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THE CALCULATION OF THE DOSAGE- 
MORTALITY CURVE 

BY C. I. BLISS. 
( G a h  Laboratory, University CoUege, Londofi.) 

(With 3 Text-figures.) 

CONTEPTTS. 

I. The interpretation of the dosage-mortality curve and its t-formation to 
astraightline . . . . . . . . . . . .  

11. The provisional regression line . . . . . . . . .  
. . . . . .  

111. The computation of the regression line . . . . . . . .  
IV. Accuracy of the regression line . . . . . . . . .  

(1) The 3 test for comparing observations with the computed curve . 
( 2 )  The variances of position and slope . . . . . . . .  

(1)  Probit values for 0 and 100 percentage kills 
(2) Weightsfor fitting theregressionline . . . . . .  

(3) Thezone oferror oftheregressionline . . . . . .  
V. Appendix: The case of zero survivors, by R. A. Fisher . . . .  
VT. Summary . . . . . . . . . . . . .  

Referrnces . . . . . . . . . . . . .  

PAGE 

135 
146 
147 
148 

166 

168 
169 
161 
162 

164 
166 

167 

TOXICOLOGICAL studies upon a large variety of organisms by many 
biologists have established the sigmoid character of the typical dosage- 
mortality curve: especially in the case of multicelhdar forms. Recently 
it has been shown in two different fields that such curves can easily be 
plotted as straight lines and their later ana:ysis thereby facilitated(1,5,6). 
These methods, which are substantially the same, are developed more 
fully in the present paper. While the procedure8 have been selected on the 
basis of their statistical accuracy and efficiency? and accordingly follow 
the recent trends which are so closely associated with the name of R. A. 
Fisher. an attempt has been made t o  present them in sufficient detail 
to permit their use by biologists with a limited knowledge of statistics. 
The present paper is concerned with the calculation of the transformed 
dosage-mortality curve and its accuracy. Later papers in this series will 
deal with statistical methods for comparing dosage-mortality data, and 
with time-survival curves. 
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I. THE INTERPRETATION OF THE DOSAGE-MORTALITY CURVE AND 
ITS TRANSFORMATION TO A STRAIGHT LINE. 

Action curves in pharmacology are those in which the amount of the 
response to any given degree of chemical or physical stimulation is ex- 
pressed as a percentage of the maximum obtainable in that particular 
biological system. The action curve is frequently sigmoid, especially when 
it expresses the relationship of mortality to dosage, so that a graphic 
plot of the percentage of dead organisms on the ordinate against some 
function of dosage along the abscissa resembles the letter S, the change 
in percentage kill per unit of the abscissa being smallest near mortalities 
of 0 and 100 per cent., and largest near 50 per cent. Among multicellular 
organisms, it is practically universal for a diagram with these co-ordinates 
to show this characteristic shape, but the interpretation of such curves 
has varied widely. Since this controversy has been reviewed so fully by 
Clark (2)) the ground need not be gone over again, and we may proceed a t  
once to describe the viewpoint adopted here. 

On this theory, the dosage-mortality curve is primarily descriptive of 
the variation in susceptibility between the individuals of a population. 
Let us suppose that, under uniform conditions, the susceptibility of each 
individual may be represented by the smallest dose which is just sufficient 
t o  kill it, the individual lethal dose. As in the case of any other biological 
characteristic, this susceptibility will vary from one individual to another 
in the population. and a priori we might expect the distribution curve of 
the number of individuals having each particular susceptibility to show 
the shape characteristic of the normal curve of error. If Fig. 1, which 
is the normal curve of error in its most usual form, is assumed, for the 
moment, to be an ideal representation of the variation in susceptibility, 
the ordinates will give the number of individual organisms correspond- 
ing to each particular individual lethal dose shown along the base in a 
graded series (assuming that the numbers along the base of the figure 
are equivalent to actual dosages in one form or another). 

With intact animals, however, the experimental technique is usually 
not suitable for determining the exact minimum lethal dose for each in- 
dividual, as would be required to secure the data for plotting this form 
of the normal frequency curve of error. As the experiment is actually 
conducted, the dosage applied to  each separate lot of organisms kills not 
only those requiring a t  least this quantity of poison, but also all more 
susceptible individuals, i.e. those which could be killed with a smaller 
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dosage. Consequently, if Fig. 1 represents the hypothetical frequency 
distribution of susceptibility, as measured by the individual lethal dose, 
any given dose will split the sample of organisms into two categories of 
dead and alive, whose relative proportion will depend upon the relation 
of the dosage to the distribution of susceptibilities. If our dose had 
happened to come a t  the point marked z in Fig. 1, the ratio of the dead or 
more susceptible individuals to the total number in the sample treated- 
in other m-ords. the percentage killed-would have been the ratio of the 
uiishaded area to  the total area under the curve. By varying our dosage 

I 2 3 4 5 6 7 8 
U P P E R  FIGURES - D E V I A T E S  IN T E R M S  OF W 
LOWER 1 )  I N T E R M S  OF P R O B I T S  

Fig. 1.  The theoretical normal curve of error, in which p (0.95) and q (0.05) indicate areas 
under the curre to the left and right respectively of thr ordinate z erected at the point 
on the abscissa indicated by z (1.6450). The position of the median (and also of the 
mean and the mode) is given by JI which divides the area under the curve into halves. 

along the base and using a succession of equivalent samples of organisms, 
it would be possible to  determine a series of percentage kills (or pro- 

portionate areas: __ ?) . of the normal frequency curve) corresponding to  

the dosages applied experimentally. If these percentage kills were then 
plotted on the ordinate of another graph against the dosage on the 
abscissa as before: the result would be a cumulative normal frequency 
distribution such as Fig. 2. This type of curve, therefore, can be and 
frequently is obtained experimentally in the laboratory. 

P + Z ’  
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The assumption that the individual susceptibility to a poison is dis- 

tributed normally may be tested by reversing our argument. From a 
given sample of 40 beetles, let us say, exposed to a known concentration 
of fumigant, 38, or 95 per cent., were ’killed. Temporarily neglecting the 
observed dosage, this percentage kill may be equated to a fraction of the 

total area under the theoretical normal curve of error, p:p’ - and the 

“expected” dosage, x, to which this mortality corresponds, read from the 

Fig. 2. The proportionate areas, z, of Fig. 1 plotted on the same abscissa as before 

(probit units). The “broken” lines are drawn at the same positions as the two ordinates, 
X and 52,  of Fig. 1, while the solid parallel lines bounding the broken lines mark the 
corresponding limits of the standard error for a sample of 100 indiriduals. 

P + q  

base (Fig. 1). Because of the availability of statistical tables, this ex- 
pected dosage is given most conveniently in units of standard deviations. 
The standard deviation, u, corresponding to any observed mortality may 
he read directly from sources such a5 the Kelley-Wood Table(7) or the 
Shepard-Galton  table^, and in this case would be 1-645 standard devia- 
tions. Similarly, another sample of 40 beetles a t  a lower dosage, may 
have shown a mortality of only 20 individuals or 50 per cent., and 
the expected dosage inferred from this mortality would be 0 standard 
deviations, since the standard deviation in the normal curve is measured 
from the median or mean as the origin. 
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In this fashion an expected dosage corresponding to every observed 

dosage measured experimentally may be determined fcom the observed 
mortality, and the inferred dosages. so derived, are called ‘‘normal 
equivalent deviations ” or ‘‘N.E.D.” by Gaddum (5) and by Hemmingsen (6). 

Many observations, however, d l  fall below 50 per cent. kill and by 
Gaddum’s system would require negative expected dosages, which are 
inconvenient. In order to avoid this difficulty, a new table of statistical 
units called “probits“ has been devised(]) in which the 0 of the usual 
statistical table of deviates has been equated to the digit 5, and the 
deviate of the normal curve, in terms of U, added algebraically to secure 
the probit corresponding to each percentage kill (Table I). Because of 
their great,er convenience, the expected dosages may be expressed in 
terms of probits and mill not modify the proof or disproof of our basic 
assumption. 
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Table I. 
Probits or probability units for transformifig the siginoid dosage-mortality 

curve to a straight line. I n  the body of the table i s  given the probit 
correspowding to each percetztage mortality listed along the left edge 
a d  top. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
- 1.9098 2.1218 2.2522 2.3479 2.4242 2.4879 2.5427 2.5911 2.6344 

2.6737 2.7096 2.7429 2.7738 2.8027 2.8299 2.8556 2.8799 24031 2.9251 
2.9463 3.9ti65 2.9859 3.0046 3.0226 3.0400 3.0569 3.0732 3.0890 3.1043 
3.119% 3.1337 3.1478 3.1616 3.1750 3.1881 3.2009 3.2134 3.2256 3.2376 
3.2493 3.2608 3.2721 3.2831 3.2940 3.3046 3.3151 3.3253 3-3354 3.3454 

3.3551 
3.4452 
3.5242 
3.5949 
3.6592 

3.7184 
3,773.; 
3.8250 
3.87%; 
3,9197 

3.9636 
4.0055 
4.0458 
44t84tj 
4.1221 

4.1584 
4.1936 
4.2278 
4.2612 
4.2937 

3.3742 
34618 
3.5389 
3.6083 
34715 

3.7398 
3.7840 
3.8350 
3,8830 
3.9286 

3.9521 

4.0537 
4.092 
4.1295 

4.1655 
4.2005 
4.2345 
4.2677 
4.3001 

4.0137 

3.3836 
3.4699 
3.5462 
3.6148 
3.6755 

3.7354 
3.7893 
3.8399 
3,8857 
3.9331 

3.9763 
4.0178 
4.0576 
4.0960 
4.1331 

4.1690 
,4.2039 
4.2379 
4.2710 
4.3033 

3.3928 
3-4780 
3.5534 
3.6213 
3.6835 

3.7409 
3.7943 
3.8448 
3.8923 
3.9375 

3.9808 
4.0218 
4.0615 
4.0998 
4.1367 

4.17% 
4,2074 
4.2412 
4.2743 
4.3065 

3.4018 
3.4859 
3.5605 
3.6278 
34894 

3.7464 
3.7956 
34497 
3.8969 
3.9419 

3.9848 
4.0259 
4.0654 
4.1035 
4.1404 

4.1761 
4.2108 
4.2446 
4.2775 
4.3097 

3.4107 
3.4937 
3.5675 
3.6342 
3.6953 

3.7519 
34048 
3.8545 
3.9015 
3.9463 

3.9890 
4.0299 
4.0G93 
4.1073 
4.1440 

4.1796 
4.2142 
4.2479 
4.2808 
4.3129 

3.4 195 
3.5015 
3.5745 
3.6405 
3.7012 

3.7574 
3.8099 
3.8593 
3.9061 
3.9506 

3.9931 
4.0339 
4.0731 
4.1110 
4.1456 

4.1831 
4.2176 
4.2512 
4.2840 
4.3160 

3.4282 
3.5091 
3.5813 
3.6468 
3.7070 

3.7628 
3.8150 
34641 
3.9107 
3.9550 

3.9973 
4.0379 
44770 
4.1147 
4.1512 

4.1866 
4.2210 
4.2546 

4.3192 
4-2872 

3.4368 
3.5167 
3.5882 
3.6531 
3.7127 

3.7681 
3.8200 
3.8689 
3.9152 
3.9593 

4.0014 
4.0419 
4.0808 
4.1184 
4.1548 

4.1901 
4.2244 
4.2579 
4.2905 
4.3224 
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25 
26 
27 
28 
29 

30 
31 
32 
33 
34 

35 
36 
37 
38 
39 

40 
41 
42 
43 
44 

45 
46 
47 
48 
49 

50 
51 
52 
53 
54 

55 
56 
57 
58 
59 

60 
61 
62 
63 
64 

65 
66 
67 
68 
69 

70 
71 
72 
73 
74 

0.0 
4-3255 
4.3567 
4.3872 
4.4172 
44466 

4.4756 
4.5041 
4-5323 
4-5601 
4.5875 

4-6147 
4.6415 
4.6681 
4.6945 
4.7207 

4.7467 
4.7725 
4.7981 
4.8236 
4.8490 

4-8743 
4.8996 
4.9247 
4-9498 
4.9749 

54000 
5.0251 
5-0502 
5.0753 
5.1004 

5.1257 
5.1510 
5-1764 
5.2019 
5.2275 

5.2533 
5.2793 
5.3055 
5-3319 
5.3585 

5.3853 
5.4125 
5.4399 
5-4657 
5.4959 

5.5244 
5.5534 
5-5828 I 

5.6128 5.6158 

0.1 
4.3287 
4.3597 
4.3902 
4.4201 
44495 

4-4785 
4-5070 
4.5351 
4.5628 
4.5903 

4.6174 
4.6442 
4.6708 
4.6971 
4.7233 

4.7492 
4.7750 
4.8007 
4-8262 
44516 

4.8769 
4.9021 
4-9272 
4.9524 
4.9774 

5.0025 
5-0276 
5.0527 
5.0778 
5-1030 

5.1282 
6.1535 
5.1789 
5.2045 
5.2301 

5.2559 
5.2819 
5.3081 
5.3345 
5.361 1 

5.3880 
5.4152 
5.4427 
5.4705 
5.4987 

5-5273 
5.5563 
6.5858 

0.2 
4-3318 
4.3628 
4.3932 
4.4231 
4.4524 

4-4813 
4.5098 
4.5379 
4.5656 
4.5930 

4.6201 
4.6469 
4.6734 
4-6998 
4.7259 

4.7518 
4-7776 
4.8032 
4.8287 
4.8541 

4-8794 
4.9046 
4.9298 
4.9549 
4.9799 

5.0050 
5.0301 
5.0552 
5.0803 
5.1055 

5.1307 
5.1560 
5.1815 
5.2070 
5.2327 

5.2585 
5.2845 
5.3107 
5.3372 
5.3638 

5.3907 
5-4179 
5.4454 
5.4733 
5.5015 

5.5302 
5.5592 
5.5888 
5-6189 

Table I (m 

0-3 0.4 
4.3349 4.3380 
4-3659 4.3689 
4.3962 4.3992 
4.4260 4-4290 
4.4554 4.4583 

4.4842 4.4871 
4.5126 4.5155 
4.5407 4.5435 
4.5684 4-5711 
4'5957 4.5984 

4-6228 4.6255 
4.6495 4.6522 
4.6761 4.6785 
4.7024 4.7050 
4.7285 4.7311 

4.7544 4.7570 
4.7802 4.7827 
4.8058 4.8083 
44313 4-8338 
4.8566 4.8592 

4.8819 4.8844 
4.9071 4.9096 
4.9323 4.9348 
4.9574 4.9599 
4.9825 4-9850 

54055 5.0100 
5.0326 5.0351 
5.0577 5.0602 
5.0828 50853 
5.1080 5-1106 

5.1332 5-1358 
5.1586 5-1611 
5.1840 5.1866 
5.2096 5.2121 
5.2353 5.2378 

5.2611 5.2637 
5.2871 5.2898 
5.3134 5-3160 
5.3398 5.3425 
5.3665 5.3692 

5.3934 5-3961 
5.4207 5.4234 
5.4482 5-4510 
5.4761 5.4789 
5.5044 5-5072 

5.5330 5.5359 
5.5622 5.5651 
5.5918 5.5948 
5.6219 5.6250 

Int.). 
0.5 

4.3412 
4.3720 
4.4022 
4.4319 
4.4612 

4.4899 
4.5183 
4.5462 
4.5739 
4.601 1 

4.6281 
4.6549 
4-6814 
4.7076 
4.7337 

4.7596 
4.7853 
4.8109 
4.8363 
4.8617 

44870 
4-9122 
4.9373 
4.9624 
4-9875 

5.0125 
5.0376 
5-0627 
5.0878 
5.1130 

5.1383 
5.1637 
5.1891 
5.2147 
5.2404 

5.2663 
5.2924 
5.3186 
5.3451 
5.3719 

5.3989 
5.4261 
54538 
5.4817 
5.5101 

5.5388 
5.5681 
5.5978 
5.6280 

0.6 
4.3443 
4.3750 
44052 
4.4349 
4.4641 

4.4928 
4.521 1 
4.5490 
4-5766 
4.6039 

4.6308 
4.6575 
4.6840 
4.7102 
4.7363 

4.7622 
4.7879 
4.8134 
4.8389 
4.8642 

4.8895 
4.9147 
4.9398 
4.9649 
4.9900 

5.0150 
5.0401 
5.0652 
5.0904 
5.1156 

5.1408 
5.1662 
5.1917 
5-2173 
5.2430 

5-2689 
52950 
5.3213 
5.3478 
5.3745 

5.4016 
5.4289 
5.4565 
5.4845 
5-5129 

5-54 17 
5.5710 
5-6008 
5.6311 

0.7 
4.3474 
4-3781 
4.4082 
4.4378 
4.4670 

4.4956 
4.5239 
4-5518 
4.5793 
4.6066 

4.6335 
4.6602 
4.6866 
4.7129 
4.7389 

4.7647 
4.7904 
4.8160 
4.8414 
4-8668 

4.8920 
4.9172 
4.9423 
4.9674 
4.9925 

5.0175 
5.0426 
5.0677 
5.0929 
5.1181 

5.1434 
5-1687 
5-1942 
5-2198 
5.2456 

5.2715 
5.2976 
5-3239 
6.3505 
5.3772 

5.4043 
5.4316 
5.4593 
5.4874 
5-5158 

5.5446 
5.5740 
6.6038 
5.6341 

0.8 
4.3505 
4.381 1 
4.4112 
4.4408 
4.4698 

4.4985 
4.5267 
4.5546 
4-582 1 
4.6093 

4-6362 
4.6628 
4.6893 
4.7155 
4.7415 

4.7673 
4.7930 
4.8185 
4.8440 
4.8693 

4.8945 
4-9197 
4.9448 
4.9699 
4.9950 

5.0201 
5-045 1 
5.0702 
5.0954 
5.1206 

5-1459 
5.1713 
5-1968 
5.2224 
5.2482 

5.2741 
5.3002 
5-3266 
5.3531 
5.3799 

54070 
5.4344 
5.4621 
5.4902 
5.5187 

5.5476 
5.5769 
5.6068 
5.6372 

0.9 
4.3536 
4.3842 
4.4142 
44437 
4.4727 

4.5013 
4.5295 
4.5573 
4.5848 
4.6120 

4.6389 
4.6655 
4.6919 
4.7181 
4.7441 

4.7699 
4,7955 
443211 
4.8465 
4.8718 

4.8970 
4.9222 
4.9473 
4.9724 
4.9975 

5.0226 
54476 
5.0728 
5.0979 
5.1231 

5.1484 
5.1738 
5.1993 
5.2250 
5.2508 

5.2767 
5-3029 
5.3292 
5.3558 
5.3826 

5.4097 
5-4372 
5.4649 
5-4930 
5-5215 

5-5505 
5.5799 
5-6098 
5.6403 

5.6433 5.6464 5.6495 5.6526 5.6557 5.6588 54620 5.6651 5.6682 5.6713 
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75 
76 
77 
i 8  
79 

80 
81 
82  
83 
81 

85 
86 
8; 
88 
89 

90 
91 
92 
93 
94 

95 
96 
97 

98.0 
98.1 
98.2 
98.3 
98.4 

98-5 
98.6 
98.7 
98.8 
98.9 

99.0 
99.1 
99.2 
99.3 
99.4 

99.5 
99-6 
99.7 
99.8 
99.9 

0.0 0.1 0.2 
5-6745 5.6776 5.6808 
5.7063 5.7095 57128 
5.5388 5.7421 5.7454 
57722 5.5756 5.7790 
5.8064 5-8099 5.8134 

5.8416 5.8452 58488 
5.8779 5.8816 5.8853 
5.9154 5.9192 5.9230 
5-9542 5.9381 5.9621 
5.9945 5-9986 6.0027 

6.0364 6.0407 6.0450 
6.0803 64848 6.0893 
6.1264 6.1311 6.1359 
6.1750 6.1800 6.1850 
6.2265 6.2319 6.2372 

6.2816 6.2873 6.2930 
6.3408 6.3469 6.3532 
6.4051 6.4118 6.4187 
64758 6.4833 64909 
6.5548 6.5632 6.5718 

6.6449 6.6546 6.6646 
6.7507 6.7624 6.7744 
6.8808 6.8957 6.9110 

0-00 0.01 0.02 
7-0.537 7.0558 7.0.579 
7-0749 7.0770 7-0792 
7.09ti9 7.0992 7.1016 
7.1201 7.1224 7.1248 
7.1444 7.1469 7.1494 

7.1701 7.1727 7.1754 
7.1973 7.2001 7.2029 
7.2262 7.2292 7.2322 
7.2571 7.2603 7.2636 
7.2904 7.B38 7.2973 

5.3263 7.3301 7.3339 
7.3656 7.3698 7.3139 
7.4089 7-4135 7.4181 
7.4573 74624 7.4677 
7.5121 7.5181 76241 

4 'a ia8 7,5828 5-5899 
7.6521 7-6606 7-6693 
7.7478 7.7589 7.7703 
5.8782 74943 7.9112 
8*0!302 8.1214 8.1559 

- --_ 

Table I (c0n.t.). 
0.3 

5.6810 
5.7160 
5.7488 
5.7824 
54169 

5.8524 
5.8890 
5-9269 
5.9661 
6-0069 

64494 
6.0939 
6-1407 
6.1901 
6.2426 

6.2988 
6-3595 
6.4255 
6-4985 
6.5805 

6.6547 
6.7866 
6.9268 

0.03 
7.0600 
7.0814 
7.1038 
7.1272 
7-1520 

7-1781 
7.2058 
7.2353 
7-2668 
7.3009 

7.3378 
7.3781 
7.4228 
7.4730 
7.5302 

7.5972 
7.6783 
7.7821 
7.9291 
8-1947 

0.4 
5.6871 
5.5192 
5.75'21 
5.7858 
5.8204 

54560 
5.8925 
5.9307 
5.9701 
6.0110 

6.0535 
6.0985 
6.1455 
6.1952 
6.2481 

6.3047 
6-3658 
6.4325 
6.5063 
6.5893 

6-6849 
6.7991 
6.9431 

0.04 
7-0@21 
7.0836 
5.1060 
7-1297 
7.1545 

7.1808 
7.2086 
7.2383 
7-2701 
7.3044 

5.3416 
7.3824 
7.4276 
5.4783 
7,5364 

7.6045 
7-6874 
7.7944 
7.9478 
8.2389 

0.5 
5.6903 
5.7'25 
5.7554 
5-7892 
5.8239 

5.8596 
5496.5 
5-9346 
5.9741 
6.0152 

6.0581 
6.1031 
6.1503 
6.2004 
6.2536 

6.3106 
6.3722 
64395 
6.5141 
6.5982 

6.6954 
6-8119 
6.9600 

0.05 
7.0642 
7.0858 
7.1084 
7.1321 
7.1571 

7-1835 
7.2115 
7.2414 
7.2734 
5.3080 

7.3455 
7.3861 
7.4324 
7-4838 
7.542i 

5.6121 
7.6968 
7.8070 
7-9677 
8.2905 

0.6 
5-6935 
5.7257 
5.7588 
5.7926 
5.8254 

5.8633 
5.9002 
5.9385 
5.9782 
6.0194 

64625 
6.1077 
6.1552 
6.2055 
6.2591 

6.3165 
6.3787 
64466 
6.5220 
6.6072 

6.7060 
6.8250 
6.9774 

0.06 
7.0663 
7.0880 
7.1 107 
7.1345 
7.1596 

7. J 862 
7.2144 
7.2445 
7-2768 
7.3116 

7.3495 
7.3911 
7.4372 
7.4893 
5.5491 

7.6197 
7.706,5 
7.8202 
8.9889 
8.3528 

0.7 
5.6967 
5.7290 
5.7621 
5.7961 
5.8310 

5.8669 
5.9040 
5.9424 
5.9822 
6.0237 

6.0669 
6.1123 
6.1601 
6.2107 
6.2646 

6.3225 
6.3852 
6.4538 
6.5301 
6-6 164 

6.7169 
6.8384 
6.9954 

0.07 
7.0684 
7-0902 
7.1130 
7.1370 
7.1622 

7.1890 
7.2173 
7-2476 
7.2801 
7.3152 

7.3535 
7.3954 
74422 
7-4949 
7.5556 

7.6216 
7.7164 
7-8338 
7-0114 
8.4316 

0.8 
543999 
5.7323 
6.7655 
5.7995 
54345 

54705 
59078 
5.9463 
5.9863 
6.0279 

6.0714 
6.1170 
6-1650 
6.2160 
6.2702 

6.3285 
6-3917 
6.4611 
6.5382 
6-6258 

6-7279 
6.85?2 
7.0141 

0.08 
7.0706 
7.0924 
7.1154 
7.1394 
7.1648 

7.1917 
7-2203 
7-2508 
7.2835 
7.3189 

7.3575 
7.3999 
7.447 1 
7.5005 
7.5622 

7.6356 
7.7265 
7.8480 
8.1357 
8.5401 

0.9 
5.7031 
5.7356 
57688 
5-8030 
54381 

5.8742 
59116 
5.9502 
5.9904 
6.0322 

6.0758 
6.1217 
6.1700 
6.2212 
6.2759 

6.3346 
6.3984 
6.4684 
6.5464 
6-6352 

6.7392 
64663 
7.0335 

0.09 
7.0727 
7.0947 
7.1177 
7.1419 
7.1675 

7-1945 
7-2232 
7.2539 
7-2869 
7-3226 

7.3615 
7.4044 
7.4522 
7.5063 
7.5690 

74437 
7.7370 
7.8627 
8.0618 
8-7190 

The next step is to plot on the 0rdinat.e the probit of the expected 
dosage, inferred horn the observed mortality, and on the abscissa some 
function of the amounts which were administered experimentally. 
These latter may be originally in terms of the concentrations of a toxic 
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substance in which the successive lots of organisms were immersed for a 
given time, a graded series of times of exposure to a fixed concentration 
of poison, doses administered individually a t  different units per gram of 
body weight, different concentrations of contact poison applied uniformly 
over the surface of the body, or in some other terms. When these units of 
measurement are plotted directly, the resulting curve is very seldom a 
straight line but is nearly always convex upwards, an effect which might 
have been anticipated from the markedly asymmetrical character of most 
sigmoid dosage-mortality curves. 

Before discarding the normal curve as an adequate description of the 
variation between individuals in their susceptibility to a poison, let us 
question the assumption that the individual lethal dose is a satisfactory 
direct measure of susceptibility. The dosage units described above form 
an arithmetical wale of equal increments, and would not be a satisfactory 
index to the susceptibility if the structural or chemical constituents which 
determine the level of Susceptibility of the individual in respect to a given 
drug were not to increase or decrease by equal additive increments. It 
was pointed out as long ago as 1879 by Galton that in biological material 
the variation often shows a geometrical rather than an arithmetical 
distribution, an observation which has been confirmed by several in- 
vestigators in respect to toxicological characteristics. If, therefore, the 
changes in the substances or structures which determine susceptibility, 
whatever may be their nature, were ordinarily proportional in type, then 
they would be symmetrically distributed not on an arithmetical scale of 
individual lethal doses but only on a logarithmic scale, This possibility 
may be tested by converting the observed dosages to logarithms and 
again plotting the dosages inferred from mortality or probits against 
those secured experimentally. With this transformation, a straight line 
does result in a great majority of the cases which have been tested. Before 
the method of inferring “expected” doses from the percentage kills had 
been devised, Trevan(13) and others had shown that per cent. mortality 
plotted against the logarithm of the dose frequently results in symmetrical 
sigmoid curves, while in the descriptions(1,5,6) of the double transforma- 
tion, many more cases were cited in which the logarithm of the individual 
dose was an adequate measure of Susceptibility. 

If the transformation of dosages to logarithms completes the trans- 
formation of the dosage-mortality curve to a straight line because it is 
an index to  the inherent susceptibility of the individual animal to the 
poison, the poisoning process could be considered as an example of the 
Weber-Fechner law. This implies, however, a direct proportionality 
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between the concentration of the poison in the dose administered and the 
amount of poison fixed by the essential tissues of the animal, and there is 
no evidence in support of such a direct relationship. Moreover, if the 
poisoning of the individual multicellular animal can be attributed to the 
death of a certain proportion of its cells, then the susceptibility of the 
animal as a whole will be determined by the average susceptibility of its 
essential cells. Even though the susceptibility of these ultimate units, the 
cells, may vary geometrically rather than arithmetically, so that their 
distribution is highly asymmetrical. it is probable that. the average sus- 
ceptibilities of populations of these unit cells. the individual animals, are 
symmetrically and normally distributed. if we may judge from general 
statistical experience. A priori, therefore, the individual animals in a 
stock may be expected to vary normally in their susceptibility to a 
specific poison, since each animal is an “average” of its component cells. 
The justification of the logarithmic transformation may be sought in the 
relation between the dosage administered and the amount of poison fixed 
by the essential cells or tissues, rather than in the Weber-Fechner law. 

The fixation of a drug or poison seems to be primarily a phenomenon 
of adsorption 12): and one of the two principal formulae for describing this 
process is that proposed by Freundlich. Freundlich‘s empirical formula is 

where. for our purposes, C may be equated to the concentration of the 
drug (or dosage), x=the amount fixed in the organism, m=the mass of 
adsorbing constituents within the organism, and K and n are constants. 
If the variation in susceptibility is attributed primarily to the reactions 
which follow the fixation of the poison, rn will be constant from one 
individual test animal to the next. By combining constants, the Freund- 
lich formula may be reduced to 

log C =?a log x+ K‘, 
from which it is apparent that there is a linear relation between the 
logarithm of the concentration (or dosage) and the logarithm of the 
amount fixed by the cells of the animal. The observed logarithmic con- 
version of the dosage-mortality curve is not due, therefore, to our using 
as the true individual lethal dose the amount fixed in the tissue, if this is 
related to the concentration by the Freundlich formula. 

In many instances another adsorption equation, that proposed by 
Langmuir, has fitted the biological data on the fixation of drugs more 
satisfactorily than the Freundlich formula. Moreover, it is better 



C .  I. BLISS 143 
grounded theoretically. Langmuir’s adsorption equation is given by 
Clark as 

Y kxn = - 
100-y’ 

where x = concentration of the drug, y = percentage of the maximum 
amount of drug which can be fixed by the cell, R is determined by the 
molecular state of the fixed drug as compared with its state before ad- 
sorption and is usually 1 or 2, and k is a constant. In order to compare 
the amount (percentage) fixed with the logarithm of dosage (y with log x), 
y was calculated for each of a series of hypothetical values of x when 
k = 0.0625 and n = 1. A diagram of y against log x gave a sigmoid curve, 
symmetrical about 50 per cent. fixation, and very nearly a straight line 
between 20 and 80 per cent. fixation. If 100 per cent. kill on the dosage- 
mortality curve were to correspond to 100 per cent. fixation of the poison 
by the tissues of the experimental animals, all cases in which the 
logarithm-probit plot showed a straight line over a range of dosages that 
included kills of 90 per cent. and better-as very many of them do-would 
definitely rule out the Langmuir adsorption equation as an explanation. 
However, investigations have shown that live tissue is capable of ad- 
sorbing much more of the chemical than the amount which produces the 
maximum effect, in this case, the subsequent death of all individuals. 
If all experimental animals were to die before a dosage is reached which 
produces 80 per cent. or more adsorption, the logarithm-probit trans- 
formation would still be consistent with an interpretation based on the 
Langmuir adsorption equation, so far as the middle and higher kills- 
and dosages-are concerned. 

The application of the Langmuir equation to the lower dosages pre- 
sents a more involved problem. Usually the logarithm-probjt plot of the 
dosage-mortality curve can be fitted by a single straight line over the 
entire range of mortalities, and it may then be reasonable to assume that 
the amount of poison fixed must exceed a threshold value of 20 per cent. 
of the maximum before even the most susceptible individuals will be 
killed. However, in many cases the transformed dosage-mortality line 
agrees with the higher kills very satisfactorily but indicates too small a 
mortality below 20 to 35 per cent. kill. At its lower end the otherwise 
straight line would need to bend up if it is to fit the entire range of ob- 
servations. The similarity of this change in slope to the lower end of the 
theoretical cw’e secured by plotting the percentage of drug fixed against 
the logarithm of dosage suggests that in these cases the adsorption is less 
than 20 per cent. of the maximum at  the threshold concentration of the 



poison, and that if the observed dosage could be converted to the amount 
b e d  by means of the Langmuir equation, a single straight line would be 
obtained by the use of probits. 

Without measurements of the amount of poison adsorbed, the Lang- 
muir equation cannot be tested critically, but an approximate graphic 
analysis has been applied successfully to several series of fumigation tests 
in which a t  the lower dosages there was a change of slope upon the 
logarithm-probit co-ordinates. For each series of points, the mortality in 
probits could be fitted satisfactorily (as in Fig. 3) with two intersecting 
straight lines when plotted against the logarithm of the concentration of 
the fumigant, the bend between the two lines being acute enough for there 
to be no hesitation in deciding which observations should be grouped. 
From a graphic comparison with the theoretical curve mentioned above 
(percentage iked v. log. dosage) of the angle a t  which these two lines 
intersected, the observed concentrations were converted to terms of the 
percentages of maximum adsorption, and when the observed mortalities 
in probits were replotted against these theoretical dosage units, the data 
for each poison could be fitted adequately by a single straight line. This 
transformation of dosage to per cent. adsorbed introduces two additional 
constants, one attributable to the maximum Bdsorption which produces 
no lethal effect and the other to the minimum adsorption which is in- 
variably fatal. On mathematical grounds alone, therefore, the agreement 
between observations and fitted curve should be as good as when two 
intersecting straight lines, also involving four constants, are fitted to the 
same dttta. 

The use of the Langmuir equation need not necessarily eliminate the 
change in slope that is observed on occasion a t  the lower dosages upon the 
logarithm-probit plot. If a minimum of 15 to 20 per cent. adsorption 
were required to effect a kill, for example, the rectilinearity in the main 
portion of the curve and the change in slope a t  its lower end would be the 
same whether log. dosage or per cent. of maximum adsorption were 
plotted along the base. Since there is good experimental evidence, as in 
the case of protective stupefaction with hydrocyanic acid (lo), that low 
concentrations frequently have an action qualitatively different from that 
of the higher dosages, the change in slope may very well have a biological 
reality and not be merely a mathematical artifact. Clark1 thinks that 
“this break is a fairly common phenomenon. It suggests to me that 
the characteristic curve besides measuring individual variation also is 
affected by some relationship between concentration and amount of 

1 Pemonal communication. 
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action.” Since without another kind of experimental data even an ap- 
proximate conversion of dosage into percentage adsorption is possible 
only when there is a change in slope on the logarithm-probit co-ordinates, 
and may then be of doubtful theoretical significance, it is preferable a t  
present to use the logarithm of the individual lethal dose as a measure of 
susceptibility with the understanding that its use can be interpreted in 
terms other than those of the Weber-Fechner law. 

The above procedure should not be confused with another fundament- 
ally different application of the Langmuir adsorption equation, which is 
hyperbolic, to  similar data. If dosage is converted to logarithms, the per- 
centage adsorption plotted against it is a sigmoid curve symmetrical 
about the 50 per cent. point, as has been described, and the percentage 
mortality plotted against it is a very similar sigmoid curve. In one case, 
Clark (p. 157) has considered these two measures as if they were identical, 
or the percentage mortality a direct measure of percentage adsorption. 
Yet elsewhere he has described experiments which show that adsorption 
frequently continues after the point is reached which produces maximum 
effect, and this possibility alone demonstrates that they are distinct1. 
Even if certain dosage-mortality data were fitted adequately by this use 
of the hyperbolic equation, they could still be considered from the 
“statktical” viewpoint adopted here. The abscissa, the logarithm of the 
dose, is the same in both methods of transformation, while the ordinate 
i0 both may be assumed t o  represent sigmoid frequency distributions 
which are experimentally inseparable between kills of 15 and 85 per cent. 

In a recent letter to Xakre  (CXXIV, 323), H. H. Shepard applies an equivalent method 
to original data that are similar to those quoted here in Table I\‘, except that he uses the 
dosage directly instead of the logarithm of the dose. When his data and fitted curve are 

plotted in a rectilinear form against concentration), it  is 

apparent that the observed values are still diutributed in a sigmoid manner about the 
straight line, despite his use of the hyperbola. However, when the probit values for per- 
centage mortality are plotted against dosages which have been converted to hypothetical 

“percentages of poison adsorbed” by means of the equation kx” = --!!-- , a very satis- 

factory fit can be obtained with log k =  - 18.2 and n= 10.2. It should be noted that while 
Shepard used the same species of insect, the same poison, and apparently the samelaboratory 
tcchnique as in the data quoted here from Strand, his results agree in average susceptibility 
(the median lethal dose), but shor  a significantly larger range of variability within the 
population. Shepard apparently has totslled many individual experiments for each dosage, 
and if, over the period which this required, the average susceptibility in his stock of beetles 
had fluctuated as much as 10 to 15 per cent., the variability within his population at any 
one time might well have been consistent with Strand’s earlier results which are quoted 
here. 

Ann. Biol. xxn 10 

( 100 -Y> 



146 The Calculation of the Dosage-Mortality Curve 

They differ in mathematical treatment only in that the frequency distri- 
bution of susceptibilities in the interpretation followed here is assumed 
to be normal, while in the hyperbolic interpretation it is that of the z 
distribution (3). 

On the basis of the above assumptions, we may proceed at once to a 
consideration of how to calculate the best-fitting dosage-mortality curve. 
The first step is to transform each percentage kill to its probit (Table I) 
and convert each dosage to its logarithm. The percentage kill wil l  not, 
however, be the same as the percentage dead if there is an appreciable 
mortality among the untreated controls or checks. A convenient way of 
computing the percentage kill in such a case is to multiply the number of 
individuals used in a particular test by the proportion alive in the un- 
treated controls, which gives the net total of organisms actually exposed 
to the action of the poison. When the number surviving the treatment is 
subtracted from this net total, the difference is the number killed, and the 
number killed (multiplied by loo), divided by the net number exposed 
is, of course, the percentage killed. The probit, or dosage inferred from 
mortality, is then plotted on co-ordinate paper against the logarithm of 
the dosage that was administered experimentally. Inspection of these 
points with the aid of a straight edge, such as the side of a celluloid 
triangle, will show very quickly whether they define a straight line over 
most or the whole of the range of dosages. In cases where the data for 
the lower dosages seems to be discordant with the straight line that' is 
consistent with the rest of the observations, the straight line is fitted only 
to the higher dosages. A few cases may occur in whch the points seem 
to be smoothly curvilinear throughout, and in such instances some other 
function of dosage should be tried which seems to have a toxicological 
significance. Having determined the range of dosage over which a 
rectilinear relation seems to hold good, a straight line i s  drawn through 
the points. 

11. THE PROVISIONAL REGRESSION LINE. 

The h s t  estimate of the transformed dosage-mortality curve, whch 
we will call the provisional regression line. is ordinarily not calculated, 
but represents the best judgment of the experimenter. When the data are 
consistent, the graphic provisional curve will often come surprisingly close 
t o  the corrected curve obtained after computation. Occasionally, how- 
ever, the observations may be so scattered that the experimenter will 
prefer to calculate even the provisional regression line. The simplest pro- 
cedure in this case is to give each experiment a weight of 1 and use 
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equations (3)-(6) of the next section. In other cases the data may be so 
uniform that the initial line will serve the needs of the experimenter. 
Usually, however, the graphic approximation will want correction, and 
to obtain this corrected curve we compute what is known in statistics as 
the regression line. The regression line in our case will show the probit 
which corresponds to any given logarithm of dosage as accurately as 
this relation can be determined from the experimental data used in its 
computation. 

The provisional regression line serves two essential purposes: it de- 
termines what probit values are to be assigned to  observed mortalities of 
0 and 100 per cent., and it specifies what relative weights are to  be given 
to the separate observations in a series. 

(1) Probit values for  0 aid 100 percentage kills. Although toxicological 
tests frequently include a t  one limit small dosages which kill no indi- 
viduals or a t  the other limit large dosages which kill all individuals, these 
values cannot be listed in the standard table of probits (Table I). By 
means of the provisional regression line, the information in such observa- 
tions may still be used in determining the corrected regression line. This 
possibility follows from our basic assumption that the distribution of 
susceptibility is normal and the fact that while the curve of the normal 
distribution (Fig. 2) approaches infinitely close to 100 per cent. kill- 
considering for convenience only the upper limit-it never quite reaches 
it mathematically a t  any finite dosage. Within the range of dosages and 
numbers of organisms ordinarily used in a laboratory test, this mathe- 
matical postulate agrees satisfactorily with the biological reality. Thus 
the smallest dosage g i ~ g  100 per cent. kill will be smaller in an experi- 
mental series with 30 organisms per dose than in a repetition of the same 
series using 300 specimens per dose, since in the larger numbers of the 
second case there is a greater chance of including the less susceptible 
individuals in each treatment. The mortality in probits that would be 
expected if we were dealing with very large numbers of organisms is 
given approximately by an extension of the provisional regression line 
over the range of these higher dosages. In a note on “The case of zero 
survivors,” appended t o  the present paper, R. A. Fisher points out that 
when the number in the class of survivors is small, the theory of large 
samples breaks down if applied to the restricted numbers used in toxi- 
cological tests. He shows, however, that when zero survivors are observed 
the probit term for 100 per cent. kill may be derived by the method of 
maximum likelihood as a difference, which is added to  the expected value 
in probits given by the provisional regression line. 

10-2 
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An alternative method for plotting 100 per cent. kills in terms of 

probits or their equivalents has been proposed by Gaddum(5). His value 
is based upon the number of animals exposed to the treatment. but is not 
used whenever i t  indicates a smaller mortality than would be espected 
from the approximate regression line at  this dosage. The method pro- 
posed here avoids this limitation and is mathematically the more exact. 

The procedure to be followed in securing the probit value for 100 per 
cent. kills may be outlined briefly. The probit given by the extended 
provisional regression line is read from the graph at the logarithm for the 
dosage from which none survived. This probit is then entered in column 1 
of Table I1 and the required probit for the observed kill is found in 
column 3. First differences are given in column 4 for convenience in 
interpolation if the provisional regression line has been read to 0.01 
probit. These values will always fall above the provisional line as would 
be expected since no survivors were observed, and should be included in 
computing the corrected curve with a weight determined as described in 
the next section. The omission of such terms tends to bias the final re- 
gression line by exaggerating the number of survivors to be expected. 

The same method is available, of course, a t  the opposite end of the 
curve, a t  dosages which fail to kill any individuals, except that the cor- 
rection in column 2 of Table I1 is then subtracted from the probit value 
given by the provisional line. The correction to use in such a case will be 
that for the probit in column 1 which is as much greater than 5 as the 
one read from the provisional line is less than 5. These smaller dosages, 
however, are usually of little interest, and it frequently happens that, 
below 25 per cent. kill, the regression line which forms an adequate, fit 
above that point is no longer applicable. 

(2) Weights forJitting the regression line. The reliability of the probit for 
an observed percentage kill depends not only on how many individuals 
were counted to determine this percentage but also upon the corre- 
sponding probit value of the regression line, or, in actual practice, upon 
that of the provisional regression line. It is customary to consider the 
reliability of a percentage as proportional to the number of individuals 
tested, and the justification for thus weighting by the number of indi- 
viduals rather than by the squ,.re root of the number of individuals is 
that the reliability of a measure is inversely proportional to the square 
of its standard error-the variance--and not to the standard error itself. 
The variance, in turn, is a function not only of the number of cases but 
also of several other factors, and it is these other factors which it is 
necessary to take into account. The principle of giving to individual 
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Table 11. 
Probit values when 100 per cent. mortality i s  observed experimentally. The  

provisional (graphic) dosage-mortality line, based on  probits f o r  dosages 
which were survived by one or more individuals, i s  extended to cover 
dosages f r o m  which no survivors were observed. The  expected probit 
value indicated by the provisional line at each such dosage i s  then 
entered in column 1 and the correction in column 2 i s  added to it to give 
the value in probits f o r  0 survivors (column 3). When  the provisioian! 
line has been read to 0.01 probits, theJirst digerences in the last column 
are convenient f o r  interpolat ion. 

Curve value or 
probit'for Correction Probit for Fwt 

expected kill slz observed kill differencr~ 

4Ni 
3 1  9 
3h4 
GO4 
N O  
I i70 
(ill9 

74; 
761 
782 
799 
812 
82.5 
838 
848 
857 
867 
874 
883 
889 
895 
9(J1 
906 
912 
916 
920 
924 
928 
93 1 
933 
938 
940 
94 3 

.5*5 0.S764 6.3iti4 
5.6 0.8230 6.4230 
5.i 0.7749 64749 
5.8 0.7313 6.5313 
5.9 0.6917 c;..in17 
6.0 0.6557 6.6537 

6.7227 6.1 0.6227 
6.2 0.59% 6.i926 
6.3 0.5649 6.8649 
6-4 0.5394 6.9394 
6.5 0.5158 7.0158 
6-6 0.4940 i W 4 n  
6.7 0-4739 7.17:19 
6-8 0.455 1 7.2551 
6.9 0.4376 7.3376 
7.0 0.4214 7-4214 
7.1 0.4062 7-5062 
7.2 0.3919 7.5919 
7-3 0.3786 7.6786 
7-4 0.3660 7.7660 
7.5 0.3543 7.8543 
7.6 0.3432 7.9432 
7.7 0.3327 8.0327 
7.8 0.3228 8.1228 
7.9 0.3134 8.2134 
8-0 0.3046 8.3046 
8.1 0.2962 8.3962 
8.2 0.2882 8.4882 
8.3 0.2806 8.5808 
8.4 0.2734 84734 
8.5 0-2665 8.7665 
8.6 0.2600 8,8600 
8.7 0.2538 8.9538 
8.8 0.2458 9.0478 
8.9 0.2421 9-1421 

-.,., 1 - 3  

observations weights that are proportional to  their statistical reliability 
follows that described by T h o m p s o n ~  in his analysis of an experiment 
in sensory discrimination. 

The required standard error is shown graphically on the cumulative 
form of the normal frequency distribution of Fig. 2, in which p ,  t he  pro- 
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portion killed, is plotted on the ordinate against x, the inferred dosage in 
probits, on the abscissa. The position of the paired horizontal lines cutting 
the ordinate on either side of 50 and 95 per cent. kill was calculated from 

the usual formula for the standard error of a proportion, u= dg, where 

p is the proportion killed, q = 1 -p ,  and N = 100 individuals exposed t o  
treatment. However, in our transformed dosage-mortality curve, these 
percentages have been transformed to probits, which are given along the 
base of the figure, so that the standard error (and variance) which we 
need is not that for a proportion, p ,  but that for the corresponding in- 
ferred dosage or probit, x, a quantity equivalent to what statisticians call 
the percentile. From the points of intersection with the curve in Fig. 2 
of the standard errors of the proportions (shown by the paired horizontal 
lines), we wil l  draw paired vertical lines to cut the base at the standard 
errors of the probits (or percentiles) corresponding to these two propor- 
tions of 0-50 and 0.95. While the standard error of p is a maximum at 
50 per cent. kill and diminiRhes toward either 0 or 100 per cent., that of 
the probit is smallest a t  50 per cent. and increases toward either limit. 
Hence the accuracy of a given probit will increase as it approaches 
50 per cent. kill. 

The formula for the variance of a percentile is given by Kelley (7) as 

- 

- *PP 
z2N ' 

where u is the standard deviation, z is the ordinate of the normal curve 
(see Fig. 1) and is given in tables of the probability integral, and the other 
terms have their previous significance. This will also be the variance for 
the probit of a single observed percentage mortality, hut since the probit 
is already in terms of the standard deviation, d2 is always equal t o  1 and 
the variance of a probit may be simplified to the form 

PP 
N z 2 '  

In order, therefore, to  give each observation a weight proportional to its 
true reliability, instead of multiplying it by N ,  me will multiply by the 
reciprocal of the variance as our weight, PA. Hence 

. . . .(1) 

where N is the number of organisms exposed to a given dosage of poison 
and z ,  p ,  and q have their previous significance as functions of the normal 
curve, which, in this case, are fixed by the probit value of the provisional 
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regression line at the same dosage. The term - we will call the weighting 

coefiicieat. It has been computed for each 0.1 probit within the useful 
range of probit values and is given in Table I11 (column 6). The procedure 
for determining the correct weights to be used in calculating the corrected 
regression line is thus made quite ea.sy. After the provisional regression 
line has been drawn through the plotted points of the experimental series 
as described, the probit given by this line for the log. dosage used in each 
determination is read from the graph to the nearest 0.1 (or 0.01) probit 
and by reference to Table I11 is transformed directly to the weighting 

Table 111. 
Weighting coe&iertts used in computing the dosage-mortality curve in terms 

of probits. T h e  probit f o r  the expected kill i s  read to the nearest 0.1 or 
0.01 f r o m  the provisional, graphic dosage-mortality line at the dosage 
used in a given test. Entering this in column 1 below, the weighting 
coefi ient i s  read f r o m  column 3 (interpolating f rom the Jirst differences 
in column 4 if the line has been read to 0.01 probit) and multiplied by 
the total number of organisms to secure the weight (w) of the test f o r  use 
in computing the Jinal curve. T h e  weighting coe@cients in coluinti 3 
have been abbreviated fo r  ease of calculation f r o m  the jve-place values 
of z2/pq in column 6. Column 5 shows the relative number of indi- 
viduals which must be used at d-ferent expected mortalities if all 
observations are to be weighted equally; while colirinn 2 gives the per- 
centage mortalities corresponding to the probits i n  colzmn 1. 

22 

P9 

Curve value or 
probit for 

expected kill 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
1.3 
2.4 
2.5 
9.6 - 0.7 
2.8 
’7.9 
3.0 
3-1 
3.2 
3.3 
3.4 

Expected 
percentage 

kill 
OG.? 
0.034 
0449 
0.069 
0.097 
0.135 
0.187 
0.256 
0.347 
0.466 
0.621 
0.820 
1.072 
1.390 
1.786 
2.275 
2.472 
3.593 
4.457 
5.480 

Weighting 
coefficient 
04)033 
0.0045 
0.0061 
0.0083 
0-0110 
0.0146 
0.0190 
0.0246 
0.0314 
0-0398 
0.050 
0.062 
0.076 
0.092 
0.110 
0-131 
0- 154 
0.180 
0.208 
0.238 

Relative no. 
of indiriduals 

First for equal 
differences weights 

1 i) 1941 
1112 
1037 
766 
(577 
437 
331 
258 
202 
1 GO 
128 

IL 
16 
22 
9 j 

36 
44 
56 
68 
84 

102 
1 0  

103 
84 
69 
58 
49 
41 
45 
31 
27 

I d  

14 
16 
18 
21 
23 
26 
28 
30 
31 

-_ 
- 
I’Y 

0.00327 
0.00451 
0~00614 
0.00828 
0.01 104 
0.01457 
0.01903 
0.02459 
0.03143 
0.03977 
0.04979 
0.06169 
0.07563 
049179 
0.1 10-76 
0.13112 
0.15436 
0.17994 
0.20773 
0.23753 
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Curve value or 
probit for 

espected kill 

3.5 
3.6 
3.7 
3.8 
3.9 
4.0 
4.1 
4-2 
4.3 
4.4 
4.5 
4-6 
4.7 
4.8 
4.9 
5.0 
8.1 
5.2 
5 3  
5.4 
5.5 
5.6 
5.7 
5.8 
5.9 
6.0 
6.1 
6.2 
6.3 
6.4 
6.5 
6.6 
6.7 
6.8 
6.9 
7.0 
7.1 
7.2 
7.3 
7-4 
7.5 
7.6 
7.7 
7.8 
7.9 
8.0 
8.1 
8.2 
8.3 
8-4 
8.5 
8-6 
8.7 
8.8 
8-9 

Expected 
percentage 

kill 

6.681 
8-076 
9.680 

11-507 
13.567 
15.866 
18.406 
21.186 
24.196 
27.425 
30-854 
34458 
38.209 
42.0i4 
46.017 
50.000 
53.983 
5i.926 
61.791 
65.542 
69.146 
72.515 
75.804 
78.814 
81.594 
84.134 
86.433 
88.493 
90.320 
91.924 
93.319 
94.920 
95.543 
96407 
97.128 
97.i25 
98.214 
98.610 
98.928 
99.180 
99.359 
99.534 
99.653 
99.744 
99.813 
99.865 
99.903 
99931 
99.952 
99.9G6 
99.977 
99.984 
99.989 
99.993 
99.995 

Table I11 (cont.). 

Weighting 
coefficient 

0.269 
0.302 
0.336 
0.370 
0.405 
0.439 
0.47 1 
0.503 
0.532 
0.558 
0.581 
0.601 
0.616 
0.627 
0.634 
0.637 
0.634 
0-627 
0.616 
0.601 
0.581 
0.558 
0.532 
0-503 
0.471 
0.439 
0.405 
0.370 
0.336 
0.302 
0.269 
0.238 
0.208 
0.180 
0.154 
0.131 
0.110 
0.092 
0.076 
0.062 
0.050 
0.0398 
0.03 14 
0.0246 
0.0190 
0.0146 
0.01 10 
O.UO83 
0.0061 
0.0045 
0.00327 
040235 
040167 
0.00118 
0.00082 

First 
differences 

31 
33 
34 
34 
35 
34 
32 
32 
29 
26 
23 
20 
15 
11 
7 
3 
3 
7 

11 
15 
20 
23 
26 
29 
32 
32 
34 
35 
34 
34 
33 
31 
30 
28 
26 
23 
21 
18 
16 
14 
12 

102 
84 
68 
.56 
44 
36 
25 
22 
l b  

123 
92 
68 
49 
36 

Relative 
no. of 

individuals 
for equal 
weight 8 

24 
21 
19 
17 
16 
15 
14 
13 
12 
11 
11 
11 
10 
10 
10 
10 
10 
10 
10 
11 
11 
11 
12 
13 
14 
15 
16 
17 
19 
21 
24 
27 
31 
35 
41 
49 
58 
69 
84 

103 
128 
160 
202 
259 
334 
437 
57; 
769 

103; 
1412 
1945 
2709 
3812 
5395 
7764 

9 
w 

0.26907 
0.30199 
0.33589 
0.37031 
0.40474 
0.43863 
0.47144 
0.50260 
0.53159 
0.55788 
0.58099 
0.60052 
0.6 1609 

0.63431 
0.63662 
0.63431 
0.62741 
0.61609 
0-60052 
0.5 8 0 9 9 
0.55788 
0-53159 
0.50260 
0-47144 
0.43863 
0.40474' 
0.37031 
0.33589 
0.30199 
0.26907 
0.23753 
0.20773 
0.17994 
015436 
0.13112 
0.11026 
0.09179 
0.07563 
0.06169 
044979 
0.03977 
0.03143 
0.02459 
0.01 903 
0.014Gi 
041104 
0.0082h 
040614 
04043i 
O4032i 
0.00235 
0.00167 
0~00118 
040082 

- 

0.62742 
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coeficient. The weighting coeficient will be sufficiently accurate if read 
only to the first two or three significant figures as given in column 3 of 
Table 111, interpolating from first differences (column 4) if the provisional 
curve justifies an estimate to the nearest 0.01 probit. Each weighting 
coefficient then is multiplied (most conveniently on the slide rule) by the 
number, k, in the test to secure its correct weight, w, for calculating the 
dosage-mortality curve. 

It has been specified, without further explanation, that the weighting 
coeEcient is determined from the provisional regression line rather than 
directly from each separate observation. With this important exception, 
the weighting coefficient described above is equivalent to that proposed 
by Gaddum(5) and by Hemmingsen(6) for the same purpose. Gaddum has 
based his coefficients directly upon the separate p’s observed experi- 
mentally, so that above 50 per cent. kill the tests in which the mortality 
fell short of that expected would be weighted more heavily than those in 
which the mortality exceeded expectation. Conversely, below 50 per 
cent. kill. the excessive mortalities would carry greater weight than the 
deficient mortalities. Together these errors would bias the fitted regres- 
sion line toward the horizontal. By using as a standard the probit (or 
mortality) determined from the experiment as a whole, instead of that 
shown by a single sample, the present weighting coeficients not only avoid 
this biasing error but give a suitable basis for comparing different dosage- 
mortality curves and for measuring their accuracy. Still another, though 
similar, weighting method has been used by McCallan and Wilcoxon(8) 
in the reciprocal of their ‘ I  error in concentration.” 

In planning an experiment so as to secure equally reliable results a t  
all dosages and thereby avoid the necessity of weighting-with a rorre- 
sponding simplification in the computations-more individual4 should 
be used at high and low dosages than at  intermediate ones. Equalisation 
will result if the experimenter treats with the dosage at  each expected kill 
some multiple of the number of individuals listed in the fifth column of 
Table 111. This shows that it takes three times as many animals to get the 
same accuracy at’ 95 per cent. kill as a t  50 per cent. kill and nearly ten 
times as man) at 99 per cent. as a t  50 per cent. It mould not justify the 
procedure followed in theexperiments reported by Hemmingsen ((6), p. 40), 
in which nearly twice as many mice were used for the two middle of four 
concentrations of insulin as for the largest and smallest. 

In order that each step may be clearly understood, a numerical example has been 
selected from Strand‘s (11) experiments with Tribolium mnfwum. Two of his series, 
designated aa I and 11, give the mortality of the adult flour beetle after five hours’ 
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exposure to gaseous carbon disulphide, and these will serve to illustrate the varioiiq 
procedures of the present paper. There was no appreciable mortality in the controls, 
80 that this factor did not need correction. The original data are giren in the first four 
columrib of Table IV. The next column, z, is secured from column 3 by reference to a 
table of coinnion logarithms. With the exception of the probit values corresponding 
to 1(Hl per w r i t .  kill, the sixth column, y, gives the percentages in terms of the probits 
of Tai,!e 1. The obserred ralues for z and y were then plotted on cross-section paper 
(Fig 3).  .tiid :t I ,  apparent from inspection that  the two series, I and 11, did not differ 

Table IV. 
Proccci e I'C' f o r  Jilting the transformed dosage-mortality curve to kills of 

T.ri I d i u m  confusum follozcing &hour exposures to known concen.tm- 
tioirs of ecrrbon disulphide. The computations in columns 7 to  10 and at 
~ J N  m d  OJ the table show the steps for Jitting the regression, line to tAe 
2il)r)cr range of dosages from the data of both series (Fig. 3). Da.ta from 
st Ixml(11). 
j t ~ , - i ~ ~ : d  :<. d a t a  

7 U'X %I 

Serics t10. of prr yo log. of Prohit Weighting w X X 

I 29 4i+.( lG 6.9 1.6907 3.317 - - - - 
30 52.99 23.3 1.724'2 4,271 -. - - - 
- "6 .-)[i.Ol 32.9 1.7552 4.557 0.555 15.5 27.20560 70.6335 
27 W S 4  51.9 1.7842 5.048 0.633 17.1 30.50982 86.3208 

30 ti4.76 76.7 1.8113 5.729 0.500 15.0 27.16950 85.9350 
31 118.69 93.6 1.8369 6.522 0.292 9.1 16.71579 39.3502 
30 72.61 96.7 1.8610 6.838 0.125 3.8 7.07180 25.9844 
29 7(i.34 100.0 1,8839 7.952 0.0398 1.2 2.26068 9.5424 

X Y Column 8 Column 8 

no. insects litre kill dosage kill coefficient Weight Column 5 Column 6 

1.6907 3.888 - - 
1.7242 4.158 - - 
1.7552 4.372 0.555 18.9 
1.7842 4.957 0.633 18.4 

1.8113 6.170 0.500 16.5 
1.8369 6.067 0.293 8.2 
1.8610 5-447 0.125 4.0 
1.8839 7.952 0.0398 1.2 

xZ=[S(wy2) -gs(wy)] - E [S (?UmJ)  - 
In' (see text) 
(n =nf - 2 

1 V (  a) = - 
S ( W )  

1 T'(b) =- 9 
t (at P = 0.05) 

- - 
- - 

33.17328 82.6308 
32.82928 91.2088 

29.88645 101+3050 
15.06258 49.7491 
7.44400 29.7880 
2.26068 9.5424 

=3931453108 
= 103.156728 

ES(UVJ)] = 5.3564 
- -- 9 

r - - I  

= 0.007758 

= 6.668327 

= 2.365 
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consistently. In comparison with the remaining observations, the two lowest con- 
centrations gave an exceptionally high kill. Over the remaining concentrations, the 
plotted values seemed to form a moderately straight line, so that  the data were 
handled as two separate sets, only the result,s a t  56.91 mg. of CS, per litre being 
included in b0t.h sets. The; provisional regression lines were drawn in with the aid of a 
straight edge, but these provisional curves, indicated by the broken lines, agreed quite 

8.4 

8.0 

7.6 
In 
t g 12 
0 

6.8 
0 

In 6.4 

I a 
6.0 

56 

g 52 

k 4.8 

2 

:: 

-I 

4A 
I- 

* 40  z 
3B 

?I2 

1.68 1.70 1.72 1.74 1.76 1.78 1.80 I& 1.84 186 ia8 190 
CONCENTRATION OF CS2 IN LOGARITHMS 

Fig. 3. A transformed dosage-mortality curve, showing the effect upon adult flour beetles 
of &hour exposures to different concentrations of gaseous carbon disulphide. The 
broken straight regression lines were placed graphically by inspection, the solid ones 
by computation, while the dotted curved lines show the limits within which the solid 
lines have been determined by the data. The shaded triangles represent treatments 
from which no beetles survived. Data from Straud(i1). 

closely with those am'ved a t  by computation, the solid lines, in both the upper and the 
lower range of dosages. 

Restricting our attention for the moment to the more important, upper range of 
dosages, the approximate curve was used first to secure probit values for 100 per cent. 
kills. We find that  at a concentration of 72-61 mg. of CS, per litre, there was 1 survivor 
in Series I but 0 survivors in Series 11, while no survivors were found in either series 
at 76.54 mg. per litre. The provisional curve showed that at a log. concentration of 
1.8610 (72-61 mg.), 7.03 probits was expected and at a 1.8539 log. concentration 
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(78.54 mg.), 7-61 probits. Entering these values in column 1 of Table 11, the two re- 
quired probit values of 7-447 and 7.952 were obtained from column 3, using the first 
diflerences of column 4 for interpolation. 

h m  the ariginal plot of the provisional curve (on millimetre cross-section paper), 
the probit for each observed dosage could be read without difficulty to the nearest 
0-01 probit. These were then entered directly in column 1 of Table I11 to secure the 
weighting coefficients from column 3 of the same table, interpolatmg with the aid of 
the adjoining column of first differences. The weighting coefficients so obtained were 
written down in column 7 of Table IV and multiplied on the slide rule by the corre- 
sponding number of insects (column 2) to determine the true weights in column 8. 
The last two columns of Table IV contain the products x multiplied by w, and y 
multiplied by w. 

111. THE COMPUTATION OF THE REGRESSION LINE. 

In toxicological experiments of the type which we have been con- 
sidering, the mortality among a limited number of organisms is measured 
after treatment with known amounts of a toxic agent. These results have 
significance primarily because they form a sample from an infinitely 
larger group of organisms for which we are interested in determining the 
toxicological relationships. The fitting of a dosage-mortality curve is an 
attempt to infer from a given experiment the conditions obtaining in a 
class or species of organisms, and the calculated regression line of the 
dosage-probit diagram is the most accurate estimate which can be drawn 
from the data, granted that our basic assumptions are correct. In some 
cases it will be very near the first graphic approximation which has 
already been described, but oftentimes it will represent a rather im- 
portant correction to  this initial estimate, especially when the material is 
variable and fitting by eye less reliable. Moreover, in a calculated re- 
gression line, each separate observation can be weighted accurately, as 
has been shown, and the limits determined within which will lie the true 
curve for an infinitely larger population. 

In describing the arithmetical procedure of fitring, the methods and 
spmbols employed by Fisher (4) have been adapted to the present pur- 
poses. Short-cut methods, suitable for use with a calculating machine, 
aredescribed. With a machine, these should enable one to fit the regression 
line without previous experience. 

The formula for the regression line may be expressed as 
I ' = a + b  (X--5) .  ......( 2 )  

where. in this case, Y is the mortality in probits on the regression line (or 
transformed dosage-mortality curve) which corresponds to any given 
dosage X ,  usually expressed in logarithms ; a = 9 =numerically the average 
probit for all determinations in that part of the experiment which is being 
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fitted by a straight line: 2 is the average of the dosages administered (in 
logarithms) for the same section of data; and b is the regression coefficient 
or the slope of the line. the amount by which the probit of mortality is 
increased for every unit increase in log. dosage. It is necessary, therefore, 
to calculate from the experimental data the quantities Z, j, and b. The 
formulae are as follows: 

- S ( W X )  

S(?fi) 
x=- ...... 43)  

S( wzy) - ZS( wy) - 
A 

b=--  9 

...... (4) 

...... (5) 
A =S(wx2) -ZS(wz), ..... .(6) 

where the symbols are defined as: 
S=" the  sum of" and indicates that  all quantities of the type in the 

brackets after the S are to  be added, 
w = weight of a given observation, the product of the weighting coefficient 

multiplied by the number of killed plus survived, 
x = a  function of the dosage administered experimentally, usually its 

logarithm, and 
y =the probit corresponding to  the observed percentage mortality. 

The position of the regression line, in the sense in which we will use 
the term. is determined by Z and 9, since i t  must pass through the point 
on the diagram given by these two means. They fix the degree of 
susceptibility to a toxic agent shown by the populatior, as a whole. From 
a statistical viewpoint, b is the slope or the tangent of the angle with 
which the regression line will pass through the point established by3  and ti; 
from a biological viewpoint, b measures how closely the individual 
organisms in the experiment agree with one another in their sensitivity 
to the toxic agent. It is convenient to  express this toxicological charac- 
teristic as the percentage increase in dosage that  is required to  increase 

230.26 kill by one probit. This is the ratio of lOOlog, 10 to  A, b *  

Returning to our numerical example, the solution of equations (3H6) has been 
given a t  the bottom of Table IV in the order which has been found the most con- 
venient. The first, second, and fourth quantities are the totals of the last three columns 
of the table, while the two means were determined in order, without clearing the lower 
dials of t.he calculator, when the totals first appeared (in machines such as the Monroe 
and the Marchant). S(wz2)wi i  obtained by placing 202 on the keyboard of bhe calculator 
and multiplying by the corresponding z, then clearing the keyboard and upper dials 
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and repeating the pnmxs with the next pair of values until the total of the products, 
S(u.z*), had been accumulated in the lower dials. Leaving this slim in the lower dials, 
iS(rrn)  was placed on the keyboard and subtracted z times to secure A .  Repeating the 
process with wx on the keyboard and multipl-ying this time by y, the sum, S ( W ~ ) ,  was 
obtained directly. From iS(wry) in the lower dials, S(wy) on the keyboard was sub- 
tracted Z times to secure the next term, which, in turn, was dividd by A to obtain the 
regression coefficient, b. In  checking the arithmetic of these various operations, other 
short-cuts will soon suggest themselves for facilitating the work and reducing the 
possibility of error. It is important in this method that computations be carried out to 
six or more significant figures in the means and regression coefficient in order to insure 
s a c i e n t  accuracy throughout. From 2, g, and b the equation of the corrected 
regression line was solved as I’=5.450+2,541 (9- 1*7967), holding for concentrations 
of carbon disulphide above approximately 57.8 mg. per litre of air. In  this range, an 
increase in dosage of 9.03 per cent. (230.26/25.5114) increased kill by 1 probit. 

The change in slope a t  a kill of about 33 per cent. (Fig. 3) is a frequent phenomenon 
for which no explanation will be attempted here. A separate curve has been calculated 
for the lower concentrations, including the smallest dosage of the main curve. The 
regression coefficient, 6,  was less than one-half that for the higher dosages. Usually 
this lower section of the toxicity curve will be of too little practical or theoretical 
importance to warrant calculating its equation, and it may be questioned whether a 
straight line is the correct relationship when the mortality below 25 to 35 per cent. 
kill &Bers from the rectilinearity of the higher dosages. Assuming a straight line in 
the present case, the regression equation mas Y=4*186+ 11.35 ( X -  1.7286). 

The two experimental series have been listed sepmately, although the same dosages 
were used in Series I and in Series 11. If the number of living and dead for each dosage 
hnrl been combined before calculating the percentage kill and transforming to probits, 
the reflession equation would have been determined from half as many separate ob- 
servations. The result should be practically the same. Tested arithmetically, the new 
equation, Y =5.436+ 25.33 ( X -  1.7967), differed so slightly that both regression lines 
could not be shown in Fig. 3. When it is evident from the similarity of different ex- 
perimental series that the stocks of test animals are the same, the results a t  cach 
separate dosage may be combined into a single percentage and probit for placing the 
fist  r e p s i o n  line by eye and for reducing the labour of computing the curve, 
although for estimating the errors of this curre the longor form is preferred. 

IT? ACCURACY OF THE REGRESSION LINE. 

The fitting of a dosage-mortality curve to a series of experimental 
observations. howtwer crude or refined the technique, i s  an attempt t o  
infer, from a limited number of individuals, the “true ” empirical relation- 
ship of dosage and mortality for a given toxic agent in an inhitely larger 
population from which they represent only a sample. The regression 
equation and line is the closest we can approximate this ((true“ relation- 
ship, but all determinations of this type are not equally reliable. If 
the experimental points are quite close t o  the line and the number of 
individuals is large, we have greater confidence that a second or third 
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determination will agree with our first estimate than if the points are 
scattered and based on fewer animals. We will want to compute from our 
experimental data not only the most likely position (the regression line) 
of the “ true ” dosage-mortality curve, but also how accurately this most 
likely position has been determined. 

(1) The x2 test for cornparimg observations with the computed curve. The 
first step is to determine whether the observed mortalities agree with our 
original assumption of a rectilinear relationship on the logarithmic- 
probability scale within the limits of sampling error; in other words, do 
the experimental observations vary significantly from our fitted straight 
line? Since each observation has been weighted by the reciprocal of 
its variance (NzZ/pq), which, in turn, is based upon a regression 
line a t  the observed dosage, the most satisfactory criterion is the 
chi-square (xz) test. At each dosage the observed mortality is compared 
with that expected from the regression equation, but instead of cal- 
culating separately each expected probit (mortality) from equation (a), 
and then subtracting it from the observed probit (mortality), a short-cut 
method for securing the sum of the squares of these differences may be 
adapted from the one given by Fisher (4). When this is combined with the 
weighting procedure above, which gives the part of the equation corre- 
sponding to the “expectation,” x2 may be calculated quite easily as 
follows : 

Nearly all of the components of equation (7) have already been computed 
in determining the regression equation. The h t  parenthesis contains 
S(wy2), which is the sum of the products of columns 6 and 10 in our 
example of Table IV. The second part is the numerator of the equation 
for the regression coefficient (equation ( 5 ) )  multiplied by the regression 
coefficient, b. Although in this equation for x2 the weights, and therefore 
the expected probit values, are based upon the initial, graphic regression 
line, while the differences between expeczation and observation depend 
upon the later, calculated regression line, the discrepancy thus introduced 
is not a serious one. 

The computation of x2 is a relatively straightforward operation with- 
out statistical complications, but its sigdlcance depends upon a term 
known as the number of “degrees of freedom,” n, which may be more 
difficult to evaluate. If the regression line were calculated from one set 
of data and then drawn on the same graph with the individually plotted 
points of a second, entirely independent series of determinations of 
toxicity, the second series could differ from the line in as many ways- 

x2= [X(WZJ~) -tjS(~y)] - b [S(WZ~) -ZS(wy)]. . . . . . .(7) 
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or in as many degrees of freedom (n)-as there are plotted points or 
observations (n’). TJnder these circumstances n would equal n’. If, how- 
ever, the average log. dose and the average probit were calculated from 
the second series, and the regression line drawn through the point 
established by these two averages with a slope which had previously been 
computed from other data, the separate tests in the second series could 
not differ as freely from the line as before, because the position of the line 
has been determined from the observations with which i t  is being com- 
pared. The number of degrees of freedom would then be one less than the 
oumber of tests in the second series or n = n’ - 1,  for one degree of freedom 
has been used up in locating the position of the line. Finally, when not 
only the position of the regression line but also its slope have been com- 
puted from a given series of observations, the extent to  which these latter 
mav differ from the transformed dosage-mortality line is still more re- 
stricted. In  this case, the one with which we have been dealing, the 
number of degrees of freedom would be equal t o  the number of separate 
tests less one which was sacrificed in using these same observations to  
determine the position of the regression line and less a second degree of 
freedom lost in establishing the slope of the line. The number of degrees 
of freedom in the regression line of our computations will be equal, there- 
fore. to the number of separate tests in the series establishing the curve 
less 2: or 91 = 17‘ - 2.  

This rule is simple and easy to apply, but is complicated by another 
requirement, i.e. that the calculated distributions of x2, upon whch the 
tests of significance depend, are not very closely realised when very small 
numbers are expected. In fact, such tests are not rigidly exact when the 
number expected is less than 5, In toxicological experiments, the ex- 
pected number of survivors a t  the higher dosages will regularly fall below 
this ideal limit, especially when zero survivors are obtained. If each of 
these particular tests is assigned a value of 1 in detxmininp the number 
of degrees of freedom. the apparent goodness of fit will be exaggerated by 
the inclusion of observations which, because of their small weight, con- 
tribute little to the observed xJ. The exact procedure is to exclude from 
the computation both of x2 and of 91 the results of those dosages a t  which 
the number of expected survivors. based on the number of organisms 
counted and the regression h e .  is less than 3 to 5 individuals. An 
alternative, which is more convenient though possibly less precise, is t o  
include these small contributions to  x2 with their standard weights as 
before, but for the purpose of determining n’ and r, to  group those in 
which the survival expectancy is small, so that there will be no contribu- 
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tions to N‘ or n which are based upon a survival expectancy of less than 
one individual. The limit of expectancy is lowered here because the 
separate observations will contribute somewhat more to xz, despite their 
small weights, than they would if the variation between them could be 
smoothed out by combining them into as few terms as their contributions 
to n‘. The same considerations would hold at the opposite end of the curve 
when the expectancy of death is very small. 

Having secured x 2  and n, it is a simple matter by reference to a table 
of x2, such as Table I11 in Pisher’s text, to determine if the observations 
depart more widely from our calculated dosage-mortality curve than 
could be expected by chance. If x 2  is smaller than the value in the column 
for P equal to 0-05, the data may be considered consistent with the 
straight line that has been fitted. If the x2 is greater than the value 
corresponding to this probability (P), either the observations depart 
signscantly from a straight-line relationship, or some uncontrolled con- 
dition in the experiment 1s causing a greater variation about the line than 
could be expected from simple fluctuations in sampling. Since systematic 
departures from rectilinearity were eliminated at the start, the second of 
these causes is more likely to  be involved. Heterogeneity of this type does 
no t  necessarily invalidate the procedures described in the present paper. 

( 2 )  The variances ofposition and slope. The two parameters determined 
from an experimental series in calculating the regression line are those 
giving its position, a (or j), and slope, b ;  from the variance of a and of b we 
may determine how accurately they have been estimated. The square root 
r \ f  the variance of any statisticalconstant isits standard error, but since the 
variance must be compnted in order to determine the standard error and is 
here much the more useful, we will deal with the variances directly rather 
than with their square roots, the standard errors. Since Z in the regression 
equation ( 2 )  is theindependent variable, the averageof the dosagesselected 
by the experimenter for testing, it is not a “sample” from a “popula- 
tion” of dosages and is not subject to sampling error in the ordinary sense. 

The regression line is calculated so as to intersect the point fixed by 
the average dosage and the average probit, so that the term a is numeric- 
ally equal to 9, but since a is defined as a value on the regression line, 
its variance, Via) ,  will be that about the regression line at a single dosage 
at  or near the mean dosage, and hence considerably smaller than the 
variance of the observed probits for all dosages. The equation for the 
variance of a is X2 V(a)  = s,2 =- 

nS(w) ’ I.. . . . (8) 

where the symbols have the same significance as before. 
Ann. Biol. XXII 11 
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Tbe variance of the regression coefficient, b, is given by the equation 
2 

?'(b) = sb2 = X nA * 
. . . ...( 9) 

The formulae for the variance of a and of b given in equations (8) and 
(9) represent the errors involved in the particular series of records from 
which they were calculated and are valid however great x2 may be. This 
comparison of xL with its mean value n is a comparison of actual devia- 
tions with those theoretically to  be expected from the numbers of units 
observed. If observation and computed curve agree satisfactorily within 
the limits of sampling error as tested by x 2  ( P  greater than 0*1), the errors 
observed in such a specific experimental series may be replaced by a 
simpler form which will give the expected error for all similar tests in- 
volving the same dosages and numbers of organisms. The theoretical form 
for the sampling errors in a and b may be obtained from the fact that the 
mran value of X3/n is equal to 1 .  \Then the errors in a and b arise solely 
from the chance distribution of susceptibilities from one test to another, 
the calculation of their variances may be simplified to  

. . . . .*(ll) 
1 V ( b ) = s b 2 =  - A' and 

(3) The zone of error of the regression line. The best available estimate of 
the true dosage-mortality curve is the calculated regression line. The 
experience of statisticians indicates that if we can determine limits on 
either side of the regression line, such that there are 19 chances in 20 of 
thou enclosing the true doeage-mortality curve, we will have a reasonable 
standard for prediction. Our next problem, therefore, is to determine the 
accuracy or " sensitivity " of the dosage-mortality curve which we have 
computed, using the margin of safety represented by 19 chances in 20 
or P = 0.05. 

From the variance, ?'(a), we can determine by how much the true 
regression line may lie above or below the most likely position as fixed 
by a, and from the variance, V(b) ,  we can find how much more or less i t  
may be tilted. At the average dosage, E ,  an error in b could have no 
influence upon the sensitivity with which a is an iltdex to the true 
regression line, but as the dosage differs more or less widely from the 
average, both errors are of importance and will modify the accuracy of 
estimate of the true mortality corresponding to m y  given dosage. As 
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shown by Working and hotel ling(^), the formula for the regression 
equation and its error may be written as 

Y = a + b (X - Z )  & t 2/ V(a)  + (X - Z)2 V(b) .  . . . . . . (12) 
The value of t is not calculated but is taken from a table of “Student’s ” 
integral, such as Table IV of Fisher’s text, from the column for P=0.05 
at the value of n equal t i  the number of degrees of freedom for the curve. 
From equation (12) we may calculate the probit of kill and its error of 
estimate for a series of dosages covering the same range as our original 
experimental observations; from the plus errors draw a line above, and 
from the minus errors a line below the dosage-mortality curve such that 
there are 19 chances in 20 of these two boundaries, the branches of a 
hyperbola, enclosing the true dosage-mortality curve when transformed 
to the logarithmic-prohit diagram. If it is preferred that the boundaries 
represent odds of 1 in 2 ,  as in the familiar probable error, t is read from 
the column for P = 0.5. 

These Werent operations may now be illustrated from our example in Table IV, 
the computations for the main curve being summarised at the end of the table. For 
this range of higher dosages, x2 =5.556. Although the curve is based upon 12 separate 
determinations of mortaliny, the total number of survivors expected from the four 
tests a t  the two highest concentrations of carbon disulphide was only 1-30 beetles 
(1 survivor observed). Therefore these will count as 1 instead of as 4 in determining n‘, 
and since n = n‘- 2, the number of degrees of freedom will be 9 - 2 = 7. From a table 
of xz. such as Table 111 in Fisher’s text, the corresponding value of P lies between 0.5 
and 0.7, so that the data may be considered consistent with the regression line which 
has been fitted to them. When the same test is applied to the line fitted to the range of 
smaller dosages, the x2 hxt again indicates satisfactory agreement 

(x2=1-404, 12-4, P=0.84). 
Since x2 indicates a satisfactory agreement between observation and fitted curve, 

the generabed form of the variances in the position and slope of the regression line 
may be used (equations (10) and ( I l ) ) ,  when V(a)=0-007758 and P(b)=6-6683. 
We now have all the terms for computing the regression l@e and its errors (equation 
(12)) with the exception of t. For n=7,  a t  odds represented by P=0-05, the value of 
t is given by Table IV in Fisher’s text as 2.365. The equation for estimating the 
mortality in probits, Y,  and its error within odds of 19 to 1, a t  m y  desired log. dosage, 
X, above a concentration of 57.8 mg. per litre, is 

I___- 

Y = 5.450+ 25.51 ( X  - 1.7967) & 2-365d04307758 + ( X - -  1.7967 )’ 6.6683. 

The limits shown as curved dotted lines in Fig. 3 have been computed from this 
equation for the range of’ higher dosages and from a similar equation for the lower 
dosages. These boundaries define the accuracy with which the two solid regression 
lines have been determined by the experiment. 

If the two series of twts had been combined, either whm the experiments were 
made originally or in computing the percentages, that part of the error under the 

11-2 
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square root would remain 88 it is in the longer form, since the generalised errora in 
position and slope depend only upon the sum of the weights and the variance of the 
log. dosage. The number of degrees of freedom would have dropped, however, from 
7 to 3, so that t would have been increased from 2.365 to 3.182, and the limits of the 
estimated error increased proportionately. 

V. APPENDIX. THE CASE OF ZERO SURVIVORS, BY R. A. FISHER. 
The equations derived from the theory of large samples appropriate 

for plotting the points on the probit diagram, namely 
S q=- 
n 

and 

give, for experiments with no survivors, x= 03, with weight 
22 
- +zx+o.  
PSI 

It is evident that such values cannot, in this form, be used in fitting 
the regression line, and that the theory of large samples has broken down, 
as was to be expected, when the number in the class of survivors is small. 
A more exact treatment is necessary for such cases, and this is supplied 
by the Method of Maximum Likelihood. 

If p is the probability of death, and p of survival, in any experiment, 
the probability that s survive out of n tested is 

In the method of maximum likelihood, we take the logarithm of the 
aggregate probability of all the experimental data, for any assigned series 
of probabilities of survival represented by the regression line, and esti- 
mate the position of the regression line by making this logarithm a 
maximum. This amo ints to  equating to zero the sum for the different 
experiments of the differential coefficients with respect to the value of x 
assigned. The exact form of the differential coefficient of (I) with respect 
to p is n--yn s qn-s 

P P P4 
With respect to the probit value x, the differential coefficient involves 
also the factor dpldx, and becomes 

-- 

(qn- s )  2. . . . . . .(II) 
Pq 

Now when both s and n - s are so large that the distribution of s may 
be treated as normal, the factor (qn-s), which is n times the difference 
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between the proportion of survivors expected and observed, is taken to 
be proportional t o  the difference between the probit values expected and 
observed, according to the formula 

(pn--s)=n ( x - X )  %n(x-X) ax 2, . . . . . . (111) 

where X is the probit value expected, and x that observed. In such cases 
the equation for maximum likelihood is made up of such terms as 

and its solution consists merely in fitting the expected values, X, by least 
squares to  observed values, a, obtained from each experiment, giving 
each observational point a weight nz2/pq. 

When, however, q is so small that s can frequently take values such as 
0, 1, or 2, the equation (111) is not a satisfactory approximation, as i. 
evident when s=O, for then x is infinite, while a finite value will be ob- 
tained from equation (HI). If we write 

then xr is a fictitious deviate, which, if assigned to any experiment with 
no survivors, will allow that experiment to exert its proper influence on 
the regression line. It will be observed that x f  is a function not only of an 
observed frequency sln, but also of X, the corresponding point on the 
regression line. It is only fictitious in the sense that it is not calculated 
from the result of just a single experiment, but requires also a knowledge 
of the expected value X inferred by fitting the regression line to other 
experiments. When s = 0,  ( X I  -X) is always positive, so that the fictitious 
frequency to which xr carresponds is always less than that expected, as is 
evidently proper when the observed frequency is zero. The fictitious value 
x’, if used with its proper weight in recalculating a regression line of which 
an approximate estimate has already been made, will then allow experi- 
ments with few or no survivors t o  exert their proper influence in adjusting 
the line. It is of some importance to take this step, since the omission of 
experiments merely because they show no survivors must constantly 
bias our estimates in the sense of exaggerating the number of survivors 
to be expected. 

When s=O, the value of x f  depends only on X, though, of course, the 
weight assigned to the observation depends also on n, the whole number 
tested, equation (IV) becoming 

n ( x f - X )  z=qn-s ,  . . . . . . (IV) 

xf -x d.  
z 

These values are shown in Table 11. 
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VI. SUMMARY. 
The sigmoid dosage-mortality curve, secured so commonly in toxicity 

tests upon multicellular organisms, is interpreted as a cumulative normal 
frequency distribution of the variation among the individuals of a 
population in their susceptibility t o  a toxic agent, which susceptibility is 
inversely proportional to the logarithm of the dose applied. In support 
of this interpretation is the fact that when dosage is inferred from the 
observed mortality on the assumption that susceptibility is distributed 
normally, such inferred dosages, in terms of units called probits, give 
straight lines when plotted against the logarithm of their corresponding 
observed dosages. It is shown that this use of the logarithm of the 
dosage can be interpreted in terms either of the Weber-Fechner law or of 
the amount of poison fixed by the tissues of the organism. How this trans- 
formation to a straight regression line facilitates the precise estimation 
of the dosage-mortality relationship and its accuracy is considered in 
detail. Statistical methods are described for taking account of tests which 
result in 0 or 100 per cent. kill, for giviDg each determination a weight 
proportional to its reliability, for computing the position and slope of the 
transformed dosage-mortality curve, for measuring the goodness of fit of 
the regression line t o  the observations by the x2 test, and for calculating 
the error in position and in slope and their combined effect a t  any log. 
dosage. The terminology and procedures are consistent with those used 
by R. A. Fisher, who has contributed an appendix on the case of zero 
survivors. Except for a table of common logarithms, all the tables re- 
quired t o  utilise the methods described are given either in the present 
paper or in Fisher's book. A numerical example selected from Strand's 
experiments upon T'ribolium. confusurn with carbon disulphide has been 
worked out in detail. 

It is a pleasure to record my indebtedness to Prof. R. A. Fisher, not 
only for the note appended to the paper, but also for invaluable advice 
throughout its preparation and for the facilities of the Galton Laboratory 
which have so generously been placed a t  my dieposal. Among others who 
have been kind enough to read and criticise my manuscript, I wish 
especially to thank Prof. A. J. Clark, Dr F. Tattersfield, Dr J. 0. Irwin, 
Dr A. B. P. Page, Mr H. H. S. Bovingdon, and Dr A. E. Brandt. 



C. I. BLISS 

REFERENCES. 

( 1 )  BLISS, C. I. (1934). CJcknce, LXXIX, 38 and 409. 

167 

CLARK, A. J. (1933). The Mode of Action of D r u g s  on C&. Arnold. 
FISHER, R. A. (1924). Proc. I&r. Math. Cungress, Tor07bt0, p. 805. 
- (1932). Statisticul M u o d s  for Research Workers. 4th ed. Oliver and Boyd. 
GADDUM, J. H. (1933). Med. Res. Council S p .  Rep. No. 183. His Majesty's 

Stationery Office. 
HEBD.IINGSEN, A. M. (1933). Quart. J .  Phan.  VI. 39, 187. 
m y ,  T. L. (1923). Statislieal Meulod. Macmillen. 
M c C m ,  S. E. A. and WILCOXON, F. (1933). Contr. Boy@ Thompson Inst. 

PEARSON, K. (1924). Tables for Statisticeiana and Bkometriciam. Part I, 2nd ed., 

Paam, F. S., S w m ,  A. F. end ELDRED, D. N. (1931). J .  E m .  Ent. XXN, 1041. 
Smm, A. L. (1930). Id. E w .  Chem. A d $ .  Ed. II, 4. 
T H o ~ o N ,  G. H. (1919). Biometrika, xn, 216. 

v, 173. 

Cmmbridge. 

ii3j T R ~ A N ,  J. w. (1929). J .  Path.  act. x m ,  127. 
(14) WORKWQ, H. and HOTELLIXQ, H. (1929). Proc. A m .  Stat. A m .  p. 73. 

(Received J w e  9th, 1934.) 


