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In many instances, the probability density function (pdf) of a
function of a random variable is obtained from the pdf of the
random variable, the inverse function and the derivative of this
inverse. The formula tends to be memorized rather than fully
understood. This article describes how we teach the structure of
the new pdf by (a) treating the problem as a change in scale,
rather than a “change in variable”; (b) appealing to the concept
of “conservation of probabilities”; (c) using the physical analogy
of “pouring” probability mass from one set of “containers” to
another; and (d) dealing fully with linear transformations before
considering nonlinear ones.
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1. INTRODUCTION

The increasing availability of digital tools is an opportunity
for teachers and authors to re-examine how statistical concepts
are best presented. We consider the topic found under the rubric
“transformation” or “change of variable.” The goal is to under-
stand the form of the probability density function (pdf) of a
function h (taken, for now, to be monotonic) of a continuous
random variable. The way the topic is presented today suggests
that no matter whether teachers or authors favor the traditional
or the more technological, the teaching could profit from a more
intuitive and explanatory approach.

Most texts begin with the “Method of Distribution Functions,”
or the “Direct Method.” If the cumulative distribution function
(cdf) of the original random variable has a closed form, the
method leads directly to the cdf of the new random variable and,
from there, via differentiation, to its pdf. For some distributions,
such as the Gaussian one, the cdf does not have a closed form,
but the pdf does. In such cases, one may obtain the pdf via
the original pdf, the inverse function h−1 and the derivative
of h−1. Textbooks usually give an algebraic proof, without an
intuitive explanation for the formula’s structure. As a result,
many students merely memorize it for exams, but subsequently
are unable to rapidly and confidently reconstruct it.

In an article in this journal a “statistical-generation” ago,
Watts (1973, p. 22) described “three highly useful devices for
teaching transformations, all centered, quite naturally and obvi-
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ously, around an overhead transparency projector.” Sadly, none
of the textbooks we examined have taken up his ideas, and the
topic of transformations is often just as “badly received” today
as it was when Watts wrote.

We describe ways to make the structure of the pdf formula
more intuitive. A commonly used example is given in Section
3, and a practical example in Section 4, but we begin with two
simpler ones to show the concepts involved. We deal with the
bivariate situation in Section 5.

2. SIMPLE, LOCAL EXAMPLES WITH LINEAR
TRANSFORMATIONS

Suppose our focus is on day-to-day variations in temperature
(T ) in Montreal during a certain time of the year. Even though
the early temperatures in the series were originally measured in
degrees F, Canada switched to the metric system in 1975, and
now the summaries of the entire series from the past 100 years are
reported in degrees C. For the sake of illustration, suppose that on
this Celsius scale, the distribution is well approximated by TC ∼
N [µ = 5, σ = 4]. The pdf of this random variable is shown on
the left panel of Figure 1, using the temperature scale −5C to
+15C, shown in plain typeface, and with the corresponding pdf
scale shown on the left vertical axis, running from 0 to 0.1.

Those not familiar with the Celsius scale will wish to change
the temperatures to Fahrenheit, using the conversion

TF = 32 + (9/5)TC.

One might ask students whether, in order to plot the pdf for TF,
we must to make an entirely new graph, or whether we could
simply keep the existing curve for the pdf and just add (super-
impose) the F scale to create the new temperature scale shown
in bold. Alert students will notice that the area under the curve
would now be greater than 1. Thus, if we enlarge the horizontal
scale by a factor of 9/5, we must shrink the height of the pdf
accordingly, by multiplying it by 5/9, so that the area under the
new pdf (i.e., the total probability mass) remains unchanged at
1. Without redrawing the curve, this shrinkage in the height of
pdf[TF] can indeed be accomplished in situ by adding a new
vertical scale, shown in bold. The right-hand panel in Figure 1
shows the two distributions on a single horizontal axis, labeled
“degrees,” and makes the migration and associated changes in
the vertical (pdf) scale more explicit.

The use of a superimposed second horizontal scale helps to
illustrate the principle that the probability mass associated with
a particular range of TC (say 5C to 10C) must be transferred
“intact” to the corresponding range of TF (in this case, 41F to
50F). The same “conservation of probability mass” principle
can be applied to the masses associated with ever-smaller TC
intervals, say (5.0, 5.5], (5.0, 5.1], and so on. To accommodate
these masses on the F scale, the new “containers” located atop
(41.0, 41.9], (41.0, 41.18], and so on, will only be 5/9ths as
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Figure 1. Day-to-day variations in ambient temperature at a certain time of the year. Left panel: distribution plotted on C scale (plain typeface).
F scale added underneath in bold typeface, and pdf[TF ] scale, also in bold, obtained by multiplying pdf[TC ] scale by a factor of 5/9 to constrain the
total probability mass to be unity. Right panel: the same two distributions plotted on an unspecified (“degree”) scale, shown in italics. The probability
mass of 0.15 in the 2C wide interval 7C–9C represents the same days in which the temperature falls within the 3.6F wide interval 44.6F–48.2F.

tall, because their bases are wider than those of their original
containers by a factor of 9/5.

With ever-narrower T intervals, so that the shape of the prob-
ability mass in each bin is approximately rectangular, we can
write the redistribution in terms of the bases and heights of the
pair of original and new rectangles

new width×new height = original width× original height,

or

new height = original height × original width
new width

.

Thus, with the intervals in the new scale made infinitesimal, this
expression for the pdf becomes

pdfNEW[new]
= pdfORIGINAL[equivalent of new ] × scale factor.

In our example, the scale factor is the ratio of the increment on
the C scale corresponding to a 1 unit increment on the new F
scale. More generally,

scale factor =
corresponding increment on original scale

1 unit increment on new scale
.

This example shows that it is not so much that we created
a new random variable as it is that we changed the scale on
which the variable was measured. Conceptually, there is only
one random variable, temperature (T ). We measure it either as
TC or TF.

In this first example, the distribution of the original random
variable had a particular parametric form. However, the formula
linking the original and the new pdf applies regardless of distri-
bution. Consider, as a new example, the years of publication of
the books in the McGill libraries; for the sake of this illustration,
we limit our attention to the books published after 1900. These
follow the distribution shown in Figure 2, a peculiar pattern
shaped by human events and by technological changes. Suppose
we now measure how old the books are in decades by converting

Figure 2. pdf for the variable “year of publication” [Yr pub] of li-
brary holdings, with horizontal (1900–2005) and vertical (0–0.025) scales
shown in plain typeface. Scale for derived variable (“age of holding, in
decades,” range 0 to 10.5) added underneath in reverse in bold typeface,
and pdf scale for this new variable obtained by multiplying original pdf
scale by a factor of 10 to constrain the total probability mass to be unity,
shown on right. Inset: pdf of age distribution, with conventional polar-
ity. For illustrative purposes, range restricted to works published in the
years 1900–2005. Works now three to four decades old (i.e., published
between 1965 and 1975) are tracked in gray.

the year published using

Agedecades = h[year published]
= 200.5 − 0.1 × (year published).
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Figure 3. Distribution of original variable Original ∼ Uniform[0,1] and new variables New1 = Original 2 in the lower panel, and New2 = (Original1/2

+ 1)/2 in the upper panel. In the lower panel, probability mass is transferred to new containers, each with a width of 0.2 (shown in bold, along bottom)
from their corresponding original containers. For example, the probability mass of 0.12 is transferred to the interval 0.6 to 0.8 (new, bold) from the
interval 0.77 to 0.89 (original, italic). The heights of the new containers (2.24, 0.93), . . .) are shown in bold. In the limit, with ever-narrower destination
containers, this sequence of heights approaches the function pdf[new] = 1 × (1/2) new−( 1/2). The upper panel illustrates the same principle in an
example where the range of the new variable is different from that of the original.

Because the scale is reversed, the new pdf has the mirror-image
shape. Its vertical scale is 10 times larger than the original to
compensate for the fact that its horizontal scale is 10 times
smaller.

In these two examples, we were able to create the new pdf in
situ simply by superimposing a new scale below the original one,
and changing the vertical scale accordingly. The fundamental
shape of the new pdf did not change. However, when we change
from the original to a new scale by a nonlinear transformation,
this simple relabeling of axes is no longer sufficient.

3. NONLINEAR SCALE CHANGES: A TEXTBOOK
EXAMPLE

A theoretical example, commonly used, is one in which
the original variable O ∼ U(0, 1) and the new variable is
N = h(O) = O2. We have changed their names from the tradi-

tional X and Y (or Y and X!) to more helpful ones. Although
this {distribution, transformation} pair does not bring out all the
issues—the uniform distribution makes one of the two calcula-
tions too easy, and the transformation maps the values into the
same range—it does illustrate the two important complexities
created by a nonlinear transformation.

As shown schematically in the lower panel of Figure 3, one
first divides the range of the new variable into equal-sized in-
tervals, then determines what intervals these correspond to in
the range of the original variable. Since the probability mass in
each “destination” rectangle must match that in its correspond-
ing “source” rectangle, the new and the original height continue
to be linked via a scale factor, but with one important difference:
the scale factor depends on where on the new range the focus
is. For example, the rectangles at the left end of the new range
are taller than their original counterparts, while those at the right
end are shorter. The same pattern is seen if we make the width
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Figure 4. “Pouring probability,” after Watts (1973). Arbitrary original distribution, and transformation New = h[Original] = Original2 . By tipping the
device, the probability mass in the original distribution (lower right) is poured into the new probability distribution (on its side, upper left).

of each new container smaller, say δ units wide. At a given value
in the new range, the scale factor can be calculated by inverting
the transformation N = O2 to obtain O = N1/2. By the same
principle as above, at the limit the scale factor at a particular
value n in the new scale is

scale factor

= lim
δ→0

corresponding increment on original scale
an increment of δ on new scale

=
do

dn

=
dn1/2

dn

= (1/2) × n−1/2.

Therefore, in the limit, the pdf of the new random variable is

pdfN [n] = pdfO[o − equivalent of n] × scale factor[n]
= 1 × (1/2) × n−1/2.

The upper panel of Figure 3 shows that the same reasoning
applies to situations where the range of the new variable is differ-
ent from that of the original. One can also use the pair of panels
to show that one can carry out a sequence of transformations,
just as children do when playing with water.

After we had completed an earlier version of this note, in
which we had used the imagery of “pouring” probability mass
from one set of containers to another, a colleague pointed us to
the article by Watts (1973). His device for univariate transfor-
mations consisted of “a sandwich of 1/8-inch plastic sheets sep-
arated by 1/8-inch plastic rods. The probability was fine sand”
(taken from an unguarded sand-filled ashtray in the University

of Wisconsin Statistics Department). As illustrated in Figure 4,
by tipping his device, he could “pour” probability distributions
from one scale to another.

4. A NONLINEAR SCALE-CHANGE: PRACTICAL
EXAMPLE

The top half of Figure 5 shows the distribution of “fuel-
economy,” measured as miles per gallon (MPG, or “M”). To
focus on fuel rather than distance, we instead consider how many
gallons are required to travel say 100 miles, (G.P.100M , or “G”),
a scale that is more logical when investigating factors that influ-
ence fuel consumption. In this scale, which reverses the polarity,
a low value indicates an economical vehicle, and a high number
an un-economical one. The new (G) and original (M ) values are
linked by the relationship

G = h[M ] = 100/M,

and its inverse

M = h−1[G] = 100/G.

The figure shows that the new pdf is not a mirror image of the
original; one cannot simply reverse the original, and relabel the
horizontal and vertical axes. The height of the pdf at a value
on the new scale (e.g., five gallons) is obtained by locating its
counterpart (20 mpg) on the original scale, measuring the height
of the original pdf at this value (0.025 approximately) and mul-
tiplying it by the absolute value of the derivative of 100/G with
respect to G, evaluated at the value in question, that is,

pdfG[5] = pdfM [20] × (100/G2)|G=5 = 0.025 × 4 = 0.100.
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Figure 5. Distribution of variable “fuel economy” of vehicles, measured first in miles per gallon (top) and re-expressed in G.P. 100M = gallons per
100 miles (bottom). These are abbreviated to M and G in the text. The probability mass (fractions of all cars) in several (0.4-gallon wide) intervals is
tracked with shaded areas.

5. A BIVARIATE EXAMPLE: THE ROLE OF THE
JACOBIAN

Having introduced the idea of transferring probability masses,
it becomes easier to consider transformations of one bivariate
random variable to another. In his Figure 2, Watts transformed
the original sample space in X, Y coordinates into a new one
in polar or R,Θ coordinates, using the transformations r =
(x2+y2)1/2 and θ = arctan(y/x). The reverse transformations
x = r cos θ and y = r sin θ will be of interest later on. A
portion of the original space is shown in the upper level of Figure
6. Again, we begin with “destination” bins, with bases in the
shape of rectangles, in the transformed space on the lower level.
Each of the two example bins, labeled D1 and D2, has a base
with an area of ∆R × ∆Θ = (1) × (π/10). We have labeled
the corresponding bins in the original or “source” space as S1
and S2. Their bases have different nonrectangular shapes and
different areas. Visually, we estimate that the base of S1 has an
area ∆x × ∆y that is just less than 1/2 that of the unit square.
From theory, the exact area of this base is (1.5)× (π/10). Thus,
if the probability mass in the larger-base S1 is “poured” into

the smaller-base D1, the filled height of D1 becomes 1.5 times
higher than what it was in S1. In contrast, when the probability
mass in S2 is poured into D2, the filled height becomes half what
it was in S2, since the base of S2 is only half that of D2.

Students might be asked to verify that the ratio of the area of
the base of the source bin to that of the destination bin reaches
a limit as the latter is progressively reduced. This limiting ratio
is none other than the Jacobian of the transformation from X, Y
to R,Θ.

scale factor = lim
Areas→0

Areasource
Areadest.

=
∣∣∣∣ δx/δr δx/δθ
δy/δr δy/δθ

∣∣∣∣ =
∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r.

This fits with our earlier calculations whereBase[S1]/Base[D1]
= raverage = 1.5 and Base[S2]/Base[D2] = raverage = 0.5

Thus far, we have deliberately avoided any mention of a spe-
cific probability distribution over X, Y . We did this to emphasize
that the scales, and the probability distributions over them, are
two separate components. One example of this second compo-
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Figure 6. Sample space elements in original X, Y coordinates (upper) and polar R, Θ coordinates (lower). “Destination” bins, D1 and D2, with
bases in the shape of rectangles, are shown in the transformed space on the lower level. Their corresponding bins S1 and S2 are shown in the
original or “source” space. In the limit, the area of the base of S1 to that of D1 is 1.5. In general, the scale factor is calculated as the Jacobian of
the source axes with respect to the destination axes. Thus, when the probability mass in the larger base S1 is poured into the smaller base D1, the
filled height of the new D1 will be 1.5 times what it was in the original S1. The two sets of bins labeled D′ and D′′, and S′ and S′′ show the opposite
transformation—from the R, Θ sample space to the X, Y one. After Watts (1973).

nent is the textbook one where X, Y
iid∼ N(0, σ2). If σ = 1,

pdfX,Y [x, y] = (1/2π)e−(1/2)(x2+y2) = (1/2π)e−(1/2)r2
.

If X and Y were independent horizontal and vertical deviations
from a target, there might be a natural focus on the induced
(marginal) distribution of R, which reflects the total deviation
from the target.

Because the (reverse) R,Θ → X, Y transformation is 1:1,

pdfR,Θ[r, θ] = pdfX,Y [x[r,θ], y[r,θ]] × scale factor,

where x[r,θ] stands for r cos θ, the “x-equivalent of” r, θ, and
similarly for y[r,θ], or r sin θ. Thus, in our specific example,

pdfR,Θ[r, θ] = (1/2π)e−(1/2)r2 × r,

leading to the marginal density

pdfR[r] =
∫ 2π

0
pdfR,Θ[r, θ]dθ = re−(1/2)r2

.

This distribution is called the Rayleigh distribution with param-
eter σ = 1. Because the Rayleigh random variable for general σ
is simply σ times that for the case with σ = 1, one can obtain its
pdf using the results for the linear transform given in Section 2.

The other two sets of bins in Figure 6, labeled D′ and D′′,
and S′ and S′′, are included for completeness, to show the op-
posite transformation—the original sample space is R,Θ, the
transformed one is X, Y , and the reverse transformations are as
given above.

6. DISCUSSION

Many textbooks continue to teach mathematical statistics
more as mathematics than statistics, with few real examples,
with limited use of graphics, and with little appeal to intuition.
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We argue that more can be done to make the teaching more
relevant without sacrificing mathematical rigor.

Curiously, many of these texts proceed immediately to nonlin-
ear transformations, when the first principles (such as the basic
idea of a change of scale) can be more convincingly illustrated
with linear ones. For an even simpler linear transformation than
our Celsius to Fahrenheit conversion, one might consider con-
verting the heights or weights of students to (from) metric (impe-
rial) units, or—to compare fuel economy of U.S. and European
cars—converting gallons per 100 miles to liters per 100 Kilo-
meters. The age-of-books (linear) and fuel economy (nonlin-
ear) examples show the pedagogical advantage of using familiar
measurements, but reversing or inverting the scale on which we
usually look at them.

Typical theoretical derivations depend on algebraic manipula-
tion, and use of the chain rule. Concrete examples can show the
procedure as one where we transfer probability masses from one
histogram to another, by adjusting the heights of the new bins or
containers to conserve the masses being transferred. In all appli-
cations we rely on rescaling to increase/decrease the height of
the original pdf’s: in the linear case, there is one universal scaling
factor, whereas in the nonlinear case, point-specific scaling fac-
tors are required, with the derivative at each value providing the
localized scaling factor. The Jacobian is seen as a way to calcu-
late the scaling factor for higher dimensional settings. The above
approach can also be applied to nonmonotonic h’s by dividing
the inverse of h into monotonic sections and “transferring” each
section separately.

The use of superimposed scales, and the focus on units of
measurement, show that is not so much a new variable, as a new
scale for the same variable. Often, when the real units are on
one scale, we use another one for convenience, such as when we
report (or study the distribution of) the strengths of earthquakes
on the Richter (log) rather than the “regular” scale.

We found that some textbooks teach only the Direct Method,
avoiding examples where the CDF of the original variable does
not have a closed form. This is unfortunate. By substituting
h−1(n) directly into CDFO() to arrive at CDFN (n), and then
simply differentiating this with respect to n, students do not get
to see the two-part structure, involving the original pdf and the
scaling function.

The strategies we have presented are directed primarily at
texts and courses in mathematical statistics. Their purpose is to
deepen the understanding of the topic of transformations without
sacrificing rigor. They may also allow this topic to be included
in texts aimed at mathematically less sophisticated audiences,
along with the formulas for the mean and variance of a function
of a random variable.

One of us (JH) used these strategies in 2001 in a course
on probability theory for undergraduate students in science
and engineering who had had differential and integral calculus.
The course was based on the first seven chapters of Wackerly,
Mendenhall, and Scheaffer (1996); this text provides a large
number of exercises under the topic of “Functions of Random
Variables.” In this accelerated summer course, some students
were content to simply calculate the derivative and use it in the
formula. Those who were more inquisitive and had fewer other

commitments appreciated the “why” and wondered why the text
did not use a more graphical approach.

Sadly, none of the textbooks we examined have taken up the
ideas put forth by Watts. We did however find the graphical ap-
proach illustrated in two Web sites. The first (Glanz 2004) uses
a random number generator to produce input/output pdf/CDFs
for any writeable mixed pdf inputs and transformation function.
The sample pdf of the original random variable, the transforma-
tion function, and the sample pdf of the new variable are plotted
in three panels in an arrangement similar to that in Figure 4.
The menu helps to emphasize that the original random variable
is a separate entity from the transformation; the purpose of the
latter is to change the scale over which the probability is dis-
tributed. Kingsbury (2003) begins by algebraically deriving the
new pdf of the new random variable in the usual way, but then
illustrates the procedure geometrically using a triangular distri-
bution and a transform which is monotonically increasing. In
order to maintain the conventional polarity, he constructed his
diagram so that the probability “conduits” cross each other. The
noncrossing conduits in our Figure 4 result in a reversed polarity
for the new scale, but since Watts had a transparent device, he
could flip it so that the new values increase from left to right.

For good pedagogical reasons, lecture rooms are still equipped
with overhead transparency projectors, but a teacher would need
to be quite agile to use all of Watts’s strategies for bivariate
transformations: he overlaid then moved a duplicate of an orig-
inal shape to show translation and rotation; he put the dupli-
cate on a second projector/screen to show scaling, and he curled
the screen to show nonlinear transforms. However, in 2005 and
beyond, many of these classrooms will also be equipped with
computer projectors. Although computer-generated images lack
the credibility and realism of the physical objects whose shape
Watts and his projector was able to rearrange, computer tech-
nology could replace his bivariate transparencies. For example,
one could show the (O1, O2) space on the left half of the screen
and the (N1, N2) space on the right. With a computer mouse, or
a stylus on a graphics tablet, the teacher or student could delin-
eate rectangular (and other!) regions in the (N1, N2) space; the
interactive computer program could show their equivalents in
the original space. Figure 2 in Watts illustrates how he accom-
plished this with colored marker pens, while our static Figure 6
uses shading. Two-dimensional points could then be randomly
generated from the source pdf and shown as dots in the sample
space. At the same time their transformed locations would be
placed in the new sample space. Updated reports would show
the densities of dots within the region(s) of interest. Using dots
is also a helpful way to remind us that the “d” in pdf stands
for “density.” If one wished to create a 3-D effect, the dots
might be cumulated vertically, to create “3-D” skyscrapers. Our
Web site (http://www.epi.mcgill.ca/hanley/jacobian) includes a
crude beta-version of the X, Y � R,Θ version that can be vi-
sualized using Macromedia Flash Player. For now, it includes
just one bivariate distribution.

However, devices for bivariate transformations are relevant
only after students have fully understood the concepts involved
in the univariate case. Fortunately, these can be effectively taught
with nothing more than chalk, or a pen, or ready-made diagrams
such as those in Figures 1 to 5.
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