﬁ(X’1 —Xo). (616)

o §rom 1(?6) 1 6% lilt follows that the estimator (Y1 — Y,) is biased by an amount
1 = Xo). Thus a matching procedure that X —X
possible will be preferred. makes [, ol as small as

6A.3 Parallel Nonlinear Regression

Consider a parall i ; : .
written ns parallel quadratic relationship. Then the matching model can be
Y=+ B(Xy; —m) + 0X7 + ey,
It follows that

EY,—- YolX1, Xo) = My = po~ B(n1 — no)
+ B — Xo) + 6(X3~ X3) + 5(s2 — sd), (6.17)

where s? = S, (X, — X)2 = . _
. i J=1\Ajj )Y/Nfori=1,0. Comparing (6.17) with
difference (6.15), we see that the bias equals B (6-47) with the treatmen

BX, = Xo) + 5T - X3) + 8(s3 - 53). (6.18)
Clearly, in this nonlinear case e i
_ 11 ‘ » €quality of the confounding variab]
1shnoF sufficient. .(In _part1cnlar, mean matching is not appro;%riate.) 'I‘?hlirsu:j:rrllf
phasizes the motivation of tight pair matching. By choosing pairs so that each

treatment subject is very closely matched to a comparison subject, any difference
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in the sample confounding variable distributions that may be important [such
as means and variances in (6.18)] is made small.
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