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AN earlier paper in this series has described statistical methods for 
calculating the dosage-mortality curve (2) on the assumption that it owes 
its characteristic sigmoid shape to  the variation in susceptibility between 
the individuals of a population. If living organisms are immersed in a 
toxic solution or gas and the time recorded a t  which each individual is 
paralysed, under conditions of equal exposure we may also assume that 
the differences in the survival period are an indirect measure of the 
individual susceptibility to the poison. When the percentage of organisms 
which has reacted up to and including each successive observation is 
plotted against time, with most multicellular organisms the resulting 
time-mortality curve is similar in shape to the dosage-mortality curve. 

1 Manuscript completed at  the Institute of Plant Protection, Lenin Academy of Agri- 
cultural Sciences, Leningrad, with the approval of the Director. 
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It is reasonable to suppose, therefore, that the variation in this measure 
of susceptibility may also be distributed normally and to apply the 
normal curve to the survival period. Similar methods of analysis are 
available for many different measurements of reaction time, some of 
which are illustrated in the numerical examples. The basic statistical 
procedures differ considerably from those described for computing the 
dosage-mortality curve, and usually are much simpler. The time- 
mortality curve is of interest primarily in comparison with equivalent 
curves obtained at  different concentrations or dosages, by me use of 
different poisons, or under varying experimental conditions. Then it may 

!5 

Survival time in minutes 
Fig. 1. Frequency distribution of the number of mosquito lanae surviving for different 

periods in a 5.1 millimolar solution of heptylic acid, showing the relation between the 
original or non-cumulative ( A )  and the emulatire (B)  diagrams. Data in Table II. 

become a valuable measure of toxicity and its correct computation 
essential for reaching reliable conclusions. 

The methods of computation, for the most part, have been adapted 
from Statistical Methods for Research Workers by R. A. Fisher(11). For 
their application a calculating machine, Barlow’s Tables (I), and a table 
of common logarithms are required. 

I. THE TINE-XORTALITY CURVE 
Time-mortality data may be defined as records of reaction time which 

can be reduced to a form showing the number of organisms which react 
to a toxicological stimulus in each of several successive periods of time. 
The record of a single experiment, therefore, can alviays be plotted in 
a form similar to curve A of Fig. 1. This figure, based on the data of 
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O’Kane et al.(l4), shows the number of mosquito larvae in a total of 
80 individuals which succumbed to a 5.1 millimolar concentration of 
heptylic acid in successive 15 min. periods. If the number of individuals 
in each successive interval is added to those which have already SUC- 

cumbed, the familiar “step diagram” (Fig. 1 B )  is obtained, and when 
the points of intersection in each of these steps, transformed to the 
percentage of the total, is plotted against time, a sigmoid curve frequently 
is obtained quite similar in appearance to the dosage-mortality curve. 
Although time-mortality data can always be plotted as a cumulative 
curve which is typically sigmoid, dosage-mortality data cannot conversely 
be reduced to  a non-cumulative frequency distribution, whether dosage 
is measured in time units or otherwise. Each observation in a dosage- 
mortality curve represents a different set of organisms, so that the 
individuals a t  the successive dosages are unrelated in susceptibility. 
It is possible for the mortality to be less a t  a longer than a t  a shorter 
period if by chance the first group of organisms should contain a large 
proportion of more resistant individuals. But this can never happen in 
a time-mortality curve since all of the points are merely differeqt 
observations on a single set of animals and the percentage mortality at 
a given time can never be less than that recorded earlier in the experiment. 
The successive observations are strongly correlated with each other and 
in consequence the methods of computation that have been described 
for the dosage-mortality curve are not applicable here. 

Although the dosage-mortality curve is the better standard of 
reference for most toxicological investigations, there are many instances 
where time-mortality curves may be used advantageously, either to give 
supplementary information or the same information more efficiently. 
The following examples will show how varied time-mortality data can be. 
Many investigators have timed the survival of organisms immersed in 
a toxic solution, or, more accurately, the period preceding some well- 
defined paralytic response. In this case the record of time included both 
the time for the fixation of an effective dose and the period required for 
it to produce its biological effect after fixation. Crustaceans (A),  mosquito 
larvae (14) and goldfish (13) have been used recently in experiments of this 
type. The response of adult Drosophila has been timed in alcohol 
vapour ( 8 )  and in hydrocyanic acid gas (3), experiments which differ only 
in the use of a gaseous rather than a liquid medium. In other cases the 
poison has been applied as a contact spray to house-flies (16)) injected 
into silkworm larvae(;), and fed in measured amounts to many kinds 
of mandibulate insects, and the preparalytic or survival period then 
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included the time for the penetration or translocation of given dosages 
from the point of application to the seat of action as well as the time 
to produce the effect that was recorded. Other investigators have timed 
the recovery of Limnoria after immersion in solutions of phenol and of 
other poisons(l7) or of Drosophila after fumigation with HCNc6). Finally 
there have been many experiments in which the time was measured 
from the initial exposure to poisoned food rather than from the start 
or completion of feeding, the so-called “cage tests”. In these and 
similar instances the basic measurements of time have involved the 
time-mortality curve, although the methods of computation hbve varied 
considerably and frequently insdlicient data have been recorded to 
compute the curve. It is not suggested that it is always necessary to 
compute the time-mortality curve in full. but unless its characteristics 
are known and considered in the design of each experiment, there is 
no certabty tshat the results are unbiased. 

Some limitations caused by not computing the time-mortality curve 
may be examined. Several investigators have based their conclusions 
upon the median reaction time, determined either during the experiment 
by recording the reaction time only of the median one or two individuals 
in each set or later by graphic interpolation from the middle section of 
an incomplete time-mortality curve in its sigmoid form. Although 
neither method is precise, especially when the total number in a dis- 
tribution is small, both estimate without systematic error the time for 
50% of the organisms to respond. However, they do not provide an 
estimate of the accuracy of each median nor is it possible to estimate 
other levels of effectiveness, such as the time for 95% to react. 

Other investigators have computed the mean reaction time from their 
original records without determining whether these original units of time 
were, in fact, distributed normally. In such cases as have been tested, 
a normal distribution of the original units has been exceptional, although 
when the time units were transformed to logarithms or: less frequently, 
to reciprocals (rates), normal distributions were obtained in most cases. 
Consistent biological indices mar then be computed from the transformed 
times by means of familiar statistical methods. IThen the distribution 
is not normal, the mean reaction time does not represent a constant level 
of effect, as is the case e t h  the median, but a response displaced to a 
varying extent from the median. The extent of this displacement has 
been estimated in several cases in which the logarithm of the reaction 
time was distributed normally, by comparing the logarithm of the mean 
time With the mean of the logarithm time, which coincides presumably 
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with the median. From the ratio of the difference between the two means 
to the standard deviation of the logarithmic dist.ribution, the percentage 
of the response represented by the arithmetic mean has been read from 
Pearson’s Table II(1.5) for the cases listed in Table I. From the last 
column it is apparent that the mean did not represent a constant level 
of effect for different phenomena, but varied even for the same type of 
response at  different concentrations of a single poison. 

The standard deviation computed from a time-mortality distribution 
that is not normal loses most of its direct toxicological value. By means 
of probits or their equivalent a normal frequency distribution can be 
plotted as a straight line as will be described presently, but if the initial 
distribution is skewed to the left, as it frequently is, the observations a t  
successive time intervals on the cumulative probit graph mill not form a 

Table I 
Percentage response represented by the ar i thwt ic  mean of the observed 

reaction time when, the logarithm of the time is found to be distributed 
normally. The data are f r o m  papers listed in the references under the 
number in theJirst column. T h e  concentrations of the two heptylic acid 
solutions were (a)  5.1 and (b)  6.4 millimoles per 1. 

Standard 
Source of Type of M e 9  log. Log. mean deviation 

data response Insect P G k O n  m. min. in log. response 

(7)  Death Bmnbyx Sodium arsenate 24267 24293 0.0491 52.2 
(14) Paralysis C U h  Heptylic acid (4) 2.0349 2.0555 0.1342 56.1 

straight line but a curve that is convex upwards. The standard deviation 
for such a distribution, as computed from the original observations, gives 
the slope of the straight line that best fits this curving series of points. 
Since a straight line is not a satisfactory fit, it cannot be used to determine 
when any given percentage of individuals will succumb to the poison. 
However: if the survival times are first transformed to logarithms or to 
some other function of observed time and the points on the cumulative 
probit diagram then form a straight line, the standard deviation computed 
from these converted time units is itself of value. Since it is the slope of 
the best-fitting straight line, it can be used for computing the time a t  
which any given percentage of individuals r i l l  succumb to the poison. 
In consequence, comparisons of different poisons or of different concen- 
trations of the same poison need not be restricted to the time a t  which 
half of the organisms react but may be based with a calculable error upon 
a higher mortality. 

(3) Stupefacbion Drosophilu HCN - 0.4050 - 0.3992 0,0701 53.3 
(6) Recovery Drosophila HCN 14776 1.4968 0.1349 55.7 

(Death ?) ( h )  16397 1.6496 0.0883 54.5 
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It is not proposed that all records of the reaction time to toxicological 

stimuli can be reduced to normal distributions by relatively simple pro- 
cedures. Thus, in a study of the resistance of Drosophila t o  alcohol by 
Crozier et al.(&), most of the records on t,ime-to-death gave flat-topped 
distributions, quite different in appearance from normal curves. The 
authors suggest. that this may be attributed to a product function of two 
independent t.ypes of variation, one a symmetrical distribution of the 
penetrability into the fly of alcohol vapour and the ot.her a strongly 
skewed distribution of the resistance to absorbed alcohol. Although this 
is an interesting approach to the problem, the distributions giv,a in t.heir 
paper (Fig. 15) can be considered only as indicative, since each curve is 
based upon too fex individuals for the differences from normality Thich 
they show to be significant. The fire “flat-t.opped” distributions for 
younger flies, for example, could be fit.ted sat.isfactorily m-ith the normal 
curve as tested both by graphic analFsis and by t,he x 2  t.est for the agree- 
ment of observed n t .h  expected frequencies. It. rould be necessary to use 
a larger number of individuals, ungouped data, or both to esta.blish 
these apparent departures from the normal distribution. 

The reaction t o  a toxic stimulus probably a.lTays involves many 
components but this does not preclude either a relat,ively simple type of 
distribution or a change in its form a t  different levels of susceptibility. 
One of the first investigators to use methods such as are described here 
was TT. P. Dave? in a study of the prolongation of the life of T‘riboliuln 
confusum by small doses of X-raysp). Xany of his distributions of 
longevity showed one or more sharp cha.nges in slope when tested graphi- 
cally with “probability paper ”> “breaks “ which in Davey’s opinion did 
not invalidate the method or his theory. If the time-to-death can be 
considered a function of t.he individual susceptibilit.p to a poison and this 
susceptibility is dist,ributed normally, t.hen small dosages of any given 
poison must esist. such that t.he distribut.ion of time-to-death nil1 be 
interrupted before all individuals ha.re reacted due to t.he failure of the 
more resistant indil-iduals to die. Since t.he response ca.n change so 
ma.rkedly as a function of suscept.ibilit.y, lesser qualitat.ive c.hanges in t.he 
nature of the response are t.0 be expected, changes which mat- 1ea.d to 
discontinuit,ies in the t.ime-morta.lity c.urTe. In order tha.t. the time- 
mortality curve. may be an effective instrument in t.he a.nalysis of toxico- 
logical phenomena, the methods for its study must be based upon the 
Thole distribut.ion of susceptibilities a.nd expose their relation to the 
response. The most useful instrument for t.his purpose is graphic analysis. 
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11. COMPLETE TIME-MORTALITY CURVES 

In contrast with the dosage-mortality curve, the computation of the 
time-mortality curve (unless truncated) is not based upon the provisional 
or graphic time-mortality line but upon the original distribution from 
which it has been derived. The purpose of graphic analysis is to determine 
which function of time is to be used in computing the curve and to insure 
that none of the observations included in the computation depart 
systematically from the curve. If such deviations from normality do 
occur or if the curve is incomplete, methods suitable for the truncated 
distribution must be used rather than those to be described here. 

Graphic analysis 
Of the different ways in which the data can be plotted, the cumulative 

rectilinear graph is the most useful. The diagram then shows not only 
whether a given function of time is distributed normally, but if it is 
normal, it gives directly a graphic estimate of the mean (or median) 
reaction time, the standard deviation, and the time a t  which any given 
percentage of organisms between 0 and 100 has reacted. Moreover, the 
variance of each estimate can be derived with a minimum of calculation. 
If only part of the organisms react due to an insufticiently toxic dose of 
poison, if the record is incomplete for any other reason, or if in the course 
of a single experiment there is a change in the nature of the response 
which affects the time of its occurrence, graphic analysis is essential for 
the derivation of unbiased statistical constants. In some cases the data 
may be suEciently uniform that graphic estimates of the essential 
statistical constants will answer all of the requirements of the in- 
vestigator. 

In preparing time-mortality data for plotting, the first step is to 
transform the initial frequencies into cumulative percentages and these 
in turn into probits. The procedure depends partly upon the manner of 
recording the experiment. In some cases the number of L‘dead” indi- 
viduals is recorded periodically from the start ofthe exposure untilall have 
reacted to the poison. The reccrd then shows directly (or by subtraction) 
the numbers of animals which have reacted in the time intervals between 
successive observations. The transformation of this original, non-cumula- 
tive frequency distribution to units suitable for plotting are illustrated by 
the example in Table I1 (Figs. 1 and 2, curve A ) .  The class limits, in each 
case show the elapsed time up to and including each upper limit (Table 11, 
col. 1) ; the original frequencies give the number of larvae paralysed within 
each interval (col. 2 and Fig. 1A);  cumulative frequencies are placed 
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opposite the respective class limits rather than between them (col. 3); 
percentages are derived from the cumulative frequencies (col. 4) and then 
converted to probits (col. 5) by means of the t,able given in an earlier 
paper(2). Instead of the more convenient probits, it is possible to use 
directly the deviates of the normal cwve, such as are given in Table I 
of Pearson‘s Tables (15)’ the mathematical constants (prf-lp in Wright’s 

Table I1 
Graphic analysis and computation of the time-mortality curve from data 

grouped during the experiment, as shown by the survival ti?rLe of larvae 
of Culex pipiens in a solution of 5-1 millimoles per 1. of heptylic acid; 
data of O’Kane et aL(14). See Fig. 1 and Fig. 2, curve A 

Data for graphic analysis Data for computed curve 
Larrae , 1. r 3 A 

Class deadin Larvaedead at end Log. Mid-point 
limits each of each interval of of log. Grouping 

in interval /TA-> clsss intervals interval 
min. f ho.  OA Probit limits z f= i fi - 45 

3 
60* 3 

7 
75 10 

11 
90 21 

13 
105 34 

16 
120 50 

11 
135 61 

6 
150 67 

6 
165 73 

5 
180 78 

0 
195 78 

1 
210 79 

1 
225 80 

. _  - - 1.653 

3.7 3.21 1.778 

12-5 3.85 1.875 

26.3 4.35 1.954 

42.5 4-81 2-021 

62-5 5.32 2-079 

76.2 5.71 2.130 

83.8 5.99 2-176 

91.3 6.36 2-217 

97.5 6.96 2.255 

97-5 6.96 2.290 

98-73; 7.24 2.322 

100 - 2.352 

1.715 

1.826 

1.915 

1.988 

2.050 

2.105 

2.163 

2.197 

2.236 

- 
2.306 

2.337 

5.145 

12.782 

21.065 

25.844 

32.800 

23.155 

12.918 

13.182 

11-180 

- 

2.306 

2.337 

0.125 

0.097 

0.079 

0.067 

0.058 

0.051 

0446 

0.041 

0.038 

- 
0.032 

0-030 

0.3i5 

0.679 

0.869 

0.871 

0.928 

0.561 

0-276 

0-246 

0.190 

- 
0.032 

0.030 

* An extra observation at 55 min. is omitted here but included in curve A of Fig. 2. 

terminology(19) or N.E.D. in Gaddum’s terminology(=)) in the body of the 
table being read as positive when above 50 % and as negative when below 
50 % from the corresponding proportionate (percentage + 100) frequencies 
along the margins. By the same reasoning as in earlier papersw,E12), 
that function of time is distributed normally against which the probit can 
be plotted as a straight line and usually it can be considered a more direct 
measwe of the biological factors determining susceptibility than units of 
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time which are not so distributed. In the paper from which the example 
in Table I1 has been taken the logarithm of the time is shown to be 
distributed normally, so that in col. 6 the class limits have been changed to  
logarithms and in curve A of Fig. 2 the probit has been plotted against 
the logarithm. In this case the plotted points fall so evenly along a straight 
line that the final computed curve practically coincided with the one 
fitted graphically. 

In other cases, by means of continuous observation, the exact reaction 
time of each individual in the series may be recorded. If the number of 
individuals is large (say 50 or more), they should be grouped for analysis. 
When it is unknown in which units of time the distribution is normal and 
there is no clue either from previous experience or fiom theoretical 

1 3.2 

Survival time in logarithms 
Fig. 2. Rectified time-mortality curves of the survival time of mosquito larvae in solutions 

of 5.1 (A) ,  4-1 (B) ,  and 3*0(C) millimoles per 1. of heptylic acid, data of O’Kane et d. (14). 
The provisional curve for senes B is indicated by a broken line, that for series C is 
graphically indistinguishable from the computed curve shown, w in A and B, by a solid 
line. See Tables I1 and IX. 

considerations, several units may be tried empirically in succession, such 
as the reaction time directly, the rate of reaction, and the logarithm of the 
time (or of the rate). Class intervals that are equal in terms of any one 
of these are necessarily unequal in terms of the others, and markedly so 
if the distribution covers a wide range of time relative to the start of the 
experiment. Since the original records can be classified with almost equal 
facility into groups that are evenly spaced in terms of any of these units, 
the labour of testing several alternatives is not excessive. The procedure 
may be illustrated by the time in which 68 adult Drosophilarecoveredfrom 
a sublethal dose of hydrocyanic acid gas of 1.22 mg. per 1. for 1 min. (6L1 

1 The series differs from that reported originally(6) in the omission of a single individual 
which recovered in 76 min. but wm marked “very feeble” in the record, the only fly in the 
series that waa so characterized and apparently an experimental error. 
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The original recovery times, listed in Table 111, have been grouped in 
Table IV into equal units iii terms of 5 min. intervals, of 0-5 rates or 
reciprocals ( x loo), and of 0-05 logarithms of minutes. In each case the 
class interval includes its upper but not its lower limit. By writing oppo- 
site each class limit the recovery time in minutes t o  one more decimal than 
in the original record, here to 0.1 min., the frequencies in each grouping 

Table I11 
Original data on the recovery period in mindes of individual adult Droso- 

phila after fumigdion with 1.22 mg. of HCX per 1. f o r  1 n ~ i ~  (Oct. 19), 
Broadbent 13 Bliss (6) 

- 

45 
77 
63 
39 
33 
3-3 
36 
39 

8 

7 m 
Y 
2 
o r 6  

2 

c 

.- 5 
- 

g 4  
c r 

3 

2 

I l l  

33 29 26 34 55 21 30 30 
32 41 18 29 25 19 26 17 

19 27 33 47 
99 34 24 

34 21 25 32 
30 28 33 24 29 -- 

20 32 31 38 19 27 33 
28 13 32 37 29 29 33 

24 30 26 25 19 33 40 
25 21 28 32 32 28 32 

- - 
- - 

I l l  I 

- ,'- 0 

p' 

/ -P 

Logarithm of minutes 
;4 1.5 I" '.' 'p If , 

3 

Minutes Recovery period Rates 
Fig. 3. Recovery of Drosophila from stupefaction with HCX, shorring its relation to three 

different funct.ions of recovery t.ime. The rectilinear logarithmic curve (B) baa been 
changed to minut.es (9) and t.0 rates (C) for comparison. Data in Table IT. 

int,erval have been ta.llied directly. The grouped frequencies were then 
a.ccumulated and transformed to  percentages and probits as in the 
prec,eding exa.mple. Finally ea.c.h probit has been plotted opposite its 
corresponding upper cla.ss limit in Fig. 3. In order tha.t t.he differe.nt. 
t.ra.nsformat,ions may be compa.red more ea.sily, the rat.e-mort,alitp curve 
has been plot.ted with reversed co-ordina.t.es. Of t.he three tra.nsformations, 
only the logarithmic can be fitted satisfactorily Fnt.h a stmight line. 
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826 The Calculation of the Time-mortality Curve 
In small series the individual reaction times are arranged in an 

ascending order without grouping, as in the example of the time to 
stupefy the 18 Dromphak shown in Table V. However, if the frequencies 
were accumulated in the usual way, transformed to probits and plotted 
against the observed periods, the resulting curve would systematically 
under-estimate or over-estimate the reaction time depending upon 
whether each probit included or omitted the individual which reacted a t  
that particular moment. This bias can be avoided by basing each per- 
centage upon the total number which have responded at  all shorter 
intervals plus one-half of the one or more individuals reacting a t  the time 
in question. Thus in Table V the observed reaction times are given in 

Table V 
Stupfacth time of adult Drosophila exposed to HCN at a GmLcentratirm 

of 0-89 mg. p e ~  1.; dQtQ of Bliss & B~~~dbeeat  (3) 

stupe- Cumulative curve 
faction No. of , \ Rate 
timein flies No. at each No. for Logarithm loo/ 

ex. f observation plotting 04 Probit ex. Bec. 

22 - 2 1-0 5.6 3.41 1.342 4.55 
23 1 3 2.5 13.9 3.92 1.362 4-35 
25 2 5 4.0 22.2 4.23 1.398 4.00 
26 1 6 5.5 30-6 4.49 1-415 3.85 
27 1 7 6-5 36.1 4-64 1-431 3-70 
28 1 P 7-5 4: .? 4.79 1-447 3-67 
BY 1 9 8-5 47.2 4-93 1.462 3.45 
3G J !2 10.5 58.3 5-2 1 1.477 3-33 
31 1 13 12.5 69.4 5.51 1-491 3-23 
32 1 14 13.5 75-0 5.67 1.505 3-13 
34 1 15 14-5 80.6 5-86 1.531 2.94 
38 1 16 15.5 86.1 8-08 1.580 2.63 
40 2 18 17.0 a . 4  6.59 1.602 2.50 

col. 1, the initial frequencies in col. 2, the frequencies accumulated by the 
end of each observed time in col. 3, and in col. 4 the number in col. 3 for 
the preceding time plus one-half the number in col. 2 for the time in 
question. Thus a t  30 sec. the cumulative frequency for graphic analysis 
is 9 + 312 = 10.5. The cumulative frequencies are converted to percentages 
and thence to probits when they can be plotted directly against the 
observed reaction times or against a function of these times. By this 
convention it is possible to plot the last animal to die, since the corre- 
sponding percentage will always be less than 100. The results are shown 
in Fig. 4 with reversed co-ordinates for the rate of stupefaction to facili- 
tate the comparison of the three curves, all of which have been fitted here 
by computation to indicate the full effect of the observations at the ends. 
On the time scale the lowest and the two highest points fall below the line 
but a€l intermediate values above it; this systematic divergence still 

, 

9 

n 
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persists on the logarithmic scale although the fit is improved; in the rite 
diagram positive and negative departures occur equally in all parts of the 
curve. One cannot conclude from a single such diagram, hoGever, that 
a given response is directly proportional to one rather than to another 
function of the reaction time, unless it can be verXed by statistical 
computation. 

From the straight line that is fitted by inspection to the plotted values 
of the transformed time-mortality curve, approximate values of its 
essential statistical constants can be estimated without much further 

Logarithm of seconds 

Fig. 4. Preparalytic or stupefaction period of adult fio80phdu in HCN, comparing three 
Werent modes of plotting time. Data in Table V. 

calculation. In transposed units the line will pass through the mean 
reaction time a t  5 probits. This aIso represents the time for 50% of the 
organisms to respond, but within the range of the curve the time for other 
percentages of response (when changed to probits) can be read as easily. 
The interval on the abscissa that represents one probit on the ordinate, 
the slope of the line, is the standard deviation of the distribution. From 
the standard deviation and the total number of individuals in the series, 
the standard error of the mean, of the standard deviation, and of any 
given level of response can be estimated from equations (6), (7) and (8). 

(2) @ouPing 
The reaction times observed in a given test are of interest to the 

extent that we can infer from these individuals what would be the 
response in the very much larger population of organisms from which 
they have been drawn. Obviously, large samples have a better chance 
of representing correctly the different levels of susceptibility in the 
population than small samples, and it will be easier to get a good sample 
if the original population is relatively uniform in its susceptibility. The 
size of the sample and its variability, therefore, control our estimates of 
the errors of random sampling, ie. the standard errors of the mean and of 

53-2 
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the standard deviation. They show how closely a given time-mortality 
curve approaches that which would be expected if the number of indi- 
viduals upon which it is based could be increased without limit. Since the 
errors of random sampling are inherent, their effect can be reduced for a 
given population only by increasing the number of individuals in the 
test. 

Estimates ofthe time-mortality curve may also be impaired by experi- 
mental errors, errors which are not necessarily inherent and which usually 
can be eliminated by a suitable experimental design. Many of these, such 
as inaccurate timing, unequal exposure to poison, use of a variable stock 
of organisms and biased selection within such a stock, are generally 
h o r n  and guarded against. One type of experimental error, however, 
is not recognized so widely and that is the grouping error introduced by 
the spacing of observations. Whether this error is introduced during or 
after the experiment, it leads to a measurable loss of information, just 
as would occur if fewer individuals were used. It is important to minimize 
this loss. 

When each individual has been timed separately and there are few in 
the distribution, as in the example in Table V, the curve may be com- 
puted without grouping. With larger series, such as the example in Table 
IV, the labour of computation is reduced materially by grouping. In 
computing from a grouped distribution, the different individual reaction 
times within each class interval are replaced by a single value midway 
between the class limits, in contrast with the procedure required for 
graphic analysis where the upper limit of each class has been used. When 
the distribution is divided into 20-24 equal intervals, grouping introduces 
a negligible error, but as the number of intervals is reduced, it increases 
rapidly. The effect upon the standard deviation is numerically the same 

as the loss of - individuals from the distribution, where S.A. is 

Sheppard’s adjustment or the second term in equations (3) and (4) and 
V(s )  is the variance of the standard deviation defined in equations (7) or 
(?a). In Table IV the 68 records of recovery time have been grouped into 
16 equal intervals of 0.05 log. units, so that in effect 1-7 flies or 2.5 % have 
been sacrificed to facilitate the computation, but if a coarser grouping 
had been used, such as 8 intervals of 0.1 log., the equivalent of 6-8 flies or 
9.7 % of the potential information in the experiment would have been 
lost. 

Unsatisfactory grouping may creep into the original record in two 
ways: (1) The use of periodic rather than continuous observations of 

Sd 
V ( 4  
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reaction time groups the data into unalterable classes a t  the time they are 
recorded. When these intervals are equally spaced on a time scale which 
later proves not to give a normal distribution of the response, conversion 
to another scale, such as to logarithms, necessarily leads to a series of 
unequal intervals and of unequally spaced mid-points between the 
logarithms of these class limits, as shown by the example in Table 11. It 
is then impossible to simplify the later computation. (2) Many experi- 
ments have been made in which there was no observation after the 
beginning of the experiment until some or many individuals had reacted, 
and in such instances the lower limit of the first class interval would be 
0 time. However, if graphic analysis should show either the logarithm 
or the reciprocal of time to be distributed normally, the mid-point of the 
first class would become indeterminate, since the logarithm of 0 is 
minus infinity and the reciprocal of 0 is plus infinity. This would have the 
effect of truncating the curve artiiicially a t  the time of the first observa- 
tion and would necessitate the more complicated procedures appropriate 
for the truncated distribution. Curve B of Fig. 2 has been so computed 
as the lower limit of the first interval was not determinable &om the 
published record. 

These complications in the subsequent computation should be con- 
sidered when recording the original data for time-mortality curves. When 
each lot of organisms is sufficiently small, the reaction of each individual 
often can be timed, but when this is impracticable, the observations are 
necessarily periodic. In such cases it is useful to use a small preliminary 
series for which a suitable transformation can be selected by graphic 
analysis and preliminary estimates obtained of the mean and standard 
deviation. With this guidance the main series of observations can be 
planned at  equal intervals on the scale which probably will be used in 
later computations (the logarithm, reciprocal, etc.). As many periodic 
observations should be made when the number of individuals is small as 
when it is large, since a reduction in their number diminishes further and 
unnecessarily the reliability of the smaller experiment. These observa- 
tions of the number which react should be stmted before the first indi- 
vidual responds and continue until the reactions have stopped. If the 
material and the phenomenon are so uniform that graphic analysis will 
be adequate, there may be advantages in not recording the beginning or 
the end of the experiment. But if computation will be necessary, it aaves 
time to record the experiment in full so that statistical computations will 
be simple and direct, rather than to compute an incomplete record as 5 

truncated distribution. 
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(3) Statistics of the time-mortality cume 

The basic statistics of the time-mortdity curve are the mean, I, and 
the standard deviation, s. The square of the standard deviation, s2, is also 
known as the variance of the distribution. They may be computed by the 
equations 

and 

.. I . .  .(1) 

. . . . . . (2) 

where x is the reaction time in units that give an apparently straight line 
in graphic analysis; f is the frequency of the number of individuals for 
each value of x; (S ( ) indicates the sum of all quantities of the t.ype 
enclosed in brackets; and N=S (f) or the total number of individuals in 
the test. When the number of individuals is small, as in the example in 
Table V, x will be the transformed reaction time of each individual 
organism. When the h a 1  grouping intervals are necessarily unequal, as in 
Table 11, z will be the mid-point of each class interval. In either case no 
short cut is available. When the fmal grouping intervals are equal as in 
Table IV, z may be set equal to 0 for a central class interval and to + 1, 
+ 2, + 3, . . ., i- n and to - 1, - 2, - 3, . . ., - n for successive intervals 
above and below 0. Equations (1) and (‘2) are solved as before but in 
terms of these arbitrary Units; then multiplied by the grouping interval 
t o  convert them back to the units of the rectified time-mortality curve, 
and h a l l y  the mean is added to the mid-point of the interval which has 
been assigned the value of 0. These procedures are illustrated by the 
examples in Tables 11, IV and V, S (fx) in each case being the sum of the 
column under the heading “fx” and S ( fx2)  the sum of the individual 
products of the columns x by fx, which can be accumulated directly in the 
calculating machine. 

Grouping has the effect of increasing our estimate of the standard 
deviation over its true value and this is corrected by subtracting Shep- 
pard’s adjustment for grouping. When the data have been grouped during 
the experiment and the transformation of the time scale has led to 
unequal intervals, the variance corrected for grouping, sC2, is 

, . . (3) 

where f is the frequency or number of individuals in each interval i, N is 
the total number of organisms in the distribution, and the summation 
S ( ) extends over all intervals in the distribution. In the example of 
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Table 11, the numerator of the correction term has been obtained by 
accumulating the products of the last two columns in the calculating 
machine. Then s,2= 0.018546 - 0.000369 =0-018177, a correction in the 
standard deviation amounting to 13 yo of its standard error (equation (7)). 

This correction is very much easier to compute when the dkta have 
been grouped in equal intervals on the transformed time scale and these 
have been assigned a value of 1 for purposes of computation, for then i is 
equal to 1 for all intervals, S(f) and N cancel out, and equation (3) 
reduces to the form 

In Table IV, for example, s2-6-57134 in unit grouping intervals and 
sC2 = 6-57134 -0.08333 = 6.48801. Although the corrected variance, sc2, 
gives an improved estimate of the standard deviation of the population 
from which the data have been drawn, the uncorrected variance, s2, is 
used in computing the standard errors of both the mean and the standard 
deviation. 

With the computed mean, 2, and the standard deviation, s or s, , the 
rect*ified graphic time-mortality curve can be corrected so that it will pass 
through Z at  5 probits with a slope equal to s or s,. The time at  which any 
given percentage of organisms might be expected to react under the same 
conditions may either be read from this line or computed by the equation 

where 5 is the mean, s the standard deviation after correction for group- 
ing if computed from grouped data, and y the probit a t  the required 
percentage. In curve B of Fig. 2, for example, we might estimate the time 
at  which the observations should have started to record the reaction of 
the f is t  individual. Since there were 100 larvae in the test, this would be 
when 1 % or 2.674 probits had responded. For the estimates of the mean 
and standard deviation we may anticipate their solution in Table IX and 
by substituting in equation (5) obtain 

or 67.2 min. as the most probable time for the first larva in the series to 
have been paralysed by the heptylic acid. The f i s t  record was made only 
105 min. after immersion in the poison and by that time 15% had 
reacted. 

(4) Errors of random sampling 
The reliability of a toxicological experiment on the reaction time 

depends upon how nearly the individuals in the test are representative of 
the larger population from which they have been drawn. Assuming that 

$,2 = 52 - 2. ...... (4) 12 

X = Z + s  (y-5), ..... .(5) 

X = 2.2076 + 0.1634 (2.674 - 5) = 1.8275 
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the sample is truly a random one, how closely will the mean and the 
standard deviation agree with these values in similar future tests? This 
is measured by the variance of the mean, V (Z), and by the variance of 
the standard deviation, V(s),  as given by the equations 

S2 V(2)  = - N 
and V ( S )  = s2 D, 
where s2 is the square of the standard deviation as 
(without Sheppard’s correction for grouping), N is 
individuals in the distribution, and D is a factor given 

...... (6) 

...... (7) 
first computed 
the number of 
in Table VI for 

values of N from 4 to 50. The values of D in Table VI have been newly 
calculated from the formula1 for the variance of the standard deviation. 
They have not been computed for values of N above 50, but for these 
larger distributions the empirical formula 

.... .( 7 a) 

w i l l  give sufficiently accurate estimates of V(s). The variance of the 
standard deviation as given in equations (7) and (7a) is equally valid for 
determinations of the standard deviation before and after the application 
of Sheppard’s correction. Both equations may be solved with graphic 
estimates of the standard deviation for use with constants obtained by 
graphic analysis. 

The two most useful functions of the estimates of the variance are the 
square root and the reciprocal. The square roots of the variances of the 
mean and of the standard deviation are, of course, their standard errors, 
while the reciprocals show the relative amount of information contained 
in each of a series of time-mortality curves. The individual curves of a 
series are seldom of equal reliability and, in computing the relation of their 
means and standard deviations to any given third variable, each should 
be given a weight proportional to its reliability; This is measured by the 
reciprocal of the variances computed by equations (6) and (7) or (7a). 

equation 
The variance of the standard deviation of a normal distribution is given by the 

. .  
for which I am indebted to Dr J. Neyman. The term in brackets for different values of N 
from 4 to 60 is given by D in Table VI. It ahodd be noted that when if is less than 30, a is 
not distributed normally. A large part of this table has been computed for me by D. M. 
3ershne~ of the Institute of Plant Protection in Leningrad. 
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Table VI 
Table for computing the variance of the standard deviation of a normal 

distribution, which is equal to the produd o f  the square of the standurd 
deviation and the constant D correspondilzg to the %umber in the 
distribution, N ,  when this varies from 4 to 50 ind i idwls .  B'or larger 

values o f  N use the approximation 

N D 
- - 
- - 
- - 
4 0.151174 
5 0.116427 
6 0.094585 
7 0-079611 
8 0.068716 
9 0.060437 
10 0.053934 
11 0448692 
12 0.044378 
13 0.040765 
14 0.037695 
15 0.036055 
16 0.032760 
17 0.030747 
18 0.028967 
19 0.027382 
20 0.025961 
21 0.024680 
22 0.023519 
23 0.022463 
24 0.021497 
25 0.020610 

V (s)= 

N 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
4.4 
45 
46 
47 
48 
49 
50 

82 

2N - 312 
D 

0.019794 
0*019041 
0.018343 
0.017694 
0.017090 
0.016526 
0.015997 
0*015501 
0.015035 
0.014597 
0.014183 
0.013792 
0.013421 
0.013070 
0.012738 
0.012422 

0*011048 
0.010809 
0.010580 
0*010361 
0.010152 

Frequently the time in which 50% of the individuals react is of less 
interest than that a t  some earlier or later stage in the response, which 
may be computed by equation (5). The standard error of such a time, X ,  
is affected by the error both in the mean and in the standard deviation, 
and is given by the square root of its variance, 1/( V (X)). The vnriance 
of the time, X, to reach any given level or percentage of response, y, 
measured in probits, is 

V ( X ) =  V(Z)+(y-5)2 V(s). 
The reaction time of the most susceptible individual in the time- 

mortality curve B of Fig. 2 was estimated at  67 min. What is the accuracy 
of this estimate? From equation (8) and the h a 1  estimates of the mean 
and standard deviation, 

V ( X )  =0.0002748 +(2*674-5)2 0~0001634=0~001159 and sx=0.0340. 

. . . . . . (8) 
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The first larva in the experiment in Pig. 2B, therefore, .probably SUC- 

cumbed in the time represented by the antilogarithm of 1.8275 k 0.0340. 
If we had wanted to be more certain of t-iming it, within odds of 19 out 
of 20, our observations should have started a t  the time given by the 
antilogarithm of 1+3275 - 1.645,0.0340 = 1.7716 or 59.1 min. The constant 
1.645 has been read from a table of deviates of the normal curve such as 
Table I in Fisher’s text(ii) at P=O.lO. Since in this example we are 
interested in the chance only of a negative departure from the expected 
value, the deviate corresponding to P=0.10 must be used rather than 
that for P = 0.05. The standard error itself shows the + and - knits for 
odds of a little better than 68 in 100 or about 2 in 3, but by means of a 
table of deviates the limits corresponding to any required odds (such as 
9 in 10) can be computed. When the curve is based upon relatively few 
individuals, less than 30 for example, instead of “2” (Fisher’s Table I), it 
is better to use in the same way the constant “t“, given in Table IV of 
Fisher‘s text, with n equal to one less than the number of individuals used 
in computing the curve. The procedure is then quite equivalent to 
equation (12) in the h s t  paper of this series@). 

(5) d.leasures of the agreement between curve and hypothesis 
The validity of the foregoing procedures depends in large measure 

upon whether the logarithm, reciprocal: or other unit used for expressing 
time has in fact t uned  the distribution of observed reaction times into a 
normal curve. Although graphic analysis is probably the most egcient 
method for selecting a suitable function, it is sometimes desirable to 
coniirm by computation whether a given transformation has or has not 
been effective, or, alternatively, whether the departures from another 
mode of plotting are significantly non-normal in character. The standard 
tests for this purpose depend upon carrying the computation two steps 
beyond the variance of the distribution, s2, to the summation of the third 
and fourth powers. When the number of individuals is small, only big 
departures from a straight line mill be significant,, departures that will 
already have been recognized during graphic analysis, so that the 
computation is then seldom worth making. However, when the number 
of individuals is large enough to make grouping advisable (50 or more), a 
numerical measure of the agreement between the observations and the 
hypothesis that the transformed reaction times are distributed normally 
may give results that are not apparent from inspection. when the 
rectzed data have been grouped equally, the entire computation is made 
in -terms of arbitrary, unit class intervals and is not unreasonably onerous. 
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Two constants are computed, g1 and g2, each of which is equal to  0 in the 
theoretical normal distribution. If neither differs significantly €corn 0 
when compared with its standard error, the data are in agreement with 
the hypothesis. 

The first of these constants, g, , measures the asymmetry of the curve. It may be 
computed from the equation 

f . . . . . . (9) [ S( f9) - 35 S( f.") + 2 9  S( f~)] N 
81 = s3 (N-1) (N-2) 

where the only new component, S(f$), is the sum of the third powers of X, the other 
symbols having the same si@cance as before. The variance or square of the standard 
error of g1 depends only upon the number of cases in the distribution: 

6N(N-1) 
v ( g J = ( N - 2 )  (N+1) (N+3)' 

.. .. . .( 10) 

When the ratio of g1 to its standard error (2/( V(gl)) exceeds 1.96 there is less than 1 
chance in 20 that the function of time that has been used in the computation is 
distributed normally so far as can be judged from the experiment in question. The 
procedure may be illustrated by the logarithmic transformation of the data in 
Table IV. Substituting in equations (9) and (lo), we have 

[131-( -0.3088) (441)+(0.0212) (-7)] 68=0.2438, 
91 = 16.845 x 67 x 66 

From the ratio of g1 to its standa.d error, 0.838, it is apparent that the logarithmic 
transformation of recovery time has eliminated any asymmetq or skewness. The same 
calculation has been made for the origina.1 arithmetic and the reciprocal curves, for 
which g1 = 1.9416 & 0.2908 and 1.0832 & 0.2908 respectively. Since the ratio of each of 
these alternative units to its standard error exceeds 1-96 by a large margin, the 
computed constants confirm our graphic appraisal from Fig. 3 that neither function is 
distributed normally. We may expect, therefore, whenever the trend of the plotted 
points in graphic analysis is clearly curdinear, that the function in question is distri- 
buted asymmetrically and therefore not normally. 

It is possible for a given function of the reaction time to be distributed s p -  
metrically but yet not normally. The original time-mortality curve, in which the 
percentage of individuals which have reacted is plotted against the elapsed time, is 
sigmoid in shape. Presumably the tmnsformation to probits eliminates the S-shaped 
component just as the change of minutes to logarithms in the last example eliminated 
any convexity or concaety. But sometimes the points may still tend to curve like an 
S or a reversed S around the straight line that fits the general trend rather well, much 
as if the probit transformation had undercorrected or overcorrected the original 
sigmoid sha.pe. The upper end of the logarithmic curve in Fig. 3, for example, looks 
a little as if the original S had not been corrected SufEciently by the use of probits, but 
due to the correlation between successive points secondary twists of this kind are 
frequently artifacts. The statistic, g2, is used to determine whether a symmetrical 
frequency distribution, such as in this example, is also a normal distribution. 



836 The Calculation of the Time-mortality Curve 
The statistic, g2, is computed from the sum of the fourth powers, S f.fz4) and the 

constants that ha.ve already been determined. In convenient form, the equations may 
be written as 

S4=S(f2+)-4Z s(p~+69LS(p)-33 s (fz) . . . . . .( 11) 

and . . . .. .( 12) N ( B  + 1) &‘a- 3. (P; - 1)3 k 
gn= (N-1) (A’-2) (N-3)61 

The variance of g2 is larger than that for g1 although it, too, depends ody  upon the 
number of individuals in the distribution. 

..... 24 N ( N -  1)* 
B(g2)=(AT-3) ( iv-2)  (N+3) ( N + 5 ) ’  

,,(13) 

When the numerical values for the logarithmic curve in Fig. 3 are substituted in 
equations (11) to (13), -ire have 

S*=11541-( -0.411s) (131)+(0*0636) (441)-( -0.0033) (-7)=11623.0, 
68 x 69 x 11623.0-902289 x @*1824= 1.2546 

67 x 66 x 65 ~43.1824 9% = 

and ) =4(0.329482) =0674O. 2 4 X 6 8 X 4 4 8 9  

This value of gs= 1.255 f 0.874 is significantly greater than 0, since the ratio 

is greater than the customaq limit of 1-96 and is equivalent to a probability of 
P=O.O29 by interpolation from Table I in Fisher’s text. Since g2 is positive, the use 
of probits has ‘‘undercomted” the sigmoid character of the original distribution, 
although the discrepancy could not be appraised from the graphic evidence alone. 
Presumably a distribution similar to the normal curve but converging less rspidly to 
0 frequency at  the upper and lower ends would fit satisfactorily. It may be suggested, 
however, that since each fly in this series was fumigated independently of the others, 
a smaU number of treatments might have differed accidentally from the required level, 
an experimental error which could easily have given the observed results. 

111. IXCOXPLETE TINE-XORTALITY CURVES 

In the curves discussed so far, each was complete in the sense that the 
reaction times were recorded for all individuals and could be reduced to 
a single normal frequency distribution. Curves for which this is not true 
are called truncated distributions, when one or both ends are missing or 
depart more or less abruptly from the straight line which fits the remainder 
of the distribution. The graphic analysis of such truncated distributions 
follows the same procedure as that described for compIete distributions, 
although the methods for computing the constants of the two types 
differ materially. In each case it is assumed that the total number of 
individuals has been recorded and the percentages are based upon the 
total number as before. 
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Two different types of truncation may occur, artiiicial and biological. 

In the first type, truncation is not inherent in the process under investiga- 
tion but is due to the method of experimentation and presumably could 
be eliminated by a change in technique. In some cases, an experiment 
may not be completed on the assumption that if it were continued long 
enough, the remaining individuals would react in essentially the same 
manner as those which have already been recorded. In  his investigations 
on the action of pyrethrum upon the house-fly, H. H. Richardson(16) 
timed the reactions of all individuals in his first experiments and obtained 
complete sigmoid curves, so that in his later tests he cut short his record 
when three-fourths of the flies were stupefied. Cage tests are sometimes 
discontinued before all individuals have died, but in many instances there 
is no certainty that 100% mortality would have been obtained in any 
case. Some time-mortality curves are truncated by delaying the Grst 
observation after the beginning of the experiment until a considerable 
proportion of the individuals have reacted, as we have seen. The reaction 
time of the more susceptibie individuals is then known quite as in- 
definitely as that of the most resistant individuals in the preceding case. 

Quite distinct from artificial truncation is the second type, biological 
truncation. In the case of biological truncation, no change in the tech- 
nique of recording the experiment will give a complete distribution. 
Truncation is inherent in the biological process. It occurs in the record of 
survival time when the dosage of poison is small enough to be survived by 
one or more of the individuals in the experiment, or in that of recovery 
time when the dosage is so large that some insects fail to recover from an 
initial stupefaction. In relating the mean and standard deviation of each 
of a series of time-mortality curves to some third variable in which we 
are interested, our measurements will have a consistent biological signifi- 
cance only if they represent the reaction times of those individuals that 
conform to the particular response under investigation. These individuals 
are related to the basic population as a whole by including the other 
animals in the sample, i.e. those which did not react typically if a t  all, as 
if their reaction had been normal but delayed beyond the limits of the 
experiment. To omit the non-reactors from the total has the effect of 
assigning them a mean reaction time equal to that of the more susceptible 
individuals which actually did respond. For this reason, the percentages 
usually should be based upon all of the individuals in the series. 

In adopting the above procedure we assume that the time of response 
and the presence or absence of response are two different indices of the 
same toxicological process. It is possible, of course, that two relatively 
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independent processes may be involved, one determining when the 
individual will react to a particular dose and the other the minimum dose 
which mill provoke the reaction. In this case animal a might die much 
more quickly than its brother b, if both are given a la.rge dose of poison, 
and yet be able t o  survive a somewhat smaller dose whic.h would be fatal 
to b. If the same mea.n reaction time (when computed only &om those 
which died) were observed after poisoning vith the media.n letha.1 dose, 
with the minimum lethal dose, and with ;I dosage again as large, reaction 
time could be considered as independent of suscept.ihilitj-. Re-?tion time 
would then be of minor interest and the computation of incomplete time- 
mortality curves as truncated distributions not justsed. Some experi- 
ments on stomach insecticides have been reported rrhich give indirect 
support to this alternative viewpoint (lo), but the weight of evidence is 
against the conait,ion being a common one and in favour of basing most 
time-mortality curves upon all of the organisms, including those which 
fail to respond. 

The t.ransition in the time-mortality curve between the individuals 
which give the characteristic response, as judged by their reaction time, 
and those which fail to respond a t  all is not a h a y s  an abrupt one. The 
reaction time of t.he transitional individuals ma7 be limited by qua1it.a- 
tively different processes, a condition which would be indicated gra.phi- 
cally by a marked change in the slope of an otherrrise straight line. In 
such cases, the time-mortality curve descriptive of the ma,in response 
may be d r a m  as if these individuals had not reacted at  all, or the curve 
truncated artificially a t  the time of the last normal observation. So fa.r 
as the main process is concerned, either a change of slope or a cessation of 
response or both may be considered as a biological truncation. 

When the change in slope is not pronounced, it may also indicate 
an incomplete correlation between the two criteria, reaction time and 
percentage response, rather than a qualitative change in the Limiting 
processes. This possibility can be tested graphically by computing the suc- 
cessive percentages for the time-mortality curve not only from the total 
number of organisms exposed but also from trial totals intermediate 
betxeen the total number which reacted and the number exposed. Should 
one of these give a satisfactory straight line when plotted in terms of 
probits and a suitable function of time, it would show that the “break” 
in the curve indicated not a qualitative change in the nature of the 
response which is measured by the reaction time, but partial inde- 
pendence between the two criteria of susceptibility: reaction time and 
percentage response. 
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Two curves for the recovery of Drosophih from stupefaction with 

HCN are shown in Table VII and in Fig. 5. The logarithm of the rate has 
been plotted rather than the logarithm of the time, to facilitate the latea 
computation of the curves; in all other respects the procedure is the same 
as that described for plotting Fig. 4. In Fig. 5, curve A, at  the higher 
dosage, is truncated abruptly, but the three slowest individuals in curve 3 
have been disregarded in fitting a curve intended to represent the principal 
response to this particular dosage. 

Table VII 
Data for the graphic analysis of small t r u d  distributions, showing the 

indiwidual recovery times of adult Drosophila folbwiw fumiga&n, in 
series A with 0-98 mg. of HCN per l .  for 5 min. (16 May), in series B 
with 1.01 mg. of HCN per 1. for 2 min. (23 Bug.); data of Broadbent & 
Bliss (6) 

Series A Series B 
L r A > r -l 

No. Rate of recovery No. Rateofrecovery 

-9 Recovery of ,-.-, Log. Recovery of 
timein fiea Cum. of timein Sea Cum. 

min. f no. o/, Pmbit rate min. f 
82 1 

112 1 
119 1 
138 1 
158 1 
159 1 
161 1 
177 1 
178 1 
205 1 
206 1 
214 1 
216 1 
267 1 
281 1 
NR* 5 

no. 96 
19.5 97-5 
18.5 92-5 
17-5 87.5 
16-5 82-5 
15-5 77.5 
14.5 72-5 
13.5 67-5 
12.5 62.5 
11.5 57-5 
10.5 52.5 
9.5 47.5 
8.5 42.5 
7.5 37.5 
6.5 32.5 
5.5 27-5 - -  

probit rate 
6-96 1.086 
6.44 0-951 
6-15 0.924 
5-93 0-860 
5-76 0.801 
5-60 0.799 
5.45 0-793 
5.32 0.752 
5.19 0.750 
5.06 0.688 
4.94 0.686 
4-81 0-670 
4-68 0.665 
4-55 0.573 
4-40 0.551 - -  

32 
41 
49 
58 
59 
61 
69 
79 
82 
86 

219 
244 
311 
NR - - 

2 18.0 
1 16.5 
1 15.5 
1 14-5 
2 13.0 
1 11-45 
1 10.5 
1 9.5 
1 8-5 
1 7.5 
1 6.5 
1 5.5 
1 4.5 
4 -  - -  - -  

9&’ 6-62 
86-8 6.12 
81.6 5-90 
76.3 5.72 
68.4 5-48 
60.5 5.27 
55-3 5.13 
50.0 5-00 
44.7 4.87 
39.5 4.73 
34.2 4-59 
28.9 444 
23.7 4-28 - -  - -  - -  

1.495 
1-387 
1-310 
1-237 
1.229 
1-215 
1.161 
1.102 
1-086 
1.066 
0-660 
0.613 
0.507 - 
- - 

* Flies which did not recover designated aa “NR” 

Another example of biological truncation is that in curve C of Fig. 2, 
which shows the survival time of mosquito larvae in a 3.0 millimolar 
solution of heptylic acid. A comparison of this curve with others in the 
same series (not shown here) suggests that the first change in slope may 
be an experimental error and that biologically only the last three or four 
observations indicate a qualitative Merence in the response. The method 
of analysis of the normal section of a curve, however, is independent of 
the nature of the response in the individuals outside of this psrt of the 
distribution. 
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Both Pearson (15) and Fisher (5)  have described methods for computing 

the normal distribution when one end is missing and is of unknown size. 
In the time-mortality curve more information is available since in each 
experimental sample the number of individuals in the blank or aberrant 
end of the curve is known. B new solution which takes advantage of this 
additiona.1 information has been developed by W. L. Stevens in an 
appendix to the present paper, to vhich the reader is referred. By 
Stevens’s method, the mean a,nd standard deviation are determined by 
computing corrections for the preliminary graphic estimates with the aid 
of the constants in Table IX of Pearson’s Tables(l5). The curve can be 
computed when truncated a t  either end or a t  both ends. 

0.4 0.6 OB 1.0 1.2 L 4  1.6 

Logarithm of rate of recovery 

Fig. 5. Truncated time-mortality curves of the recovery of firnophila fiom stupefaction 
with HCX. The provisional graphic curves are shown by broken lines, the final com- 
puted curves by solid lines. Data in Tables VTI and IX. 

The computation can be simplified for truncation at only one end of 
the distribution, and lower end truncations have been selected for this 
purpose. The rate or speed of toxic action is more likely to be normally 
distributed and biologically interesting than the reaction time directly. 
Biological truncation would then be expected a t  diminishing rates of 
reaction which would be preceded a t  the lower end by a complete failure 
of response or by truncation. If the reaction times are distributed 
normally when changed to logarithms, the same is true of the rates, so 
that an upper end truncation in a logarithmic distribution can easily be 
converted to a lower-end truncation for purposes of computation. Since 
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the constants from the graphic solution of a truncated curve are required 
for determining the computed values, they may be described fist. 

(1) Statistics from the graphic solution 

It is assumed that the data have been plotted on co-ordinate paper and 
a provisional time-mortality curve fitted by inspection to those points 
which are distributed normally, as illustrated by the provisional curves in 
Figs. 2 and 5. Three terms are read from these lines, the mean, the standard 
deviation, and the point of truncation, all in terms of the rectified time 
units given on the abscissa. The provisional mean, which will here be 
designated by the symbol ml, since it is not based exclusively upon the 
sum of the x’s, is read as before from the intersection of the line with the 
ordinate for 5 probits, even though it may be necessary to prolong the 
line beyond the observations until it intersects the ordinate for 5 probits. 
The standard deviation, sly as for the complete curve, is the abscissa1 
distance separated by 1 probit. The point of truncation, T, in the case of 
grouped data is the lower limit of the lowest class interval to agree with 
the distribution that is being fitted; in the case of ungrouped data it is 
the rectiiied reaction time of the individual or individuals represented by 
the lowest point that is included in the curve. From these three graphic 
estimates the point of truncation is converted into terms of the standard 
deviation by the equation: 

.....( 14) 

In Fig. 2, curve B was truncated artiiicially a t  the beginning of the 

2*021-2’210= -1.1595 has been based on the time experiment and xf = 

of the fist observation following exposure to the poison. Curve G in 
Fig. 2 departed systematically from normality after the observation a t  
360 min. Since this is an “upper end” truncation in the present form, for 
purposes of computation the distribution has been inverted by sub- 
tracting the logarithm of each survival time from the digit 3. The point 

of truncation is log loo0 =0-444 and xf = 

Fig. 5 the data for the recovery time have been plotted in terms of the 
logarithm of the rate. Both were truncated biologically. In curve A the 
point of truncation has been baaed upon the slowest individual 

0.163 

= -0.8131. In 0.444 - 0.618 
0.214 360 

(x’= -0~7165)~ 
Ann. Biol. XXIV 54 
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and in curve B upon the slowest normal individual (a’= -0.2478), 
disregarding the last three %es to recover. 

The statistic a’ is used both in determining the variances of the graphic 
estimates of the curve and later in computing corrections for these 
provisional estimates. The variances of the provisional mean, V(%), and 
of the provisional standard deviation, V(sl), are given by the equations : 

..., s 2  and V(SJ = & G, 

, , .(15) 

, . . (16) 

There E and G are constants given in Table VIIIl for different values 
of a’. The successive steps in computing these values for each of the 
distributions in Figs. 2 and 5 are shown in full in the fist 12 rows of 
Table IX. When the data are moderately uniform and there is biological 
truncation, it is frequently a more profitable expenditure of time to 
increase the number in each curve or the number of curves and to rely 
upon graphic analysis than to carry the calculations beyond this stage. 

(2) T’he calculation of improved estimates 

The calculation of the truncated distribution consists of computing 
corrections to the graphic estimates of the parameters of the curve. These 
corrections are not dehitive in the sense that a single solution leads a t  
once to precise estimates of the truncated curve. On the contrary the 
process is one of successive approximations, each approaching more 
closely to the best available estimate. They converge so rapidly to the 
correct value, however, especially when the truncated area is less than 
half of the total distribution, that a single computed estimate is usually 
suscient. 

* The constants of Table VnI have been computed from the values of the incomplete 
normal moment function in Pearson’s Table IX and from the constants of the normal 
curve in the British Association Tables by the formulae: 

XZZ B F=m, 
22 cf=Y 

I/ i II * 

/3=O.3989423+%(z)-2m3(z)+-. 
4 

~ ~ 0 . 5  -nt, (z) + p .  
II i II =aY -P. 

In this case z is equivalent t o  Z’ in the terminology wed elsewhere in the present paper. 
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An improved estimate depends upon the calculation of two correction 

factors, A and B, by the equations: 

and 

.. !. . .(17) 

where S( fx) is the sum of the known, normal values of x, each multiplied 
by its frequency (f) and S( fx2) is the corresponding sum of the squares 
of x, using the same definitions of x as in equations (1) and (2). The graphic 
estimates, m, and s,, have already been described; r, is the number of 
individuals in the normal part of the distribution and is equal to S( f), 
%a the number in the truncated portion for which the reaction time is 
unknown, indeterminate or aberrant, and r, +nq = N ;  zlq is interpolated 
from Table VIII for the value of XI that has been computed by equa- 
tion (14). The nimimum number of components that need be written 
down in solving equations (17) and (18) with a standard calculatiig 
machine has been given in a convenient order in rows 14-18 and 20-23 of 
Table IX. The corrections, A and B, should be small numbers and will 
approach 0 in successive approximations. Before these corrections can be 
used one more term is needed, the co-variance of the mean and standard 
deviation, 

w (m,sl)=$P, . . . . . .(19) 

where F is interpolated hom Table VIII for x' as in the case of E and G. 
With these terms we determine improved estimates of the mean, m,, and 
of the standard deviation, s2, by the equations: 

and 
The validity of m, and s, depends in part upon the accuracy of the 

initid graphic estimates, and this is indicated by the magnitude of the 
differences between m, and m2 and between s1 and s, in relation to the 
standard errors of m, and s, respectively. The estimates of m, and s2 for 
the numerical examples are given in rows 25 and 26 of Table IX. From 
the next two rows we see that the graphic estimates of the mean have been 
changed by 2.3 to 1'7.2% of their standard errors and of the standard 
deviation by 0-8 to 41.6 % of their standard errors. 

The two curves in Table IX in which the computed differed from the 
graphic estimates by more than 10% of the standard errors may be 
carried to the next approximation. This is obtained by solving equations 

m,=m,+A~(m,)+B~(nzls, )  
82 = $1 + A W( m1~1) + BV(s1). 

. . , . . . (20) 

. . . . . .(21) 

5 P 2  
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C. I. BLISS 847 
(14 to (21) a second time, except that m2 and s2 are substituted for m, and 
sl throughout to get m, and s3. Some of the terms from the original 
distribution, such as S ( f x )  and S ( f x 2 ) ,  are unchanged, so that the 
calculation is shorter than before. In terms of their standard erzors, the 
mean and standard deviation of the experiment “Culex  B” have been 
altered by only 0.2 and 0.3% respectively, and in the experiment 
“ Drosophilu B ” by 1.8 and 0.8 %. This demonstrates the rapidconvergence 
obtainable by the method. In both cases the frrst computed approxi- 
mations would have been sufficiently reliable. Unless there is a marked 
difference between graphic and computed estimates and more than half 
of the distribution is lost by truncation, a second calculated estimate is 
probably not worth the labour of computation. 

When the estimates of the standard deviation have been computed 
from grouped data, it is necessary to subtract Sheppard’s correction for 
grouping from the square of the best estimate of the standard deviation, 
just as was done in the case of the complete distribution. It is computed 
by equation (3), except that the number of individuals represented in the 
numerator,S(f),will be equal to  np instead of N .  The examples “Culex B” 
and “Culex C” in Table IX have been computed from grouped data 
similar to that in Table 11. The corrections for grouping to be subtracted 
from the variances 0.026866 (B) and 0.046195 (C) are 0.000159 and 
0.000271 respectively, giving corrected estimates of the standard devia- 
tion of 0.1634 and 0.2143. It may be noted that the correction for 
grouping is here of the same order of magnitude as the corrections in the 
graphic estimate of the standard deviation. 

The last stage in solving the truncated distribution is to compute the 
variances and standard deviation from the final estimates. These are used 
first to recompute x‘ by equation (14) and then with the corresponding 
values of E and G, the required statistics are calculated from equations (15) 
and (16). 

IV. APPENDIX : THE TRUNCATED NORMAL DISTRIBUTION 

BY W. L. STEVENS 
Galton Laboratory, University College, London 

The following three cases of truncated normal distribution should be 
distinguished : 

(A 1 and 2). The point of truncation is predetermined by the method 
of the experiment or the selection of the data, and the number of indi- 
viduals in the truncated portion either (1) is or (2) is not known. 



848 The Calcdution of the Time-mortality Curve 
(B) The truncation arises from the nature of the experimental 

material, and the point of truncation can be determined only from the 
data themselves. 

The solution of (A 2) has been given by R. A. Fhher in the introduc- 
tion to  Vol. I of the British Associatiofn Mathematical Tables. 

The solution of (A 1) is given herewith. The case would arise in practice 
if a time-mortality experiment were discontinued at  a pre-arranged 
instant, and the number noted of organisms which had not reacted. 

Case (B) is the one arising from the present paper. A solutior has been 
found, but as four parameters need to be estimated, it is too cumbersome 
for practical use. As a compromise, it is proposed to  determine the bio- 
logical point of truncation by inspection of the probit graph, and then 
to treat the data as though case (A 1) were appropriate. The truncated 
portion is here taken to include not merely the individuals that never 
react, but also those that are abnormally slow, as indicated by the falling 
away of their probit plots from the straight line. This method cannot be 
regarded as anything more than a compromise, and the calculated 
standard errors therefore overrate the precision. 

The amml curve t r u . 4  at both ends by pedetermined limits 
The theoretical distributios of the variate u is: 

=probability of observation lying below the lower point of 
tr-mcatiarr p + q . 

=probability of observation lying in range (u, u+du) between 
the points of truncation. 

=probability of observation lying above the upper point of trunca- 
tion p + q .  

The data consists of no individual observations, and n, and 3 

The following results may be verified: 
respectively in the lower and upper truncated portions. 
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The likelihood function is 

849 

L= -s {&I u-E1)2 -no log u+n,log q1+n2 log 42,  ......( 2) 

where summation proceeds over the n individual observations. The maxi- 
mum likelihood estimates of p and u are therefore roots of the equations : 

..... .(3) 

The components of the information matrix are: 

41 

e - T . d x  is writtenfn(%x&, then 

4 2  

.. ...( 5)  

The functions f n  ( q x 2 )  may be evaluated from Pearson’s Tables f o r  
Statisticians and Biometricians. Table’ IX gives the functions: 

fo (%x2) is the area of the normal curve between q and %. 

when a t  the bottom end only + co is substituted for %. 
When truncation is a t  the top end only -co is substituted for q; 
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of the maximum likelihood estimates: 

The Calculation of the Time-mortality Curve 
From the information matrix are found the variances and co-variances 

The solution of t?g Maximum Likelihood Equations 
The straight line probit graph which has been fitted by eye gives the 

first approximations w, s, to the maximum likelihood estimates of p and 
0. These estimates give approximate values for vpp, vp,, v,, and make 
the left-hand sides of equations (3) equal to small quantities A and B. 
The second approximations are now given by 

..... , . (9) 

where 6m=vppA+vpUB .., SS=V,, A+v,, B . . . . (10) 

A single improvement is usually sufficient, but if necessary the process 
may be repeated. 

V. SUNNARY 
When the result of a toxicity test is measured in terms of the reaction 

time, the data can be plotted so as to shorn the percentage of animals 
which has reacted at  different times fiom the beginning to the end of the 
experiment. This may be called a “time-mortality” curve and with most 
animals is sigmoid in its original form. On the hypothesis that it measures 
the individual variation in susceptibility, it frequently can be plotted as 
a straight line by converting the percentages to  probits and the observed 
time to logarithms OF to rates. When not based upon this type of graphic 
analysis, time-mortality measurements are often of indeterminate re- 
liability, represent different degrees of effectiveness, conceal changes in 
the nature of the response necessary to its understanding, or cannot be 
reduced to a consist,ent biological formulation covering both partially and 
fully effective levels of dosage. 

The preparation of original data for plotting depends in part upon 
whether they have been grouped during the experiment or afterwards in 
prepa.ring the frequency distribution. In the first case equally spaced 
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observations usually lead to unequal grouping intervals when converted 
to the function of time that is distributed normally, but for either case 
methods are given by which the loss of information due to grouping can 
be measured and minimized. Small distributions of individual reaction 
times can be plotted without grouping. The same procedures are available 
when the distribution is truncated, either artificially because of the 
experimental techuique or biologically a t  a given level of susceptibility 
due to a chnge in the nature of the response or to its complete cessation. 
In  either case graphic analysis leads directly to consistent and comparablc 
approximate estimates of the mean and standard deviation and of their 
variances. 

The time-mortality curve ifi computed directly from the non-cumula- 
tive frequency distribution of the rectitled reaction times rather than from 
the cumulative curve that is plotted. The effect of grouping upon these 
calculations is discussed with particular reference to developing an 
efficient experimental design. Sheppard’s correction of the variance for 
grouping is given in a form applicable to both unequal and equal grouping 
intervals. From the parameters of the time-mortality curve, the mean 
and the standard deviation, the reaction time for any given proportion 
of the population between 0 and 100% can be computed. The accuracy 
of the time-mortality curve is measured by the errors of random sampling 
of the mean and of the standard deviation. For the determination of the 
latter a newly computed table and a corrected formula are provided. 
Errors in both parameters reduce to a measurable degree the accuracy of 
an estimated reaction time earlier or later than that for 50% of the 
popu.aton. The agreement of a t;me--morta\itg cuve with the hyptheaia 
upon which it has been computed may be tested by means of the statistics 
g1 andg,. The Grst measures the asymmetry or skewness of the supposedly 
normal distribution and determines whether the main trend of the points 
in the transformed cumulative curve is really rectilinear; the second shows 
whether or not the secondary trends and twists about the rectilinear 
curve are statistically significant. 

By means of the truncated time-mortality curve the toxicological 
value of studies on the reaction time can be extended considerably. 
Sometimes graphic analysis will supply sufficiently accurate estimates 
from an incomplete curve of its mean and standard deviation and of their 
standard errors, but when the data are less regular it is desirable to 
compute corrections for these graphic solutions. A new method for 
computing the truncated normal distribution by successive approxima- 
tione has been developed by W. L. Stevens and is described by him in an 
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appendix. On the basis of Stevens’s method tables have been prepared 
for computing time-mortality curves that are truncated at their lower 
ends, a form which covers most cases. Usually the iirst approximation 
is sufficientlj precise. 

The different procedures are illustrated by numerical examples. 
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