THE CALCULATION OF THE DOSAGEMORTALITY CURVE

By C. I. BLISS.
(Galton Laboratory, University College, London.)

(With 3 Text-figures.)
CONTENTS.

Toxicological studies upon a large variety of organisms by many biologists have established the sigmoid character of the typical dosagemortality curve, especially in the case of multicellular forms. Recently it has been shown in two different fields that such curves can easily be plotted as straight lines and their later analysis thereby facilitated ($1,5,6$). These methods, which are substantially the same, are developed more fully in the present paper. While the procedures have been selected on the basis of their statistical accuracy and efficiency, and accordingly follow the recent trends which are so closely associated with the name of R. A. Fisher, an attempt has been made to present them in sufficient detail to permit their use by biologists with a limited knowledge of statistics. The present paper is concerned with the calculation of the transformed dosage-mortality curve and its accuracy. Later papers in this series will deal with statistical methods for comparing dosage-mortality data, and with time-survival curves.

I. The interpretation of the dosage-mortality curve and its transformation to a straight line.

Action curves in pharmacology are those in which the amount of the response to any given degree of chemical or physical stimulation is expressed as a percentage of the maximum obtainable in that particular biological system. The action curve is frequently sigmoid, especially when it expresses the relationship of mortality to dosage, so that a graphic plot of the percentage of dead organisms on the ordinate against some function of dosage along the abscissa resembles the letter S, the change in percentage kill per unit of the abscissa being smallest near mortalities of 0 and 100 per cent., and largest near 50 per cent. Among multicellular organisms, it is practically universal for a diagram with these co-ordinates to show this characteristic shape, but the interpretation of such curves has varied widely. Since this controversy has been reviewed so fully by Clark (2), the ground need not be gone over again, and we may proceed at once to describe the viewpoint adopted here.

On this theory, the dosage-mortality curve is primarily descriptive of the variation in susceptibility between the individuals of a population. Let us suppose that, under uniform conditions, the susceptibility of each individual may be represented by the smallest dose which is just sufficient to kill it, the individual lethal dose. As in the case of any other biological characteristic, this susceptibility will vary from one individual to another in the population, and a priori we might expect the distribution curve of the number of individuals having each particular susceptibility to show the shape characteristic of the normal curve of error. If Fig. 1, which is the normal curve of error in its most usual form, is assumed, for the moment, to be an ideal representation of the variation in susceptibility, the ordinates will give the number of individual organisms corresponding to each particular individual lethal dose shown along the base in a graded series (assuming that the numbers along the base of the figure are equivalent to actual dosages in one form or another).

With intact animals, however, the experimental technique is usually not suitable for determining the exact minimum lethal dose for each individual, as would be required to secure the data for plotting this form of the normal frequency curve of error. As the experiment is actually conducted, the dosage applied to each separate lot of organisms kills not only those requiring at least this quantity of poison, but also all more susceptible individuals, i.e. those which could be killed with a smaller

136 The Calculation of the Dosage-Mortality Curve

dosage. Consequently, if Fig. 1 represents the hypothetical frequency distribution of susceptibility, as measured by the individual lethal dose, any given dose will split the sample of organisms into two categories of dead and alive, whose relative proportion will depend upon the relation of the dosage to the distribution of susceptibilities. If our dose had happened to come at the point marked x in Fig. 1, the ratio of the dead or more susceptible individuals to the total number in the sample treatedin other words, the percentage killed-would have been the ratio of the unshaded area to the total area under the curve. By varying our dosage

Fig. 1. The theoretical normal curve of error, in which $p(0.95)$ and $q(0.05)$ indicate areas under the curve to the left and right respectively of the ordinate z erected at the point on the abscissa indicated by $x(1.645 \sigma$). The position of the median (and also of the mean and the mode) is given by M which divides the area under the curve into halves.
along the base and using a succession of equivalent samples of organisms, it would be possible to determine a series of percentage kills (or proportionate areas, $\frac{p}{p+q}$, of the normal frequency curve) corresponding to the dosages applied experimentally. If these percentage kills were then plotted on the ordinate of another graph against the dosage on the abscissa as before, the result would be a cumulative normal frequency distribution such as Fig. 2. This type of curve, therefore, can be and frequently is obtained experimentally in the laboratory.

The assumption that the individual susceptibility to a poison is distributed normally may be tested by reversing our argument. From a given sample of 40 beetles, let us say, exposed to a known concentration of fumigant, 38 , or 95 per cent., were killed. Temporarily neglecting the observed dosage, this percentage kill may be equated to a fraction of the total area under the theoretical normal curve of error, $\frac{p}{p+q}$, and the "expected" dosage, x, to which this mortality corresponds, read from the

Fig. 2. The proportionate areas, $\frac{p}{p+q}$, of Fig. 1 plotted on the same abscissa as before (probit units). The "broken" lines are drawn at the same positions as the two ordinates, M and $x z$, of Fig. 1, while the solid parallel lines bounding the broken lines mark the corresponding limits of the standard error for a sample of 100 indiriduals.
base (Fig. 1). Because of the availability of statistical tables, this expected dosage is given most conveniently in units of standard deviations. The standard deviation, σ, corresponding to any observed mortality may be read directly from sources such as the Kelley-Wood Table (7) or the Shepard-Galton Table (9), and in this case would be 1.645 standard deviations. Similarly, another sample of 40 beetles at a lower dosage, may have shown a mortality of only 20 individuals or 50 per cent., and the expected dosage inferred from this mortality would be 0 standard deviations, since the standard deviation in the normal curve is measured from the median or mean as the origin.

138

 The Calculation of the Dosage-Mortality CurveIn this fashion an expected dosage corresponding to every observed dosage measured experimentally may be determined from the observed mortality, and the inferred dosages, so derived, are called "normal equivalent deviations" or " N.E.D." by Gaddum (5) and by Hemmingsen (6). Many observations, however, will fall below 50 per cent. kill and by Gaddum's system would require negative expected dosages, which are inconvenient. In order to avoid this difficulty, a new table of statistical units called "probits" has been devised (1) in which the 0 of the usual statistical table of deviates has been equated to the digit 5 , and the deviate of the normal curve, in terms of σ, added algebraically to secure the probit corresponding to each percentage kill (Table I). Because of their greater convenience, the expected dosages may be expressed in terms of probits and will not modify the proof or disproof of our basic assumption.

Table I.
Probits or probability units for transforming the sigmoid dosage-mortality curve to a straight line. In the body of the table is given the probit corresponding to each percentage mortality listed along the left edge and top.

	$0 \cdot 0$	$0 \cdot 1$	$0 \cdot 2$	0.3	$0 \cdot 4$	0.5	$0 \cdot 6$	0.7	0.8	0.9
0		1.9098	$2 \cdot 1218$	$2 \cdot 2592$	$2 \cdot 3479$	$2 \cdot 4242$	$2 \cdot 4879$	$2 \cdot 5427$	$2 \cdot 5911$	-6344
1	$2 \cdot 6737$	$2 \cdot 7096$	$2 \cdot 7429$	$2 \cdot 7738$	$2 \cdot 8027$	$2 \cdot 8299$	2.8556	$2 \cdot 8799$	$2 \cdot 9031$	2.9251
2	$2 \cdot 9463$	$2 \cdot 9665$	$2 \cdot 9859$	$3 \cdot 0046$	$3 \cdot 0226$	3.0400	$3 \cdot 0569$	$3 \cdot 0732$	3.0890	$3 \cdot 1043$
3	3-1192	3•1337	$3 \cdot 1478$	3-1616	3-1750	3-1881	$3 \cdot 2009$	3.2134	3.2256	3-2376
4	$3 \cdot 2493$	3.2608	3-2721	3-2831	3-2940	$3 \cdot 3046$	$3 \cdot 3151$	3-3253	3-3354	3-3454
5	$3 \cdot 3551$	$3 \cdot 3648$	$3 \cdot 3742$	$3 \cdot 3836$	$3 \cdot 3928$	$3 \cdot 4018$	$3 \cdot 4107$	$3 \cdot 4195$	$3 \cdot 4282$	3-4368
6	$3 \cdot 4452$	$3 \cdot 4536$	$3 \cdot 4618$	3.4699	$3 \cdot 4780$	$3 \cdot 4859$	$3 \cdot 4937$	$3 \cdot 5015$	$3 \cdot 5091$	$3 \cdot 5167$
7	$3 \cdot 5242$	$3 \cdot 5316$	3•0389	3.5462	$3 \cdot 5534$	3.5605	$3 \cdot 5675$	$3 \cdot 5745$	$3 \cdot 5813$	3.5882
8	3.5949	3.finl6	$3 \cdot 6083$	$3 \cdot 6148$	$3 \cdot 6213$	$3 \cdot 6278$	$3 \cdot 6342$	$3 \cdot 6405$	3.6468	3.6531
9	3.6592	3-6654	$3 \cdot 6715$	$3 \cdot 675$	$3 \cdot 6835$	3.6894	$3 \cdot 6953$	$3 \cdot 7012$	3.7070	3.7127
10	3.7184	3.7241	3.7298	3-7354	3.7409	3-7464	3.7519	$3 \cdot 7574$	3.7628	3.7681
11	3.7735	3.7788	3.7840	3.7893	3.7945	3.7996	$3 \cdot 8048$	$3 \cdot 8099$	3.8150	3.8200
12	3.8250	$3 \cdot 8300$	3.8350	3.8399	3.8448	3.8497	$3 \cdot 8545$	3•8593	$3 \cdot 8641$	3.8689
13	3.8736	3.8783	3.8830	3.8877	3.8923	3.8969	3.9015	3.9061	$3 \cdot 9107$	3.9152
14	3.9197	3.4242	3.9286	3.9331	3.9375	3.9419	3.9463	3.9506	3.9550	3.9593
15	3.9636	3.9678	3.97-1	3.9763	3.9806	3.9848	$3 \cdot 9890$	3.9931	3.9973	$4 \cdot 0014$
16	$4 \cdot 0055$	$4 \cdot 4096$	$4 \cdot 0137$	$4 \cdot 0178$	4.0218	$4 \cdot 0259$	$4 \cdot 0299$	4.0339	$4 \cdot 0379$	4.0419
17	$4 \cdot 0458$	$4 \cdot 0498$	$4 \cdot 0537$	4.0576	4.0615	$4 \cdot 0654$	$4 \cdot 0693$	$4 \cdot 0731$	$4 \cdot 0770$	$4 \cdot 0808$
18	$4 \cdot 1846$	$4 \cdot 11884$	$4 \cdot 0922$	$4 \cdot 0960$	$4 \cdot 0998$	$4 \cdot 1035$	4-1073	4-1110	$4 \cdot 1147$	4-1184
19	$4 \cdot 1221$	$4 \cdot 1258$	$4 \cdot 1295$	$4 \cdot 1331$	$4 \cdot 1367$	$4 \cdot 1404$	4.1440	4-1476	4-1512	4-1548
20	$4 \cdot 1584$	$4 \cdot 1619$	$4 \cdot 1655$	$4 \cdot 1690$	4.1726	$4 \cdot 1761$	$4 \cdot 1796$	$4 \cdot 1831$	$4 \cdot 1866$	4-1901
21	$4 \cdot 1936$	$4 \cdot 1970$	$4 \cdot 2005$	$4 \cdot 2039$	$4 \cdot 2074$	$4 \cdot 2108$	$4 \cdot 2142$	$4 \cdot 2176$	$4 \cdot 2210$	$4 \cdot 2244$
22	$4 \cdot 2278$	$4 \cdot 2312$	$4 \cdot 2345$	$4 \cdot 2379$	$4 \cdot 2412$	$4 \cdot 2446$	$4 \cdot 2479$	$4 \cdot 2512$	$4 \cdot 2546$	$4 \cdot 2579$
23	$4 \cdot 2612$	$4 \cdot 6644$	$4 \cdot 2677$	$4 \cdot 2710$	$4 \cdot 2743$	$4 \cdot 2775$	$4 \cdot 2808$	$4 \cdot 2840$	$4 \cdot 2872$	$4 \cdot 2905$
24	$4 \cdot 2937$	4-2969	$4 \cdot 3001$	$4 \cdot 3033$	4-3065	4-3097	$4 \cdot 3129$	$4 \cdot 3160$	$4 \cdot 3192$	$4 \cdot 3224$

Table I (cont.).

	$0 \cdot 0$	0.1	$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 4$	0.5	$0 \cdot 6$	0.7	0.8	0.9
25	4.3255	4.3287	4.3318	4.3349	4.3380	$4 \cdot 3412$	$4 \cdot 3443$	4.3474	$4 \cdot 3505$	$4 \cdot 3536$
26	$4 \cdot 3567$	4.3597	$4 \cdot 3628$	$4 \cdot 3659$	$4 \cdot 3689$	$4 \cdot 3720$	4.3750	4-3781	$4 \cdot 3811$	4-3842
27	$4 \cdot 3872$	$4 \cdot 3902$	4-3932	4.3962	$4 \cdot 3992$	4-4022	$4 \cdot 4052$	$4 \cdot 4082$	$4 \cdot 4112$	$4 \cdot 4142$
28	$4 \cdot 4172$	$4 \cdot 4201$	$4 \cdot 4231$	$4 \cdot 4260$	$4 \cdot 4290$	4.4319	$4 \cdot 4349$	$4 \cdot 4378$	4.4408	$4 \cdot 4437$
29	4-4466	4.4495	4.4524	4.4554	4.4583	$4 \cdot 4612$	4.4641	$4 \cdot 4670$	4.4698	4.4727
30	$4 \cdot 4756$	4-4785	$4 \cdot 4813$	$4 \cdot 4842$	4.4871	4.4899	$4 \cdot 4928$	$4 \cdot 4956$	$4 \cdot 4985$	$4 \cdot 5013$
31	$4 \cdot 5041$	4-5070	4-5098	$4 \cdot 5126$	$4 \cdot 5155$	$4 \cdot 5183$	$4 \cdot 5211$	$4 \cdot 5239$	$4 \cdot 5267$	$4 \cdot 5295$
32	$4 \cdot 5323$	$4 \cdot 5351$	4.5379	$4 \cdot 5407$	$4 \cdot 5435$	$4 \cdot 5462$	4.5490	$4 \cdot 5518$	$4 \cdot 5546$	$4 \cdot 5573$
33	$4 \cdot 5601$	4-5628	$4 \cdot 5656$	$4 \cdot 5684$	$4 \cdot 5711$	$4 \cdot 5739$	$4 \cdot 5766$	$4 \cdot 5793$	$4 \cdot 5821$	$4 \cdot 5848$
34	$4 \cdot 5875$	4.5903	4.5930	$4 \cdot 5957$	$4 \cdot 5984$	$4 \cdot 6011$	$4 \cdot 6039$	4-6066	4-6093	$4 \cdot 6120$
35	$4 \cdot 6147$	$4 \cdot 6174$	$4 \cdot 6201$	$4 \cdot 6228$	4-6255	$4 \cdot 6281$	$4 \cdot 6308$	$4 \cdot 6335$	$4 \cdot 6362$	4.6389
36	$4 \cdot 6415$	$4 \cdot 6442$	$4 \cdot 6469$	$4 \cdot 6495$	$4 \cdot 6522$	$4 \cdot 6549$	$4 \cdot 6575$	$4 \cdot 6602$	$4 \cdot 6628$	$4 \cdot 6655$
37	4.6681	$4 \cdot 6708$	$4 \cdot 6734$	4.6761	$4 \cdot 6787$	$4 \cdot 6814$	$4 \cdot 6840$	$4 \cdot 6866$	$4 \cdot 6893$	4.6919
38	4.6945	4.6971	$4 \cdot 6998$	$4 \cdot 7024$	$4 \cdot 7050$	$4 \cdot 7076$	$4 \cdot 7102$	$4 \cdot 7129$	$4 \cdot 7155$	$4 \cdot 7181$
39	$4 \cdot 7207$	$4 \cdot 7233$	4.7259	4.7285	$4 \cdot 7311$	4.7337	4-7363	$4 \cdot 7389$	$4 \cdot 7415$	4.7441
40	$4 \cdot 7467$	$4 \cdot 7492$	$4 \cdot 7518$	$4 \cdot 7544$	$4 \cdot 7570$	4.7596	$4 \cdot 7622$	$4 \cdot 7647$	$4 \cdot 7673$	$4 \cdot 7699$
41	$4 \cdot 7725$	$4 \cdot 7750$	4.7776	4.7802	$4 \cdot 7827$	$4 \cdot 7853$	4.7879	4.7904	$4 \cdot 7930$	$4 \cdot 7955$
42	4.7981	$4 \cdot 8007$	$4 \cdot 8032$	$4 \cdot 8058$	$4 \cdot 8083$	$4 \cdot 8109$	4.8134	4.8160	$4 \cdot 8185$	$4 \cdot 8211$
43	$4 \cdot 8236$	$4 \cdot 8262$	$4 \cdot 8287$	$4 \cdot 8313$	$4 \cdot 8338$	$4 \cdot 8363$	$4 \cdot 8389$	$4 \cdot 8414$	4.8440	$4 \cdot 8465$
44	$4 \cdot 8490$	$4 \cdot 8516$	4.8541	$4 \cdot 8566$	4.8592	4.8617	$4 \cdot 8642$	4.8668	4.8693	$4 \cdot 8718$
45	$4 \cdot 8743$	4.8769	4.8794	$4 \cdot 8819$	4.8844	4.8870	$4 \cdot 8895$	4.8920	$4 \cdot 8945$	$4 \cdot 8970$
46	$4 \cdot 8996$	4.9021	4.9046	4.9071	4.9096	4.9122	$4 \cdot 9147$	4.9172	$4 \cdot 9197$	4.9222
47	$4 \cdot 9247$	4.9272	4.9298	4.9323	$4 \cdot 9348$	$4 \cdot 9373$	$4 \cdot 9398$	4.9423	4.9448	4.9473
48	$4 \cdot 9498$	$4 \cdot 9524$	4.9549	4.9574	$4 \cdot 9599$	$4 \cdot 9624$	$4 \cdot 9649$	4.9674	$4 \cdot 9699$	$4 \cdot 9724$
49	4.9749	4.9774	4.9799	4.9825	4.9850	4.9875	4.9900	4-9925	4.9950	$4 \cdot 9975$
50	5.0000	$5 \cdot 0025$	$5 \cdot 0050$	5.0075	5.0100	5.0125	$5 \cdot 0150$	$5 \cdot 0175$	$5 \cdot 0201$	$5 \cdot 0226$
51	5-0251	$5 \cdot 0276$	5.0301	$5 \cdot 0326$	$5 \cdot 0351$	$5 \cdot 0376$	$5 \cdot 0401$	$5 \cdot 0426$	5.0451	$5 \cdot 0476$
52	5-0502	$5 \cdot 0527$	$5 \cdot 0552$	$5 \cdot 0577$	5-0602	$5 \cdot 0627$	$5 \cdot 0652$	$5 \cdot 0677$	$5 \cdot 0702$	5.0728
53	$5 \cdot 0753$	$5 \cdot 0778$	$5 \cdot 0803$	$5 \cdot 0828$	$5 \cdot 0853$	$5 \cdot 0878$	5-0904	$5 \cdot 0929$	5-0954	$5 \cdot 0979$
54	5-1004	5.1030	$5 \cdot 1055$	$5 \cdot 1080$	$5 \cdot 1105$	$5 \cdot 1130$	$5 \cdot 1156$	$5 \cdot 1181$	5-1206	5-1231
55	5-1257	5-1282	5-1307	5-1332	5-1358	5-1383	5-1408	5-1434	5-1459	$5 \cdot 1484$
56	5.1510	$5 \cdot 1535$	$5 \cdot 1560$	5•1586	5-1611	5-1637	5-1662	5-1687	$5 \cdot 1713$	5-1738
57	5-1764	5-1789	$5 \cdot 1815$	5-1840	5•1866	5-1891	5-1917	5-1942	5-1968	$5 \cdot 1993$
58	$5 \cdot 2019$	$5 \cdot 2045$	$5 \cdot 2070$	$5 \cdot 2096$	5-2121	$5 \cdot 2147$	$5 \cdot 2173$	$5 \cdot 2198$	$5 \cdot 2224$	$5 \cdot 2250$
59	$\mathbf{5} 2275$	5-2301	$\mathbf{5} \cdot \mathbf{2 3 2 7}$	$5 \cdot 2353$	5-2378	5-2404	$5 \cdot 2430$	$5 \cdot 2456$	5-2482	$5 \cdot 2508$
60	5.2533	$5 \cdot 2559$	$5 \cdot 2585$	$5 \cdot 2611$	$5 \cdot 2637$	$5 \cdot 2663$	5.2689	$5 \cdot 2715$	$5 \cdot 2741$	$5 \cdot 2767$
61	$5 \cdot 2793$	$5 \cdot 2819$	5-2845	5-2871	5-2898	$5 \cdot 2924$	$5 \cdot 2950$	$5 \cdot 2976$	5-3002	5-3029
62	$5 \cdot 3055$	5-3081	$5 \cdot 3107$	$5 \cdot 3134$	5.3160	$5 \cdot 3186$	5-3213	5-3239	5-3266	$5 \cdot 3292$
63	5-3319	$5 \cdot 3345$	$5 \cdot 3372$	5-3398	$5 \cdot 3425$	$5 \cdot 3451$	$5 \cdot 3478$	$5 \cdot 3505$	5.3531	5-3558
64	$5 \cdot 3585$	$5 \cdot 3611$	5-3638	5-3665	5-3692	$5 \cdot 3719$	$5 \cdot 3745$	$5 \cdot 3772$	5.3799	$5 \cdot 3826$
65	$5 \cdot 3853$	5-3880	$5 \cdot 3907$	5.3934	5-3961	5-3989	$5 \cdot 4016$	$5 \cdot 4043$	$5 \cdot 4070$	5-4097
66	5-4125	$5 \cdot 4152$	$5 \cdot 4179$	5-4207	$5 \cdot 4234$	$5 \cdot 4261$	$5 \cdot 4289$	$5 \cdot 4316$	$5 \cdot 4344$	5-4372
67	$5 \cdot 4399$	$5 \cdot 4427$	5-4454	$5 \cdot 4482$	$5 \cdot 4510$	$5 \cdot 4538$	5-4565	$5 \cdot 4593$	5-4621	$5-4649$
68	$5 \cdot 4677$	$5 \cdot 4705$	$5 \cdot 4733$	$5 \cdot 4761$	$5 \cdot 4789$	$5 \cdot 4817$	$5 \cdot 4845$	$5 \cdot 4874$	$5 \cdot 4902$	$5 \cdot 4930$
69	$5 \cdot 4959$	$5 \cdot 4987$	5.5015	5.5044	$5 \cdot 5072$	$5 \cdot 5101$	5.5129	5.5158	$5 \cdot 5187$	5-5215
70	$5 \cdot 5244$	$5 \cdot 5273$	5-5302	5.5330	5.5359	5.5388	5.5417	5.5446	$5 \cdot 5476$	$5 \cdot 5505$
71	$5 \cdot 5534$	5-5563	$5 \cdot 5592$	5.5622	$5 \cdot 5651$	5.5681	$5 \cdot 5710$	$5 \cdot 5740$	5.5769	$5 \cdot 5799$
72	$5 \cdot 5828$	$5 \cdot 5858$	$5 \cdot 5888$	5.5918	5.5948	5.5978	5.6008	E. 6038	$5 \cdot 6068$	5.6098
73	$5 \cdot 6128$	$5 \cdot 6158$	$5 \cdot 6189$	5-6219	5-6250	$5 \cdot 6280$	$5 \cdot 6311$	$5 \cdot 6341$	5.6372	$5 \cdot 6403$
74	$5 \cdot 6433$	5.6464	$5 \cdot 6495$	$5 \cdot 6526$	$5 \cdot 6557$	5.6588	5.6620	$\mathbf{5} 6651$	5-6682	$5 \cdot 6713$

140 The Calculation of the Dosage-Mortality Curve
Table I (cont.).

	$0 \cdot 0$	0.1	$0 \cdot 2$	$0 \cdot 3$	0.4	$0 \cdot 5$	$0 \cdot 6$	0.7	0.8	0.9
75	$5 \cdot 6745$	5.6776	$5 \cdot 6808$	5.6840	$5 \cdot 6871$	5.6903	$5 \cdot 6935$	$5 \cdot 6967$	5.6999	$5 \cdot 7031$
76	$5 \cdot 7063$	$5 \cdot 7095$	$5 \cdot 7128$	5.7160	5.7192	5.7225	$5 \cdot 7257$	$5 \cdot 7290$	$5 \cdot 7323$	$5 \cdot 7356$
77	5-7388	5•7491	$5 \cdot 7454$	$5 \cdot 7488$	$5 \cdot 7521$	5.7554	$5 \cdot 7588$	5•621	-.7655	$5 \cdot 7688$
78	$5 \cdot 7729$	$5 \cdot 7756$	$5 \cdot 7790$	5.7824	$5 \cdot 7858$	$5 \cdot 7892$	5.7926	5.7961	$5 \cdot 7995$	$5 \cdot 8030$
79	$5 \cdot 8064$	5.8099	5.8134	5.8169	5.8204	5.8239	5.8274	5.8310	5.8345	$5 \cdot 8381$
80	5.8416	5.8452	$5 \cdot 8488$	5.8524	$5 \cdot 8560$	5.8596	5.8633	$5 \cdot 8669$	$5 \cdot 8705$	5.8742
81	$5 \cdot 8779$	$5 \cdot 8816$	$5 \cdot 8853$	$5 \cdot 8890$	$5 \cdot 8927$	$5 \cdot 8965$	5.9002	5.9040	5.9078	$5 \cdot 9116$
82	$5 \cdot 9154$	5.9192	5.9230	5.9269	$5 \cdot 9307$	5.9346	5.9385	5.9424	5.9463	$5 \cdot 9502$
83	5.9542	5.9581	5.9621	$5 \cdot 9661$	5.9701	5.9741	5.9782	5.9822	5.9863	5.9904
84	5.9945	5.9986	6.0027	$6 \cdot 0069$	6.0110	6-0152	6.0194	6.0237	$6 \cdot 0279$	6.0322
85	6.0364	6.0407	$6 \cdot 0450$	6.0494	6.0537	$6 \cdot 0581$	6.0625	$6 \cdot 0669$	6.0714	$6 \cdot 0758$
86	6.0803	6.0848	6.0893	6.0939	$6 \cdot 0985$	$6 \cdot 1031$	$6 \cdot 1077$	$6 \cdot 1123$	$6 \cdot 1170$	$6 \cdot 1217$
87	6.1264	$6 \cdot 1311$	6.1359	$6 \cdot 1407$	$6 \cdot 1455$	$6 \cdot 1503$	$6 \cdot 1552$	6.1601	6.1650	$6 \cdot 1700$
88	$6 \cdot 1750$	6-1800	$6 \cdot 1850$	$6 \cdot 1901$	6•1952	6.2004	6.2055	$6 \cdot 2107$	6.2160	$6 \cdot 2212$
89	6.2265	6.2319	6.2372	$6 \cdot 2426$	$6 \cdot \underline{481}$	$6 \cdot 2536$	$6 \cdot 2591$	$6 \cdot 2646$	$6 \cdot 2702$	6.2759
90	6.2816	6.2873	6.2930	6.2988	$6 \cdot 3047$	$6 \cdot 3106$	$6 \cdot 3165$	$6 \cdot 3225$	$6 \cdot 3285$	6.3346
91	$6 \cdot 3408$	$6 \cdot 3469$	6-3532	$6 \cdot 3595$	$6 \cdot 3658$	$6 \cdot 3722$	$6 \cdot 3787$	$6 \cdot 3852$	$6 \cdot 3917$	$6 \cdot 3984$
92	$6 \cdot 40.51$	6.4118	$6 \cdot 4187$	$6 \cdot 4255$	$6 \cdot 4325$	$6 \cdot 4395$	$6 \cdot 4466$	$6 \cdot 4538$	$6 \cdot 4611$	$6 \cdot 4684$
93	$6 \cdot 4758$	$6 \cdot 4833$	6.4909	6-4985	$6 \cdot 5063$	$6 \cdot 5141$	6.5220	6.5301	6.5382	$6 \cdot 5464$
94	6.5548	$6 \cdot 5632$	6.5718	6.5805	6.5893	$6 \cdot 5982$	6.6072	$6 \cdot 6164$	$6 \cdot 6258$	6.6352
95	6.6449	$6 \cdot 6546$	6.6646	$6 \cdot 6747$	6.6849	$6 \cdot 6954$	$6 \cdot 7060$	6.7169	6.7279	6.7392
96	6.7507	$6 \cdot 7624$	$6 \cdot 7744$	6.7866	6.7991	6.8119	6.8250	6.8384	6.85 .2	6.8663
97	6.8808	6.8957	6.9110	6.9268	6.9431	6.9600	6.9774	6.9954	$7 \cdot 0141$	7.0335
	$0-00$	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
$98 \cdot 0$	7.0537	$7 \cdot 0558$	$7 \cdot 0.79$	7.0600	7.0621	$7 \cdot 0642$	$7 \cdot 0663$	$7 \cdot 0684$	7.0706	7.0727
$98 \cdot 1$	$7 \cdot 0749$	$7 \cdot 0770$	7.0792	7.0814	$7 \cdot 0836$	7.0858	$7 \cdot 0880$	$7 \cdot 0902$	$7 \cdot 0924$	$7 \cdot 0947$
98.2	7.0969	7.0992	$7 \cdot 1015$	$7 \cdot 1038$	7.1060	$7 \cdot 1084$	$7 \cdot 1107$	$7 \cdot 1130$	$7 \cdot 1154$	$7 \cdot 1177$
98.3	$7 \cdot 1201$	$7 \cdot 1224$	$7 \cdot 1248$	$7 \cdot 1272$	$7 \cdot 1297$	$7 \cdot 1321$	$7 \cdot 1345$	$7 \cdot 1370$	$7 \cdot 1394$	$7 \cdot 1419$
$98 \cdot 4$	7-1444	$7 \cdot 1469$	$7 \cdot 1494$	$7 \cdot 1520$	$7 \cdot 1545$	$7 \cdot 1571$	$7 \cdot 1596$	7-1622	$7 \cdot 1648$	7-1675
98.5	$7 \cdot 1701$	$7 \cdot 1727$	$7 \cdot 1754$	$7 \cdot 1781$	7.1808	7.1835	$7 \cdot 1862$	$7 \cdot 1890$	$7 \cdot 1917$	$7 \cdot 1945$
$98 \cdot 6$	$7 \cdot 1973$	7.2001	. 7.2029	$7 \cdot 2058$	7.2086	7.2115	$7 \cdot 2144$	$7 \cdot 2173$	$7 \cdot 2203$	7.2232
98.7	7.2262	7.2292	7.2322	$7 \cdot 2353$	7.2383	7.2414	$7 \cdot 2445$	7.2476	7.2508	$7 \cdot 2539$
$98 \cdot 8$	7.2571	7.2603	7.2636	$7 \cdot 2668$	7.2701	7.2734	7-2768	$7 \cdot 2801$	$7 \cdot 2835$	$7 \cdot 2869$
98.9	7.2904	7.2938	7.2973	$7 \cdot 3009$	$7 \cdot 3044$	$\mathbf{7 . 3 0 8 0}$	$7 \cdot 3116$	7.3152	$7 \cdot 3189$	$7 \cdot 3226$
$99 \cdot 0$	$7 \cdot 3263$	7.3301	$7 \cdot 3339$	7.3378	7.3416	7.3455	7.3495	7.3535	7.3575	$7 \cdot 3615$
$99 \cdot 1$	$7 \cdot 3656$	7.3698	7.3739	7.3781	$7 \cdot 3824$	7.3867	7.3911	7.3954	7.3999	7.4044
99.2	7.4089	$7 \cdot 4135$	$7 \cdot 4181$	7.4228	7.4276	7.4324	7.4372	7.4422	$7 \cdot 4471$	$7 \cdot 4522$
99.3	7.4573	7.4624	7.4677	7.4730	$7 \cdot 4783$	$7 \cdot 4838$	$7 \cdot 4893$	$7 \cdot 4949$	$7 \cdot 5005$	$7 \cdot 5063$
$99 \cdot 4$	7.5121	7.5181	7.5241	7.5302	$7 \cdot 5364$	7.5427	7.5491	$7 \cdot 5556$	7.5622	7.5690
99.5	5.5758	7.5828	7.5899	7.5972	$7 \cdot 6045$	7.6121	$7 \cdot 6197$	$7 \cdot 6276$	$7 \cdot 6356$	$7 \cdot 6437$
$99 \cdot 6$	$7 \cdot 6521$	$7 \cdot 6606$	7-6693	$7 \cdot 6783$	7.6874	7.6968	7.7065	7.7164	7.7265	7.7370
99.7	7.7478	7.7589	7.7703	7.7821	7.7944	7.8070	7.8202	7.8338	7.8480	7.8627
99.8	7.8782	7.8943	7.9112	7.9291	7.9478	7.9677	8.9889	7.0114	$8 \cdot 1357$	$8 \cdot 0618$
99.9	8.0902	$8 \cdot 1214$	$8 \cdot 1559$	$8 \cdot 1947$	$8 \cdot 2389$	$8 \cdot 2905$	8.3528	$8 \cdot 4316$	$8 \cdot 5401$	8.7190

The next step is to plot on the ordinate the probit of the expected dosage, inferred from the observed mortality, and on the abscissa some function of the amounts which were administered experimentally. These latter may be originally in terms of the concentrations of a toxic
substance in which the successive lots of organisms were immersed for a given time, a graded series of times of exposure to a fixed concentration of poison, doses administered individually at different units per gram of body weight, different concentrations of contact poison applied uniformly over the surface of the body, or in some other terms. When these units of measurement are plotted directly, the resulting curve is very seldom a straight line but is nearly always convex upwards, an effect which might have been anticipated from the markedly asymmetrical character of most sigmoid dosage-mortality curves.

Before discarding the normal curve as an adequate description of the variation between individuals in their susceptibility to a poison, let us question the assumption that the individual lethal dose is a satisfactory direct measure of susceptibility. The dosage units described above form an arithmetical scale of equal increments, and would not be a satisfactory index to the susceptibility if the structural or chemical constituents which determine the level of susceptibility of the individual in respect to a given drug were not to increase or decrease by equal additive increments. It was pointed out as long ago as 1879 by Galton that in biological material the variation often shows a geometrical rather than an arithmetical distribution, an observation which has been confirmed by several investigators in respect to toxicological characteristics. If, therefore, the changes in the substances or structures which determine susceptibility, whatever may be their nature, were ordinarily proportional in type, then they would be symmetrically distributed not on an arithmetical scale of individual lethal doses but only on a logarithmic scale. This possibility may be tested by converting the observed dosages to logarithms and again plotting the dosages inferred from mortality or probits against those secured experimentally. With this transformation, a straight line does result in a great majority of the cases which have been tested. Before the method of inferring "expected" doses from the percentage kills had been devised, Trevan (13) and others had shown that per cent. mortality plotted against the logarithm of the dose frequently results in symmetrical sigmoid curves, while in the descriptions $(1,5,6)$ of the double transformation, many more cases were cited in which the logarithm of the individual dose was an adequate measure of susceptibility.

If the transformation of dosages to logarithms completes the transformation of the dosage-mortality curve to a straight line because it is an index to the inherent susceptibility of the individual animal to the poison, the poisoning process could be considered as an example of the Weber-Fechner law. This implies, however, a direct proportionality

142 The Calculation of the Dosage-Mortality Curve

between the concentration of the poison in the dose administered and the amount of poison fixed by the essential tissues of the animal, and there is no evidence in support of such a direct relationship. Moreover, if the poisoning of the individual multicellular animal can be attributed to the death of a certain proportion of its cells, then the susceptibility of the animal as a whole will be determined by the average susceptibility of its essential cells. Even though the susceptibility of these ultimate units, the cells, may vary geometrically rather than arithmetically, so that their distribution is highly asymmetrical. it is probable that the average susceptibilities of populations of these unit cells. the individual animals, are symmetrically and normally distributed, if we may judge from general statistical experience. A priori, therefore, the individual animals in a stock may be expected to vary normally in their susceptibility to a specific poison, since each animal is an "average" of its component cells. The justification of the logarithmic transformation may be sought in the relation between the dosage administered and the amount of poison fixed by the essential cells or tissues, rather than in the Weber-Fechner law.

The fixation of a drug or poison seems to be primarily a phenomenon of adsorption (2), and one of the two principal formulae for describing this process is that proposed by Freundlich. Freundlich's empirical formula is

$$
K C^{\frac{1}{n}}=\frac{x}{m},
$$

where, for our purposes, C may be equated to the concentration of the drug (or dosage), $x=$ the amount fixed in the organism, $m=$ the mass of adsorbing constituents within the organism, and K and n are constants. If the variation in susceptibility is attributed primarily to the reactions which follow the fixation of the poison, m will be constant from one individual test animal to the next. By combining constants, the Freundlich formula may be reduced to

$$
\log C=n \log x+K^{\prime},
$$

from which it is apparent that there is a linear relation between the logarithm of the concentration (or dosage) and the logarithm of the amount fixed by the cells of the animal. The observed logarithmic conversion of the dosage-mortality curve is not due, therefore, to our using as the true individual lethal dose the amount fixed in the tissue, if this is related to the concentration by the Freundlich formula.

In many instances another adsorption equation, that proposed by Langmuir, has fitted the biological data on the fixation of drugs more satisfactorily than the Freundlich formula. Moreover, it is better
grounded theoretically. Langmuir's adsorption equation is given by Clark as

$$
k x^{n}=\frac{y}{100-y}
$$

where $x=$ concentration of the drug, $y=$ percentage of the maximum amount of drug which can be fixed by the cell, n is determined by the molecular state of the fixed drug as compared with its state before adsorption and is usually 1 or 2 , and k is a constant. In order to compare the amount (percentage) fixed with the logarithm of dosage (y with $\log x$), y was calculated for each of a series of hypothetical values of x when $k=0.0625$ and $n=1$. A diagram of y against $\log x$ gave a sigmoid curve, symmetrical about 50 per cent. fixation, and very nearly a straight line between 20 and 80 per cent. fixation. If 100 per cent. kill on the dosagemortality curve were to correspond to 100 per cent. fixation of the poison by the tissues of the experimental animals, all cases in which the logarithm-probit plot showed a straight line over a range of dosages that included kills of 90 per cent. and better-as very many of them do-would definitely rule out the Langmuir adsorption equation as an explanation. However, investigations have shown that live tissue is capable of adsorbing much more of the chemical than the amount which produces the maximum effect, in this case, the subsequent death of all individuals. If all experimental animals were to die before a dosage is reached which produces 80 per cent. or more adsorption, the logarithm-probit transformation would still be consistent with an interpretation based on the Langmuir adsorption equation, so far as the middle and higher killsand dosages-are concerned.

The application of the Langmuir equation to the lower dosages presents a more involved problern. Usually the logarithm-probit plot of the dosage-mortality curve can be fitted by a single straight line over the entire range of mortalities, and it may then be reasonable to assume that the amount of poison fixed must exceed a threshold value of 20 per cent. of the maximum before even the most susceptible individuals will be killed. However, in many cases the transformed dosage-mortality line agrees with the higher kills very satisfactorily but indicates too small a mortality below 20 to 35 per cent. kill. At its lower end the otherwise straight line would need to bend up if it is to fit the entire range of observations. The similarity of this change in slope to the lower end of the theoretical curve secured by plotting the percentage of drug fixed against the logarithm of dosage suggests that in these cases the adsorption is less than 20 per cent. of the maximum at the threshold concentration of the

144 The Calculation of the Dosage-Mortality Curve

poison, and that if the observed dosage could be converted to the amount fixed by means of the Langmuir equation, a single straight line would be obtained by the use of probits.

Without measurements of the amount of poison adsorbed, the Langmuir equation cannot be tested critically, but an approximate graphic analysis has been applied successfully to several series of fumigation tests in which at the lower dosages there was a change of slope upon the logarithm-probit co-ordinates. For each series of points, the mortality in probits could be fitted satisfactorily (as in Fig. 3) with two intersecting straight lines when plotted against the logarithm of the concentration of the fumigant, the bend between the two lines being acute enough for there to be no hesitation in deciding which observations should be grouped. From a graphic comparison with the theoretical curve mentioned above (percentage fixed v. log. dosage) of the angle at which these two lines intersected, the observed concentrations were converted to terms of the percentages of maximum adsorption, and when the observed mortalities in probits were replotted against these theoretical dosage units, the data for each poison could be fitted adequately by a single straight line. This transformation of dosage to per cent. adsorbed introduces two additional constants, one attributable to the maximum adsorption which produces no lethal effect and the other to the minimum adsorption which is invariably fatal. On mathematical grounds alone, therefore, the agreement between observations and fitted curve should be as good as when two intersecting straight lines, also involving four constants, are fitted to the same data.

The use of the Langmuir equation need not necessarily eliminate the change in slope that is observed on occasion at the lower dosages upon the logarithm-probit plot. If a minimum of 15 to 20 per cent. adsorption were required to effect a kill, for example, the rectilinearity in the main portion of the curve and the change in slope at its lower end would be the same whether log. dosage or per cent. of maximum adsorption were plotted along the base. Since there is good experimental evidence, as in the case of protective stupefaction with hydrocyanic acid (10), that low concentrations frequently have an action qualitatively different from that of the higher dosages, the change in slope may very well have a biological reality and not be merely a mathematical artifact. Clark ${ }^{1}$ thinks that "this break is a fairly common phenomenon. It suggests to me that the characteristic curve besides measuring individual variation also is affected by some relationship between concentration and amount of

[^0]action." Since without another kind of experimental data even an approximate conversion of dosage into percentage adsorption is possible only when there is a change in slope on the logarithm-probit co-ordinates, and may then be of doubtful theoretical significance, it is preferable at present to use the logarithm of the individual lethal dose as a measure of susceptibility with the understanding that its use can be interpreted in terms other than those of the Weber-Fechner law.

The above procedure should not be confused with another fundamentally different application of the Langmuir adsorption equation, which is hyperbolic, to similar data. If dosage is converted to logarithms, the percentage adsorption plotted against it is a sigmoid curve symmetrical about the 50 per cent. point, as has been described, and the percentage mortality plotted against it is a very similar sigmoid curve. In one case, Clark (p. 157) has considered these two measures as if they were identical, or the percentage mortality a direct measure of percentage adsorption. Yet elsewhere he has described experiments which show that adsorption frequently continues after the point is reached which produces maximum effect, and this possibility alone demonstrates that they are distinct ${ }^{1}$. Even if certain dosage-mortality data were fitted adequately by this use of the hyperbolic equation, they could still be considered from the "statistical" viewpoint adopted here. The abscissa, the logarithm of the dose, is the same in both methods of transformation, while the ordinate in both may be assumed to represent sigmoid frequency distributions which are experimentally inseparable between kills of 15 and 85 per cent.

[^1]Ann. Biol. XXII

They differ in mathematical treatment only in that the frequency distribution of susceptibilities in the interpretation followed here is assumed to be normal, while in the hyperbolic interpretation it is that of the z distribution (3).

On the basis of the above assumptions, we may proceed at once to a consideration of how to calculate the best-fitting dosage-mortality curve. The first step is to transform each percentage kill to its probit (Table I) and convert each dosage to its logarithm. The percentage kill will not, however, be the same as the percentage dead if there is an appreciable mortality among the untreated controls or checks. A convenient way of computing the percentage kill in such a case is to multiply the number of individuals used in a particular test by the proportion alive in the untreated controls, which gives the net total of organisms actually exposed to the action of the poison. When the number surviving the treatment is subtracted from this net total, the difference is the number killed, and the number killed (multiplied by 100), divided by the net number exposed. is, of course, the percentage killed. The probit, or dosage inferred from mortality, is then plotted on co-ordinate paper against the logarithm of the dosage that was administered experimentally. Inspection of these points with the aid of a straight edge, such as the side of a celluloid triangle, will show very quickly whether they define a straight line over most or the whole of the range of dosages. In cases where the data for the lower dosages seems to be discordant with the straight line that is consistent with the rest of the observations, the straight line is fitted only to the higher dosages. A few cases may occur in which the points seem to be smoothly curvilinear throughout, and in such instances some other function of dosage should be tried which seems to have a toxicological significance. Having determined the range of dosage over which a rectilinear relation seems to hold good, a straight line is drawn through the points.

II. The provisional regression line.

The first estimate of the transformed dosage-mortality curve, which we will call the provisional regression line, is ordinarily not calculated, but represents the best judgment of the experimenter. When the data are consistent, the graphic provisional curve will often come surprisingly close to the corrected curve obtained after computation. Occasionally, however, the observations may be so scattered that the experimenter will prefer to calculate even the provisional regression line. The simplest procedure in this case is to give each experiment a weight of 1 and use
equations (3)-(6) of the next section. In other cases the data may be so uniform that the initial line will serve the needs of the experimenter. Usually, however, the graphic approximation will want correction, and to obtain this corrected curve we compute what is known in statistics as the regression line. The regression line in our case will show the probit which correspouds to any given logarithm of dosage as accurately as this relation can be determined from the experimental data used in its computation.

The provisional regression line serves two essential purposes: it determines what probit values are to be assigned to observed mortalities of 0 and 100 per cent., and it specifies what relative weights are to be given to the separate observations in a series.
(1) Probit values for 0 and 100 percentage kills. Although toxicological tests frequently include at one limit small dosages which kill no individuals or at the other limit large dosages which kill all individuals, these values cannot be listed in the standard table of probits (Table I). By means of the provisional regression line, the information in such observations may still be used in determining the corrected regression line. This possibility follows from our basic assumption that the distribution of susceptibility is normal and the fact that while the curve of the normal distribution (Fig. 2) approaches infinitely close to 100 per cent. killconsidering for convenience only the upper limit-it never quite reaches it mathematically at any finite dosage. Within the range of dosages and numbers of organisms ordinarily used in a laboratory test, this mathematical postulate agrees satisfactorily with the biological reality. Thus the smallest dosage giving 100 per cent. kill will be smaller in an experimental series with 30 organisms per dose than in a repetition of the same series using 300 specimens per dose, since in the larger numbers of the second case there is a greater chance of including the less susceptible individuals in each treatment. The mortality in probits that would be expected if we were dealing with very large numbers of organisms is given approximately by an extension of the provisional regression line over the range of these higher dosages. In a note on "The case of zero survivors," appended to the present paper, R. A. Fisher points out that when the number in the class of survivors is small, the theory of large samples breaks down if applied to the restricted numbers used in toxicological tests. He shows, however, that when zero survivors are observed the probit term for 100 per cent. kill may be derived by the method of maximum likelihood as a difference, which is added to the expected value in probits given by the provisional regression line.

148 The Calculation of the Dosage-Mortality Curve

An alternative method for plotting 100 per cent. kills in terms of probits or their equivalents has been proposed by Gaddum (5). His value is based upon the number of animals exposed to the treatment, but is not used whenever it indicates a smaller mortality than would be expected from the approximate regression line at this dosage. The method proposed here avoids this limitation and is mathematically the more exact.

The procedure to be followed in securing the probit value for 100 per cent. kills may be outlined briefly. The probit given by the extended provisional regression line is read from the graph at the logarithm for the dosage from which none survived. This probit is then entered in column 1 of Table II and the required probit for the observed kill is found in column 3. First differences are given in column 4 for convenience in interpolation if the provisional regression line has been read to 0.01 probit. These values will always fall above the provisional line as would be expected since no survivors were observed, and should be included in computing the corrected curve with a weight determined as described in the next section. The omission of such terms tends to bias the final regression line by exaggerating the number of survivors to be expected.

The same method is available, of course, at the opposite end of the curve, at dosages which fail to kill any individuals, except that the correction in column 2 of Table II is then subtracted from the probit value given by the provisional line. The correction to use in such a case will be that for the probit in column 1 which is as much greater than 5 as the one read from the provisional line is less than 5 . These smaller dosages, however, are usually of little interest, and it frequently happens that, below 25 per cent. kill, the regression line which forms an adequate fit above that point is no longer applicable.
(2) Weights for fitting the regression line. The reliability of the probit for an observed percentage kill depends not only on how many individuals were counted to determine this percentage but also upon the corresponding probit value of the regression line, or, in actual practice, upon that of the provisional regression line. It is customary to consider the reliability of a percentage as proportional to the number of individuals tested, and the justification for thus weighting by the number of individuals rather than by the squ.re root of the number of individuals is that the reliability of a measure is inversely proportional to the square of its standard error-the variance--and not to the standard error itself. The variance, in turn, is a function not only of the number of cases but also of several other factors, and it is these other factors which it is necessary to take into account. The principle of giving to individual

Table II.

Probit values when 100 per cent. mortality is observed experimentally. The provisional (graphic) dosage-mortality line, based on probits for dosages which were survived by one or more individuals, is extended to cover dosages from which no survivors were observed. The expected probit value indicated by the provisional line at each such dosage is then entered in column 1 and the correction in column 2 is added to it to give the value in probits for 0 survivors (column 3). When the provisional line has been read to 0.01 probits, the first differences in the last column are convenient for interpolation.

Curse ralue or probit for expected kill	Correction q / z	Probit for observed kill	First differences
$5 \cdot 5$	0.8764	6.3764	460
5.6	$0 \cdot 8230$	$6 \cdot 4230$	879
5.7	0.7749	$6 \cdot 4749$	$56+$
5.8	0.7313	$6 \cdot 5313$	604
$5 \cdot 9$	0.6917	6.5917	604
6.0	0.6557	6.6557	640
$6 \cdot 1$	$0 \cdot 6227$	6.7227	670 699 8
$6 \cdot 2$	0.5926	6.7926	699
$6 \cdot 3$	0.5649	6.86.49	74.5
$6 \cdot 4$	0.5394	6.9394	74.
6.5	0.5158	7.0158	789
6.6	$0 \cdot 4940$	7.6940	78.2 799
6.7	0.4739	$7 \cdot 1739$	819
6.8 6.9	0.4551	$7 \cdot 2551$	88.2
6.9 7.0	0.4376	7.3376	838
$7 \cdot 0$ 7.1	0.4214 0.4062	7.4214 7.5062	838 848
$7 \cdot 2$	0.3919	7.5919	857
$7 \cdot 3$	$0 \cdot 3786$	7-6786	867
$7 \cdot 4$	$0 \cdot 3660$	7.7660	874
$7 \cdot 5$	0.3543	$7 \cdot 8543$	883
7.6	0.3432	7.9432	8895
7.7	0.3327	8.0327	890
7.8 7.9	0.3228	$8 \cdot 1228$	906
7.9 8.0	0.3134 0.3046	8-2134	912
8.0 8.1	0.3046 0.2962	8.3046 8.3962	916
8.2	$0 \cdot 2882$	$8 \cdot 8.4882$	920
$8 \cdot 3$	0.2806	8.5806	924
$8 \cdot 4$	$0 \cdot 2734$	$8 \cdot 6734$	928
$8 \cdot 5$	$0 \cdot 2665$	$8 \cdot 7665$	935
$8 \cdot 6$	$0 \cdot 2600$	$8 \cdot 8600$	930 938
8.7	$0 \cdot 2538$	8.9538	9
$8 \cdot 8$	0.2478	9.0478	
8.9	0.2421	9.1421	943

observations weights that are proportional to their statistical reliability follows that described by Thompson(12) in his analysis of an experiment in sensory discrimination.

The required standard error is shown graphically on the cumulative form of the normal frequency distribution of Fig. 2, in which p, the pro-

150 The Calculation of the Dosage-Mortality Curve

portion killed, is plotted on the ordinate against x, the inferred dosage in probits, on the abscissa. The position of the paired horizontal lines cutting the ordinate on either side of 50 and 95 per cent. kill was calculated from the usual formula for the standard error of a proportion, $\sigma=\sqrt{\frac{p q}{N}}$, where p is the proportion killed, $q=1-p$, and $N=100$ individuals exposed to treatment. However, in our transformed dosage-mortality curve, these percentages have been transformed to probits, which are given along the base of the figure, so that the standard error (and variance) which we need is not that for a proportion, p, but that for the corresponding inferred dosage or probit, x, a quantity equivalent to what statisticians call the percentile. From the points of intersection with the curve in Fig. 2 of the standard errors of the proportions (shown by the paired horizontal lines), we will draw paired vertical lines to cut the base at the standard errors of the probits (or percentiles) corresponding to these two proportions of 0.50 and 0.95 . While the standard error of p is a maximum at 50 per cent. kill and diminishes toward either 0 or 100 per cent., that of the probit is smallest at 50 per cent. and increases toward either limit. Hence the accuracy of a given probit will increase as it approaches 50 per cent. kill.

The formula for the variance of a percentile is given by Kelley (7) as

$$
\frac{\sigma^{2} p q}{z^{2} N}
$$

where σ is the standard deviation, z is the ordinate of the normal curve (see Fig. 1) and is given in tables of the probability integral, and the other terms have their previous significance. This will also be the variance for the probit of a single observed percentage mortality, but since the probit is already in terms of the standard deviation, σ^{2} is always equal to 1 and the variance of a probit may be simplified to the form

$$
\frac{p q}{N z^{2}} .
$$

In order, therefore, to give each observation a weight proportional to its true reliability, instead of multiplying it by N, we will multiply by the reciprocal of the variance as our weight, w. Hence

$$
\begin{equation*}
w=N\left(\frac{z^{2}}{p q}\right) \tag{1}
\end{equation*}
$$

where N is the number of organisms exposed to a given dosage of poison and z, p, and q have their previous significance as functions of the normal curve, which, in this case, are fixed by the probit value of the provisional
regression line at the same dosage. The term $\frac{z^{2}}{p q}$ we will call the weighting coefficient. It has been computed for each $0 \cdot 1$ probit within the useful range of probit values and is given in Table III (column 6). The procedure for determining the correct weights to be used in calculating the corrected regression line is thus made quite easy. After the provisional regression line has been drawn through the plotted points of the experimental series as described, the probit given by this line for the log. dosage used in each determination is read from the graph to the nearest 0.1 (or 0.01) probit and by reference to Table III is transformed directly to the weighting

Table III.

Weighting coefficients used in computing the dosage-mortality curve in terms of probits. The probit for the expected kill is read to the nearest $0 \cdot 1$ or 0.01 from the provisional, graphic dosage-mortality line at the dosage used in a given test. Entering this in column 1 below, the weighting coefficient is read from column 3 (interpolating from the first differences in column 4 if the line has been read to 0.01 probit) and multiplied by the total number of organisms to secure the weight (w) of the test for use in computing the final curve. The weighting coefficients in column 3 have been abbreviated for ease of calculation from the five-place values of $z^{2} / p q$ in column 6. Column 5. shows the relative number of individuals which must be used at different expected mortalities if all observations are to be weighted equally; while column 2 gives the percentage mortalities corresponding to the probits in column 1.

Curve value or probit for expected kill	Expected percentage kill	Weighting coefficient	First differences	Relative no. of individuals for equal weights	$\frac{z^{2}}{p p_{f}}$
1.5	$0 \cdot 023$	$0 \cdot 0033$		1947	0.00327
1.6	0.034	0.0045	12	1412	$0 \cdot 00451$
1.7	$0 \cdot 048$	0.0061	16	1037	0.00614
1.8	0.069	0.0083	22	769	0.00828
1.9	0.097	0.0110	$\stackrel{2}{36}$	577	0.01104
2.0	$0 \cdot 135$	0.0146	36	437	0.01457
$2 \cdot 1$	$0 \cdot 187$	$0 \cdot 0190$	44	334	0.01903
$2 \cdot 2$	$0 \cdot 256$	0.0246	56 68	259	0.02459
$2 \cdot 3$	0.347	0.0314	68 84	202	0.03143
$2 \cdot 4$	0.466	0.0398	102	160	0.03977
2.5	$0 \cdot 621$	0.050	12	128	0.04979
2.6	$0 \cdot 820$	0.062	14	103	0.06169
$\stackrel{9}{9.7}$	1.072 1.390	0.076 0.099	16	84	0.07563 0.09179
2.8 2.9	1.390 1.786	0.092 0.110	18	69 58	0.09179 0.11026
3.0	2.275	$0 \cdot 131$	$\stackrel{21}{ }$	49	0.13112
$3 \cdot 1$	2.872	$0 \cdot 154$	23	41	0.15436
$3 \cdot 2$	3.593	$0 \cdot 180$	$\stackrel{26}{28}$	35	$0 \cdot 17994$
$3 \cdot 3$	4.457	0.208	38	31	0.20773
3-4	$\mathbf{5} 480$	$0 \cdot 238$	31	27	$0 \cdot 23753$

Curve value or probit for expected kill	Expected percentage kill	Weighting coefficient	First differences	Relative no. of individuals for equal weights	$\frac{z^{2}}{p q}$
$3 \cdot 5$	6.681	0.269	31	24	0.26907
$3 \cdot 6$	8.076	$0 \cdot 302$	33 34	21	$0 \cdot 30199$
3.7	9.680	0.336	34 34	19	0.33589
$3 \cdot 8$	11.507	$0 \cdot 370$	34	17	$0 \cdot 37031$
$3 \cdot 9$	13.567	$0 \cdot 405$	35	16	$0 \cdot 40474$
$4 \cdot 0$	$15 \cdot 866$	0.439	34	15	0.43863
$4 \cdot 1$	18.406	$0 \cdot 471$	32	14	$0 \cdot 47144$
$4 \cdot 2$	21.186	0.503	29	13	0.50260
$4 \cdot 3$	$24 \cdot 196$	0.532	26	12	0.53159
$4 \cdot 4$	27-425	0.558	23	11	0.55788
4.5 4.6	$30 \cdot 854$ $34 \cdot 458$	0.581 0.601	20	11	0.58099 0.60052
4.7	38.209	0.616	15	10	0.61609
4.8	$42 \cdot 074$	0.627	11	10	0.62742
$4 \cdot 9$	46.017	$0 \cdot 634$	3	10	0.63431
$5 \cdot 0$	50.000	$0 \cdot 637$	3	10	0.63662
$5 \cdot 1$	53.983	0.634	7	10	0.63431
$5 \cdot 2$	57.926	0.627	11	10	0.62741
$5 \cdot 3$	61.791	0.616	15	10	$0 \cdot 61609$
$5 \cdot 4$	65.542	0.601	20	11	0.60052 0.58099
$5 \cdot 5$	$69 \cdot 146$	0.581	23	11	0.58099 0.55788
$5 \cdot 6$	$72 \cdot 575$	0.558	26	11	0.55788 0.53159
$5 \cdot 7$ $5 \cdot 8$	75.804	0.532 0.503	29	12	0.53159 0.50260
$5 \cdot 8$ $5 \cdot 9$	78.814 81.594	0.503 0.471	32	14	0.50260 0.47144
$5 \cdot 9$ 6.0	$81 \cdot 594$ $84 \cdot 134$	0.471 0.439	32	14	0.47144 0.43863
6.1	$86 \cdot 433$	$0 \cdot 405$	34	16	$0 \cdot 40474{ }^{\text {- }}$
$6 \cdot 2$	88.493	0.370	35	17	0.37031
6.3	$90 \cdot 320$	0.336	34 34	19	0.33589
$6 \cdot 4$	91.924	$\stackrel{0}{0.302}$	34	21	0.30199 0.26907
6.5	$93 \cdot 319$	$0 \cdot 269$	31	24 27	0.26907 0.23753
6.6 6.7	94-520	0.238 0.208	30	$\stackrel{27}{31}$	0.23753 0.20773
6.7 6.8	$95 \cdot 543$ $96 \cdot 407$	0.208 0.180	28	31 35	0.20773 0.17994
6.9	97-128	$0 \cdot 154$	26	41	$0 \cdot 15436$
$7 \cdot 0$	97.725	0.131	21	49	0.13112
$7 \cdot 1$	98.214	0.110	18	58	$0 \cdot 11026$
7.2	98.610	0.092	16	69	0.09179
$7 \cdot 3$	$98 \cdot 928$	0.076	14	84	0.07563
7-4	$99 \cdot 180$	0.062	12	128	0.06169 0.04979
7.5 $7 \cdot 6$	99.379	0.050	102	128	0.04979 0.03977
$7 \cdot 6$ 7.7	$99 \cdot 534$ 99.653	0.0398 0.0314	84 88	160 202	0.03977 0.03143
7.8	99.744	0.0246	${ }^{68}$	259	0.02459
7.9	99.813	0.0190	44	334	0.01903
$8 \cdot 0$	$99 \cdot 865$	(1.0146	44	437	0.01457
$8 \cdot 1$	99.903	$0 \cdot 0110$	${ }_{2}$	57%	0.01104
8.2	99:931	0.6083	22	769	0.00824
$8 \cdot 3$	99.952	$0 \cdot 0061$	2	1037	0.00614
$8 \cdot 4$	99.966	0.0045	123	1412	$0 \cdot 0045 \mathrm{j}$
8.5	99.977	0.00327	123	1917	0 -(0)327
$8 \cdot 6$	99.984	0.00235	68	2709	0.00235
8.7	99.989	0.00167	49	3812	0.00167
8.8	99.993	0.00118	36	5395	0.00118
8.9	99.995	0.00082		7764	0.00082

coefficient. The weighting coefficient will be sufficiently accurate if read only to the first two or three significant figures as given in column 3 of Table III, interpolating from first differences (column 4) if the provisional curve justifies an estimate to the nearest 0.01 probit. Each weighting coefficient then is multiplied (most conveniently on the slide rule) by the number, N, in the test to secure its correct weight, w, for calculating the dosage-mortality curve.

It has been specified, without further explanation, that the weighting coefficient is determined from the provisional regression line rather than directly from each separate observation. With this important exception, the weighting coefficient described above is equivalent to that proposed by Gaddum (5) and by Hemmingsen (6) for the same purpose. Gaddum has based his coefficients directly upon the separate p 's observed experimentally, so that above 50 per cent. kill the tests in which the mortality fell short of that expected would be weighted more heavily than those in which the mortality exceeded expectation. Conversely, below 50 per cent. kill. the excessive mortalities would carry greater weight than the deficient mortalities. Together these errors would bias the fitted regression line toward the horizontal. By using as a standard the probit (or mortality) determined from the experiment as a whole, instead of that shown by a single sample, the present weighting coefficients not only a void this biasing error but give a suitable basis for comparing different dosagemortality curves and for measuring their accuracy. Still another, though similar, weighting method has been used by McCallan and Wilcoxon (8) in the reciprocal of their "error in concentration."

In planning an experiment so as to secure equally reliable results at all dosages and thereby avoid the necessity of weighting-with a corresponding simplification in the computations-more individuals should be used at high and low dosages than at intermediate ones. Equalisation will result if the experimenter treats with the dosage at each expected kill some multiple of the number of individuals listed in the fifth column of Table III. This shows that it takes three times as many animals to get the same accuracr at 95 per cent. kill as at 50 per cent. kill and nearly ten times as many at 99 per cent. as at 50 per cent. It would not justify the procedure followed in the experiments reported by Hemmingsen ((6), p. 40), in which nearly twice as many mice were used for the two middle of four concentrations of insulin as for the largest and smallest.

In order that each step may be clearly understood, a numerical example has been selected from Strand's(1i) experiments with Tribolium confusum. Two of his series, designated as I and II, give the mortality of the adult Alour beetle after five hours'
exposure to gaseous carbon disulphide, and these will serve to illustrate the various procedures of the present paper. There was no appreciable mortality in the controls, so that this factor did not need correction. The original data are given in the first four columns of Table Γ. The next column, x, is secured from column 3 by reference to a table of common logarithms. With the exception of the probit values corresponding to lon per rent. kill, the sixth column, y, gives the percentages in terms of the probits of Table l. The observed values for x and y were then plotted on cross-section paper (Fig. 3), and it is apparent from inspection that the two series, I and II, did not differ

Table IV.
Procedure for fitting the transformed dosage-mortality curve to kills of Tribolium confusum following 5 -hour exposures to known concentrations of carbon disulphide. The computations in columns 7 to 10 and at the end of the table show the steps for fitting the regression line to the upper range of dosages from the data of both series (Fig. 3). Data from Strand (11).

consistently. In comparison with the remaining observations, the two lowest concentrations gave an exceptionally high kill. Over the remaining concentrations, the plotted values seemed to form a moderately straight line, so that the data were handled as two separate sets, only the results at 56.91 mg . of CS_{2} per litre being included in both sets. The provisional regression lines were drawn in with the aid of a straight edge, but these provisional curves, indicated by the broken lines, agreed quite

Fig. 3. A transformed dosage-mortality curve, showing the effect upon adult flour beetles of 5 -hour exposures to different concentrations of gaseous carbon disulphide. The broken straight regression lines were placed graphically by inspection, the solid ones by computation, while the dotted curved lines show the limits within which the solid lines have been determined by the data. The shaded triangles represent treatments from which no beetles survived. Data from Straud(11).
closely with those arcived at by computation, the solid lines, in both the upper and the lower range of dosages.

Restricting our attention for the moment to the more important, upper range of dosages, the approximate curre was used first to secure probit values for 100 per cent. kills. We find that at a concentration of 72.61 mg . of $\mathrm{CS}_{\mathbf{2}}$ per litre, there was 1 survivor in Series I but 0 survivors in Series II, while no survivors were found in either series at 76.54 mg . per litre. The provisional curve showed that at a log. concentration of 1.8610 (72.61 mg .), 7.03 probits was expected and at a 1.8839 log . concentration

156 The Calculation of the Dosage-Mortality Curve

(76.54 mg .), 7.61 probits. Entering these values in column 1 of Table II, the two required probit values of 7.447 and 7.952 were obtained from column 3 , using the first differences of column 4 for interpolation.

From the original plot of the provisional curve (on millimetre cross-section paper), the probit for each observed dosage could be read without difficulty to the nearest 0.01 probit. These were then entered directly in column 1 of Table III to secure the weighting coefficients from column 3 of the same table, interpolating with the aid of the adjoining column of first differences. The weighting coefficients so obtained were written down in column 7 of Table IV and multiplied on the slide rule by the corresponding number of insects (column 2) to determine the true weights in column 8. The last two columns of Table IV contain the products x multiplied by w, and y multiplied by w.

III. The computation of the regression line.

In toxicological experiments of the type which we have been considering, the mortality among a limited number of organisms is measured after treatment with known amounts of a toxic agent. These results have significance primarily because they form a sample from an infinitely larger group of organisms for which we are interested in determining the toxicological relationships. The fitting of a dosage-mortality curve is an attempt to infer from a given experiment the conditions obtaining in a class or species of organisms, and the calculated regression line of the dosage-probit diagram is the most accurate estimate which can be drawn from the data, granted that our basic assumptions are correct. In some cases it will be very near the first graphic approximation which has already been described, but oftentimes it will represent a rather important correction to this initial estimate, especially when the material is variable and fitting by eye less reliable. Moreover, in a calculated regression line, each separate observation can be weighted accurately, as has been shown, and the limits determined within which will lie the true curve for an infinitely larger population.

In describing the arithmetical procedure of fitting, the methods and symbols employed by Fisher (4) have been adapted to the present purposes. Short-cut methods, suitable for use with a calculating machine, are described. With a machine, these should enable one to fit the regression line without previous experience.

The formula for the regression line may be expressed as

$$
\begin{equation*}
Y=a+b(X-\bar{x}) \tag{2}
\end{equation*}
$$

where, in this case, Y is the mortality in probits on the regression line (or transformed dosage-mortality curve) which corresponds to any given dosage X, usually expressed in logarithms; $a=\bar{y}=$ numerically the average probit for all determinations in that part of the experiment which is being
fitted by a straight line; \bar{x} is the average of the dosages administered (in logarithms) for the same section of data; and b is the regression coefficient or the slope of the line, the amount by which the probit of mortality is increased for every unit increase in log. dosage. It is necessary, therefore, to calculate from the experimental data the quantities \bar{x}, \bar{y}, and b. The formulae are as follows:

$$
\begin{align*}
& \bar{x}=\frac{S(w x)}{S(w)}, \tag{3}\\
& \bar{y}=\frac{S(w y)}{S(w)}, \tag{4}\\
& b=\frac{S(w x y)-\bar{x} S(w y)}{A}, \tag{5}\\
& A=S\left(w x^{2}\right)-\bar{x} S(w x), \tag{6}
\end{align*}
$$

where the symbols are defined as:
$S=$ "the sum of" and indicates that all quantities of the type in the brackets after the S are to be added, $w=$ weight of a given observation, the product of the weighting coefficient multiplied by the number of killed plus survived, $x=a$ function of the dosage administered experimentally, usually its
logarithm, and $y=$ the probit corresponding to the observed percentage mortality.

The position of the regression line, in the sense in which we will use the term, is determined by \bar{x} and \bar{y}, since it must pass through the point on the diagram given by these two means. They fix the degree of susceptibility to a toxic agent shown by the population as a whole. From a statistical viewpoint, b is the slope or the tangent of the angle with which the regression line will pass through the point established by \bar{x} and \bar{y}; from a biological viewpoint, b measures how closely the individual organisms in the experiment agree with one another in their sensitivity to the toxic agent. It is convenient to express this toxicological characteristic as the percentage increase in dosage that is required to increase kill by one probit. This is the ratio of $100 \log _{e} 10$ to $b, \frac{230 \cdot 26}{b}$.

Returning to our numerical example, the solution of equations (3)-(6) has been given at the bottom of Table IV in the order which has been found the most convenient. The first, second, and fourth quantities are the totals of the last three columns of the table, while the two means were determined in order, without clearing the lower dials of the calculator, when the totals first appeared (in machines such as the Monroe and the Marchant). $S\left(w x^{2}\right)$ was obtained by placing $w x$ on the keyboard of the calculator and multiplying by the corresponding x, then clearing the keyboard and upper dials

158 The Calculation of the Dosage-Mortality Curve

and repeating the process with the next pair of values until the total of the products, $S\left(u x^{2}\right)$, had been accumulated in the lower dials. Leaving this sum in the lower dials, $S(u x)$ was placed on the keyboard and subtracted \bar{x} times to secure A. Repeating the process with $w x$ on the keyboard and multiplying this time by y, the sum, $S(w x y)$, was obtained directly. From $S(u x y)$ in the lower dials, $S(w y)$ on the keyboard was subtracted \bar{x} times to secure the next term, which, in turn, was divided by A to obtain the regression coefficient, b. In checking the arithmetic of these various operations, other short-cuts will soon suggest themselves for facilitating the work and reducing the possibility of error. It is important in this method that computations be carried out to six or more significant figures in the means and regression coefficient in order to insure sufficient accuracy throughout. From \bar{x}, \bar{y}, and b the equation of the corrected regression line was solved as $Y=5 \cdot 450+25.51(X-1 \cdot 7967)$, holding for concentrations of carbon disulphide above approximately 57.8 mg . per litre of air. In this range, an increase in dosage of 9.03 per cent. $(230 \cdot 26 / 25 \cdot 5114)$ increased kill by 1 probit.

The change in slope at a kill of about 33 per cent. (Fig. 3) is a frequent phenomenon for which no explanation will be attempted here. A separate curve has been calculated for the lower concentrations, including the smallest dosage of the main curve. The regression coefficient, b, was less than one-half that for the higher dosages. Usually this lower section of the toxicity curve will be of too little practical or theoretical importance to warrant calculating its equation, and it may be questioned whether a straight line is the correct relationship when the mortality below 25 to 35 per cent. kill differs from the rectilinearity of the higher dosages. Assuming a straight line in the present case, the regression equation was $Y=4 \cdot 186+11 \cdot 35$ ($X-1.7286$).

The two experimental series have been listed separately, although the same dosages were used in Series I and in Series II. If the number of living and dead for each dosage had been combined before calculating the percentage kill and transforming to probits, the regression equation would have been determined from half as many separate observations. The result should be practically the same. Tested arithmetically, the new equation, $Y=5 \cdot 436+25 \cdot 33(X-1.7967)$, differed so slightly that both regression lines could not be shown in Fig. 3. When it is evident from the similarity of different experimental series that the stocks of test animals are the same, the results at each separate dosage may be combined into a single percentage and probit for placing the first regression line by eye and for reducing the labour of computing the curve, although for estimating the errors of this curve the longer form is preferred.

IV. Accuracy of the regression line.

The fitting of a dosage-mortality curve to a series of experimental observations, however crude or refined the technique, is an attempt to infer, from a limited number of individuals, the "true" empirical relationship of dosage and mortality for a given toxic agent in an infinitely larger population from which they represent only a sample. The regression equation and line is the closest we can approximate this "true" relationship, but all determinations of this type are not equally reliable. If the experimental points are quite close to the line and the number of individuals is large, we have greater confidence that a second or third
determination will agree with our first estimate than if the points are scattered and based on fewer animals. We will want to compute from our experimental data not only the most likely position (the regression line) of the "true" dosage-mortality curve, but also how accurately this most likely position has been determined.
(1) The χ^{2} test for comparing observations with the computed curve. The first step is to determine whether the observed mortalities agree with our original assumption of a rectilinear relationship on the logarithmicprobability scale within the limits of sampling error; in other words, do the experimental observations vary significantly from our fitted straight line? Since each observation has been weighted by the reciprocal of its variance ($N z^{2} / p q$), which, in turn, is based upon a regression line at the observed dosage, the most satisfactory criterion is the chi-square $\left(\chi^{2}\right)$ test. At each dosage the observed mortality is compared with that expected from the regression equation, but instead of calculating separately each expected probit (mortality) from equation (2), and then subtracting it from the observed probit (mortality), a short-cut method for securing the sum of the squares of these differences may be adapted from the one given by Fisher (4). When this is combined with the weighting procedure above, which gives the part of the equation corresponding to the "expectation," χ^{2} may be calculated quite easily as follows:

$$
\begin{equation*}
\chi^{2}=\left[S\left(w y^{2}\right)-\bar{y} S(w y)\right]-b[S(w x y)-\bar{x} S(w y)] . \tag{7}
\end{equation*}
$$

Nearly all of the components of equation (7) have already been computed in determining the regression equation. The first parenthesis contains $S\left(w y^{2}\right)$, which is the sum of the products of columns 6 and 10 in our example of Table IV. The second part is the numerator of the equation for the regression coefficient (equation (5)) multiplied by the regression coefficient, b. Although in this equation for χ^{2} the weights, and therefore the expected probit values, are based upon the initial, graphic regression line, while the differences between expectation and observation depend upon the later, calculated regression line, the discrepancy thus introduced is not a serious one.

The computation of χ^{2} is a relatively straightforward operation without statistical complications, but its significance depends upon a term known as the number of "degrees of freedom," n, which may be more difficult to evaluate. If the regression line were calculated from one set of data and then drawn on the same graph with the individually plotted points of a second, entirely independent series of determinations of toxicity, the second series could differ from the line in as many ways-

160

or in as many degrees of freedom (n)-as there are plotted points or observations (n^{\prime}). Under these circumstances n would equal n^{\prime}. If, however, the average log. dose and the average probit were calculated from the second series, and the regression line drawn through the point established by these two averages with a slope which had previously been computed from other data, the separate tests in the second series could not differ as freely from the line as before, because the position of the line has been determined from the observations with which it is being compared. The number of degrees of freedom would then be one less than the number of tests in the second series or $n=n^{\prime}-1$, for one degree of freedom has been used up in locating the position of the line. Finally, when not only the position of the regression line but also its slope have been computed from a given series of observations, the extent to which these latter may differ from the transformed dosage-mortality line is still more restricted. In this case, the one with which we have been dealing, the number of degrees of freedom would be equal to the number of separate tests less one which was sacrificed in using these same observations to determine the position of the regression line and less a second degree of freedom lost in establishing the slope of the line. The number of degrees of freedom in the regression line of our computations will be equal, therefore, to the number of separate tests in the series establishing the curve less 2 , or $n=n^{\prime}-2$.

This rule is simple and easy to apply, but is complicated by another requirement, i.e. that the calculated distributions of χ^{2}, upon which the tests of significance depend, are not very closely realised when very small numbers are expected. In fact, such tests are not rigidly exact when the number expected is less than 5 . In toxicological experiments, the expected number of survivors at the higher dosages will regularly fall below this ideal limit, especially when zero survivors are obtained. If each of these particular tests is assigned a value of 1 in determining the number of degrees of freedom, the apparent goodness of fit will be exaggerated by the inclusion of observations which, because of their small weight, contribute little to the observed χ^{2}. The exact procedure is to exclude from the computation both of χ^{2} and of n the results of those dosages at which the number of expected survivors, based on the number of organisms counted and the regression line, is less than 3 to 5 individuals. An alternative, which is more convenient though possibly less precise, is to include these small contributions to χ^{2} with their standard weights as before, but for the purpose of determining n^{\prime} and n to group those in which the survival expectancy is small, so that there will be no contribu-
tions to n^{\prime} or n which are based upon a survival expectancy of less than one individual. The limit of expectancy is lowered here because the separate observations will contribute somewhat more to χ^{2}, despite their small weights, than they would if the variation between them could be smoothed out by combining them into as few terms as their contributions to n^{\prime}. The same considerations would hold at the opposite end of the curve when the expectancy of death is very small.

Having secured χ^{2} and n, it is a simple matter by reference to a table of χ^{2}, such as Table III in Fisher's text, to determine if the observations depart more widely from our calculated dosage-mortality curve than could be expected by chance. If χ^{2} is smaller than the value in the column for P equal to 0.05 , the data may be considered consistent with the straight line that has been fitted. If the χ^{2} is greater than the value corresponding to this probability (P), either the observations depart significantly from a straight-line relationship, or some uncontrolled condition in the experiment is causing a greater variation about the line than could be expected from simple fluctuations in sampling. Since systematic departures from rectilinearity were eliminated at the start, the second of these causes is more likely to be involved. Heterogeneity of this type does not necessarily invalidate the procedures described in the present paper.
(2) The variances of position and slope. The two parameters determined from an experimental series in calculating the regression line are those giving its position, a (or \bar{y}), and slope, b; from the variance of a and of b we may determine how accurately they have been estimated. The square root of the variance of any statistical constant isitsstandard error, but since the variance must be computed in order to determine the standard error and is here much the more useful, we will deal with the variances directly rather than with their square roots, the standard errors. Since \bar{x} in the regression equation (2) is the independent variable, the average of the dosagesselected by the experimenter for testing, it is not a "sample" from a "population" of dosages and is not subject to sampling error in the ordinary sense.

The regression line is calculated so as to intersect the point fixed by the average dosage and the average probit, so that the term a is numerically equal to \bar{y}, but since a is defined as a value on the regression line, its variance, $V(a)$, will be that about the regression line at a single dosage at or near the mean dosage, and hence considerably smaller than the variance of the observed probits for all dosages. The equation for the variance of a is

$$
\begin{equation*}
V(a)=s_{a}^{2}=\frac{\chi^{2}}{n S(w)} \tag{8}
\end{equation*}
$$

where the symbols have the same significance as before.

The variance of the regression coefficient, b, is given by the equation

$$
\begin{equation*}
V(b)=s_{b}^{2}=\frac{\chi^{2}}{n A} . \tag{9}
\end{equation*}
$$

The formulae for the variance of a and of b given in equations (8) and (9) represent the errors involved in the particular series of records from which they were calculated and are valid however great χ^{2} may be. This comparison of χ^{2} with its mean value n is a comparison of actual deviations with those theoretically to be expected from the numbers of units observed. If observation and computed curve agree satisfactorily within the limits of sampling error as tested by χ^{2} (P greater than $0 \cdot 1$), the errors observed in such a specific experimental series may be replaced by a simpler form which will give the expected error for all similar tests involving the same dosages and numbers of organisms. The theoretical form for the sampling errors in a and b may be obtained from the fact that the mean value of χ^{2} / n is equal to 1 . When the errors in a and b arise solely from the chance distribution of susceptibilities from one test to another, the calculation of their variances may be simplified to
and

$$
\begin{align*}
& V(a)=s_{a}{ }^{2}=\frac{1}{S(w)}, \tag{10}\\
& V(b)=s_{b}{ }^{2}=\frac{1}{A} . \tag{11}
\end{align*}
$$

(3) The zone of error of the regression line. The best available estimate of the true dosage-mortality curve is the calculated regression line. The experience of statisticians indicates that if we can determine limits on either side of the regression line, such that there are 19 chances in 20 of their enclosing the true dosage-mortality curve, we will have a reasonable standard for prediction. Our next problem, therefore, is to determine the accuracy or "sensitivity" of the dosage-mortality curve which we have computed, using the margin of safety represented by 19 chances in 20 or $P=0.05$.

From the variance, $V(a)$, we can determine by how much the true regression line may lie above or below the most likely position as fixed by a, and from the variance, $V(b)$, we can find how much more or less it may be tilted. At the average dosage, \vec{x}, an error in b could have no influence upon the sensitivity with which a is an index to the true regression line, but as the dosage differs more or less widely from the average, both errors are of importance and will modify the accuracy of estimate of the true mortality corresponding to any given dosage. As
shown by Working and Hotelling(14), the formula for the regression equation and its error may be written as

$$
\begin{equation*}
Y=a+b(X-\bar{x}) \pm t \sqrt{V(a)+(X-\bar{x})^{2} V(b)} . \tag{12}
\end{equation*}
$$

The value of t is not calculated but is taken from a table of "Student's" integral, such as Table IV of Fisher's text, from the column for $P=0.05$ at the value of n equal to the number of degrees of freedom for the curve. From equation (12) we may calculate the probit of kill and its error of estimate for a series of dosages covering the same range as our original experimental observations; from the plus errors draw a line above, and from the minus errors a line below the dosage-mortality curve such that there are 19 chances in 20 of these two boundaries, the branches of a hyperbola, enclosing the true dosage-mortality curve when transformed to the logarithmic-probit diagram. If it is preferred that the boundaries represent odds of 1 in 2 , as in the familiar probable error, t is read from the column for $P=0.5$.

These different operations may now be illustrated from our example in Table IV, the computations for the main curve being summarised at the end of the table. For this range of higher dosages, $\chi^{2}=5 \cdot 556$. Although the curve is based upon 12 separate determinations of mortality, the total number of survivors expected from the four tests at the two highest concentrations of carbon disulphide was only 1.36 beetles (1 survivor observed). Therefore these will count as 1 instead of as 4 in determining n^{\prime}, and since $n=n^{\prime}-2$, the number of degrees of freedom will be $9-2=7$. From a table of χ^{2}, such as Table III in Fisher's text, the corresponding value of P lies between 0.5 and 0.7 , so that the data may be considered consistent with the regression line which has been fitted to them. When the same test is applied to the line fitted to the range of smaller dosages, the χ^{2} test again indicates satisfactory agreement

$$
\left(x^{2}=1 \cdot 404, n=4, P=0 \cdot 84\right) .
$$

Since χ^{2} indicates a satisfactory agreement between observation and fitted curve, the generalised form of the variances in the position and slope of the regression line may be used (equations (10) and (11)), when $V(a)=0.007758$ and $V(b)=6 \cdot 6683$. We now have all the terms for computing the regression line and its errors (equation (12)) with the exception of t. For $n=7$, at odds represented by $P=0.05$, the value of t is given by Table IV in Fisher's text as $2 \cdot 365$. The equation for estimating the mortality in probits, Y, and its error within odds of 19 to 1 , at any desired log. dosage, X, above a concentration of 57.8 mg . per litre, is

$$
Y=5 \cdot 450+25.51(X-1.7967) \pm 2 \cdot 365 \sqrt{0.007758+(X-1.7967)^{2} 6 \cdot 6683} .
$$

The limits shown as curved dotted lines in Fig. 3 have been computed from this equation for the range of higher dosages and from a similar equation for the lower dosages. These boundaries define the accuracy with which the two solid regression lines have been determined by the experiment.

If the two series of tests had been combined, either when the experiments were made originally or in computing the percentages, that part of the error under the

164 The Calculation of the Dosage-Mortality Curve

square root would remain as it is in the longer form, since the generalised errors in position and slope depend only upon the sum of the weights and the variance of the log. dosage. The number of degrees of freedom would have dropped, however, from 7 to 3, so that t would have been increased from $2 \cdot 365$ to $3 \cdot 182$, and the limits of the estimated error increased proportionately.
V. Appendix. The case of zero survivors, by R. A. Fisher.

The equations derived from the theory of large samples appropriate for plotting the points on the probit diagram, namely
and

$$
\begin{gathered}
q=\frac{s}{n} \\
\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-\frac{t t^{2}}{} d t=q}
\end{gathered}
$$

give, for experiments with no survivors, $x=\infty$, with weight

$$
\frac{z^{2}}{p q} \rightarrow z x \rightarrow 0
$$

It is evident that such values cannot, in this form, be used in fitting the regression line, and that the theory of large samples has broken down, as was to be expected, when the number in the class of survivors is small. A more exact treatment is necessary for such cases, and this is supplied by the Method of Maximum Likelihood.

If p is the probability of death, and q of survival, in any experiment, the probability that s survive out of n tested is

$$
\begin{equation*}
\frac{n!}{s!(n-s)!} p^{n-s} q^{s} \tag{I}
\end{equation*}
$$

In the method of maximum likelihood, we take the logarithm of the aggregate probability of all the experimental data, for any assigned series of probabilities of survival represented by the regression line, and estimate the position of the regression line by making this logarithm a maximum. This amo ints to equating to zero the sum for the different experiments of the differential coefficients with respect to the value of x assigned. The exact form of the differential coefficient of (I) with respect to p is

$$
\frac{n-s}{p}-\frac{s}{q}=\frac{q n-s}{p q}
$$

With respect to the probit value x, the differential coefficient involves also the factor $d p / d x$, and becomes

$$
\begin{equation*}
(q n-s) \frac{z}{p q} . \tag{II}
\end{equation*}
$$

Now when both s and $n-s$ are so large that the distribution of s may be treated as normal, the factor ($q n-s$), which is n times the difference
between the proportion of survivors expected and observed, is taken to be proportional to the difference between the probit values expected and observed, according to the formula

$$
\begin{equation*}
(q n-s)=n(x-X) \frac{d p}{d x}=n(x-X) z \tag{III}
\end{equation*}
$$

where X is the probit value expected, and x that observed. In such cases the equation for maximum likelihood is made up of such terms as

$$
(x-X) \frac{n z^{2}}{p q}
$$

and its solution consists merely in fitting the expected values, X, by least squares to observed values, x, obtained from each experiment, giving each observational point a weight $n z^{2} / p q$.

When, however, q is so small that s can frequently take values such as 0,1 , or 2 , the equation (III) is not a satisfactory approximation, as is evident when $s=0$, for then x is infinite, while a finite value will be obtained from equation (III). If we write

$$
\begin{equation*}
n\left(x^{\prime}-X\right) z=q n-s \tag{IV}
\end{equation*}
$$

then x^{\prime} is a fictitious deviate, which, if assigned to any experiment with no survivors, will allow that experiment to exert its proper influence on the regression line. It will be observed that x^{\prime} is a function not only of an observed frequency s / n, but also of X, the corresponding point on the regression line. It is only fictitious in the sense that it is not calculated from the result of just a single experiment, but requires also a knowledge of the expected value X inferred by fitting the regression line to other experiments. When $s=0,\left(x^{\prime}-X\right)$ is always positive, so that the fictitious frequency to which x^{\prime} corresponds is always less than that expected, as is evidently proper when the observed frequency is zero. The fictitious value x^{\prime}, if used with its proper weight in recalculating a regression line of which an approximate estimate has already been made, will then allow experiments with few or no survivors to exert their proper influence in adjusting the line. It is of some importance to take this step, since the omission of experiments merely because they show no survivors must constantly bias our estimates in the sense of exaggerating the number of survivors to be expected.

When $s=0$, the value of x^{\prime} depends only on X, though, of course, the weight assigned to the observation depends also on n, the whole number tested, equation (IV) becoming

$$
x^{\prime}-X=\frac{q}{z}
$$

These values are shown in Table II.

Vi. Summary.

The sigmoid dosage-mortality curve, secured so commonly in toxicity tests upon multicellular organisms, is interpreted as a cumulative normal frequency distribution of the variation among the individuals of a population in their susceptibility to a toxic agent, which susceptibility is inversely proportional to the logarithm of the dose applied. In support of this interpretation is the fact that when dosage is inferred from the observed mortality on the assumption that susceptibility is distributed normally, such inferred dosages, in terms of units called probits, give straight lines when plotted against the logarithm of their corresponding observed dosages. It is shown that this use of the logarithm of the dosage can be interpreted in terms either of the Weber-Fechner law or of the amount of poison fixed by the tissues of the organism. How this transformation to a straight regression line facilitates the precise estimation of the dosage-mortality relationship and its accuracy is considered in detail. Statistical methods are described for taking account of tests which result in 0 or 100 per cent. kill, for giving each determination a weight proportional to its reliability, for computing the position and slope of the transformed dosage-mortality curve, for measuring the goodness of fit of the regression line to the observations by the χ^{2} test, and for calculating the error in position and in slope and their combined effect at any log. dosage. The terminology and procedures are consistent with those used by R. A. Fisher, who has contributed an appendix on the case of zero survivors. Except for a table of common logarithms, all the tables required to utilise the methods described are given either in the present paper or in Fisher's book. A numerical example selected from Strand's experiments upon Tribolium confusum with carbon disulphide has been worked out in detail.

It is a pleasure to record my indebtedness to Prof. R. A. Fisher, not only for the note appended to the paper, but also for invaluable advice throughout its preparation and for the facilities of the Galton Laboratory which have so generously been placed at my disposal. Among others who have been kind enough to read and criticise my manuscript, I wish especially to thank Prof. A. J. Clark, Dr F. Tattersfield, Dr J. O. Irwin, Dr A. B. P. Page, Mr H. H. S. Bovingdon, and Dr A. E. Brandt.

C. I. Bliss

REFERENCES.

(1) Bliss, C. I. (1934). Science, Lxxix, 38 and 409.
(2) Cuark, A. J. (1933). The Mode of Action of Drugs on Cells. Arnold.
(3) Fisher, R. A. (1924). Proc. Inter. Math. Congress, Toronto, p. 805.
(4) - (1932). Statistical Methods for Research Workers. 4th ed. Oliver and Boyd.
(5) Gaddum, J. H. (1933). Med. Res. Council Spec. Rep. No. 183. His Majesty's Stationery Office.
(6) Hemmingsen, A. M. (1933). Quart. J. Pharm. vi, 39, 187.
(7) Kelley, T. L. (1923). Statistical Method. Macmillan.
(8) McCallan, S. E. A. and Wilcoxon, F. (1933). Contr. Boyce Thompson Inst. v, 173.
(9) Pearson, K. (1924). Tables for Statisticians and Biometricians. Part 1, 2nd ed., Cambridge.
(10) Pratt, F. S., Swain, A. F. and Eidredd, D. N. (1931). J. Econ. Ent. xxiv, 1041.
(11) Strand, A. L. (1930). Ind. Eng. Chem. Analyt. Ed. If, 4.
(12) Thompson, G. H. (1919). Biometrika, xi, 216.
(13) Trevan, J. W. (1929). J. Path. Bact. xxxil, 127.
(14) Working, H. and Hotmlinga, H. (1929). Proc. Amer. Stat. Assn. p. 73.

[^0]: ${ }^{1}$ Personal communication.

[^1]: ${ }^{1}$ In a recent letter to Nature (cxxiv, 323), H. H. Shepard applies an equivalent method to original data that are similar to those quoted here in Table IV, except that he uses the dosage directly instead of the logarithm of the dose. When his data and fitted curve are plotted in a rectilinear form (logarithm of $\frac{\text { per cent. killed }}{\text { per cent. surviving }}$ against concentration), it is apparent that the observed values are still distributed in a sigmoid manner about the straight line, despite his use of the hyperbola. However, when the probit values for percentage mortality are plotted against dosages which have been converted to hypothetical "percentages of poison adsorbed" (by means of the equation $k x^{n}=\frac{y}{100-y}$), a very satisfactory fit can be obtained with $\log k=-18 \cdot 2$ and $n=10 \cdot 2$. It should be noted that while Shepard used the same species of insect, the same poison, and apparently the same laboratory technique as in the data quoted here from Strand, his results agree in average susceptibility (the median lethal dose), but show a significantly larger range of variability within the population. Shepard apparently has totalled many individual experiments for each dosage, and if, over the period which this required, the average susceptibility in his stock of beetles had fluctuated as much as 10 to 15 per cent., the variability within his population at any one time might well have been consistent with Strand's earlier results which are quoted here.

