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Summary

In the estimation of the odds ratio (OR), the conditional maximum-likelihood estimate (cMLE) is pre-
ferred to the more readily computed unconditional one (uMLE). However, the exact cMLE does not
have a closed form to help divine it from the uMLE or to understand in what circumstances the differ-
ence between the two is appreciable. Here, the cMLE is shown to have the same ‘ratio of cross-prod-
ucts’ structure as its unconditional counterpart, but with two of the cell frequencies augmented, so as to
shrink the unconditional estimator towards unity. The augmentation involves a factor, similar to the
finite population correction, derived from the minimum of the marginal totals.
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Abbreviations
OR odds ratio (parameter)
or point estimate/estimator of OR

oru: unconditional or
orc: conditional or

MLE maximum-likelihood estimate/estimator
cMLE: conditional MLE
uMLE: unconditional MLE

MHE Mantel-Haenszel estimate/estimator

1 Introduction

Both conditional and unconditional logistic regression are widely used in modern-day biometrical
applications. The conditional approach is considerably more complex, both conceptually and computa-
tionally, and can sometimes yield an odds ratio estimate that is quite different from that obtained with
the unconditional approach. Beginning with the work of Holford, White, and Kelsey (1978) on
matched pairs, several authors have shown how software that uses the unconditional approach can be
tricked into performing conditional maximum likelihood estimation. Much of the early work (e.g.,
Tjur (1982), Lindsay, Clogg, and Grego (1991), and Agresti (1993)) focused on Rasch analysis, which
is widely used in research on educational testing. In the special case with just one item-difficulty
parameter, this parameter corresponds to the log odds-ratio parameter that is the focus in biomedical
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applications of conditional logistic regression. More recently, authors such as Neuhaus, Kalbfleisch,
and Hauck (1994), Lindsey (2000), and Rice (2004) have focused on the matched case-control study,
using the now-better-understood deep connections between Rasch, latent class and mixture models and
the estimates obtained from the conditional approach.

These various insights are based, for the most part, on clever representations in regression models,
and on mathematically sophisticated arguments. Thus they are less accessible to epidemiologists, espe-
cially those who like to visualize their data as a series of 2� 2 tables and –– when possible –– use the
classic Mantel–Haenszel summary odds ratio estimator for stratified data. We begin with a single
2� 2 table since it serves as a more useful way to illustrate the differences, and similarities, between
the conditional and unconditional maximum likelihood estimators of odds ratio; the stratified counter-
part is a natural extension of this.

The analysis of a single 2� 2 table is usually represented as the comparison of two binomials

with unknown parameter values P1 and P0, often with focus on the odds ratio, OR ¼ P1

1� P1

P0

1� P0

�
,

as the comparative parameter of interest. More generally, with J pairs of binomials with parameters
P1j and P0j; j ¼ 1; . . . ; J, interest may focus on the presumed common OR across the pairs or strata,
on ORj � OR.

In the context of a single pair of binomials, the data are laid out as a single 2� 2 table; and it has
become commonplace to denote the entries in the first row as a and b and those in the second as c
and d, a and c forming the first column. The rows and columns are so defined that the point estimate
p1 of P1 involves a as its numerator input.

With this notation, the familiar point estimator of OR is the cross-products ratio ad=bc; and the

familiar asymptotic standard error (SE) of the logarithm of this is
1
a
þ 1

b
þ 1

c
þ 1

d

� �1=2

. These statistics

are derived by considering two independent binomials, say the distributions of the frequencies in the
‘‘a” and ‘‘c” cells conditional on the respective row (first, or ‘‘fixed,” margin) totals but unconditional
on the column (second, or ‘‘free,” margin) totals. That point estimator is the ‘‘unconditional” maxi-
mum-likelihood estimator, uMLE.

Given the fourth 2� 2 table in Table 1, many researchers would readily estimate the odds ratio as
3� 3
1� 1

¼ 9:0, without appreciating that there is an important alternative to this unconditional approach.

This is to condition on the second margin as well. Now the interest in two binomial realizations gets
to be replaced by focus on a single cell, usually the frequency in the ‘‘a” cell, as the realization for an
extended-hypergeometric variate. Its distribution, conditional on all of the margins, is determined by
the OR parameter alone.

The corresponding exact ‘‘conditional” MLE, the cMLE, of OR has no general closed form. There-
fore the estimate generally has to be found as an iterative solution of an polynomial equation. This lack
of a closed form is unfortunate for reasons well beyond calculational demands, since the cMLE is, on
theoretical grounds, the preferable estimate. With the intra-stratum information sparse, the uMLE tends
to be too extreme: in the limiting situation of matched pairs, where the cMLE is the familiar ratio of the
numbers of discordant pairs, the uMLE is the square of this (Breslow and Day, 1980, p. 250).

Faced with the stratified data in Table 1, epidemiologists who wish to be ‘‘close to their data”
would readily calculate the stratum-specific uMLE’s but would be unable to divine from them the
values of the corresponding stratum-specific cMLE’s. Few statisticians, let alone epidemiologists,
could anticipate that in the example cited above the conditional counterpart of the unconditional 9.0 is
as low as 6.4. The numerical investigations by Breslow and Day (pp. 250–252) focus on the behavior
of the uMLE, and so they provide less guidance on how, in specific configurations, the cMLE can be
‘triangulated’ from the easily calculated uMLE. Thus, having a suitable closed form for the cMLE
would help in preliminary data analyses; it would also help explain on a theoretical level the data
circumstances where the difference between the two estimates is appreciable.
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Towards this end, we here present an instructive representation of the cMLE of OR, one that still
has the same ‘ratio of cross-products’ structure as its familiar unconditional counterpart.

2 Unstratified Data
Although in practice the conditional approach to OR estimation is more relevant in the context of
combining information from several 2� 2 tables, such as the six illustrative ones in Table 1, or the 12
and the 58 tables from the two actual studies in Table 2, we begin with the case of a single table,
where the proposed structure is more easily seen.

2.1 Focus/notation, in relation to a specific marginal frequency

The usual approach is to focus on cell entries a; b; c, and d and on the corresponding expected fre-
quencies A;B;C, and D: A more effective approach to the conditional assessment of OR begins with
focus on the (or a) row or column such that the sum of the two cell entries represents the minimum of
the marginal totals. We denote the cell entries in this by a0 and b0 and the corresponding marginal
total ða0 þ b0Þ by m (minimum); and in particular, we let a0 represent either a or d (and not b or c).
We denote by c0 and d0 the realizations in the other row or column, with d0 diagonal to a0 and, hence,
c0 diagonal to b0. Three examples of this notation are shown below. We denote the expected frequency
corresponding to a0 by A0, etc.

3(d0) (c0) 2 5 3(d0) (b0) 1 4 1(a0) (b0) 1 2(m)

1(b0) (a0) 1 2(m) 2(c0) (a0) 1 3 2(c0) (d0) 3 5

4 3 7(t) 5 (m) 2 7(t) 3 4 7(t)
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Table 1 Accuracy of (stratum-specific and summary) conditional point estimates or of OR based on
null f (expression (1)) and refined f (Appendix 2), and of the corresponding SEs of log (or), for six
2� 2 tables representing six strata.

Table1 f0 orf0 orfr orexact uMLE SEf0 SEfr SEexact
2 SEðuMLEÞ3

2 1
1 3 2

9 4.46 4.45 4.45 6.00 1.51 1.49 1.49 1.68
1 1
1 6 7

16 4.48 4.58 4.58 6.00 1.57 1.59 1.59 1.78
12 1

2 1 7
15 5.05 5.10 5.10 6.00 1.50 1.51 1.51 1.61

3 1
1 3 1

7 6.60 6.41 6.41 9.00 1.49 1.45 1.44 1.63
4 1
1 4 1

9 11.4 10.9 10.9 16.0 1.44 1.39 1.39 1.58
7 3
3 7 1

19 4.96 4.95 4.95 5.44 0.94 0.94 0.94 0.98

Summary 5.74 5.75 5.72 7.124 0.54 0.54 0.54 0.594

1 Cell frequencies are shown with a0 in bold and b0 italicized.
2 Square root of the inverse of the exact extended-hypergeometric variance corresponding to orexact,

that is, to the exact cMLE.
3 ð1=aþ 1=bþ 1=cþ 1=dÞ1=2 in each stratum
4 Via unconditional logistic regression with 5 indicator variates for 6 strata.
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2.2 An ‘unconditional-like’ structure for the cMLE

The theoretical basis for the proposed form for the conditional point estimator of OR derives from a
relationship first noted by Birch (1964, Eq. (4)) but usually credited to Mantel and Hankey (1975).
The conditional expectations A;B;C; and D and the extended-hypergeometric variance V (of any one
of the cell frequencies) are linked to OR via the exact parameter relation

OR ¼ ADþ V
BC þ V

¼ A0D0 þ V
B0C0 þ V

:

We focus on A0 etc., rather than A, etc., and re-write the relation as

OR ¼ A0ðD0 þ fB0Þ
B0ðC0 þ fA0Þ ; ð1Þ

where f ¼ V=A0B0. Then, substitution of the MLEs ÂA0 ¼ a0, . . . , D̂D0 ¼ d0 leads to the general form of
the point estimator

or ¼ a0ðd0 þ fb0Þ
b0ðc0 þ fa0Þ ; ð2gÞ

The factor, or fraction, f (¼ V=A0B0) is a function of OR –– albeit, as shown in Figure 1, only a weak
function, given the choice of a0 and b0: A first approximation to it is that implied by the null values

V0 ¼
ðA0 þ B0Þ ðC0 þ D0Þ ðA0 þ C0Þ ðB0 þ D0Þ

t2ðt � 1Þ , A00 ¼
ðA0 þ B0Þ ðA0 þ C0Þ

t
and B00 ¼

ðA0 þ B0Þ ðB0 þ D0Þ
t

.

Thus, as we will demonstrate below, an approximation –– accurate for all practical purposes –– to the
cMLE of OR generally is

or ¼
a0d0þ
b0c0þ

; ð2nÞ

c0þ ¼ c0 þ f0a0; d0þ ¼ d0 þ f0b0; f0 ¼
t � m

mðt � 1Þ :
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Figure 1 The fraction f ¼ V=A0B0 as a function of Odds Ratio OR, for var-
ious configurations of m = minimum marginal frequency, t = overall frequency,
and m0 ¼ a0 þ c0, diagonal to m (see text).
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Heuristic justification of this proposition is, first and foremost, a matter of examining whether this
estimator has certain familiar properties of the cMLE. For a start, when there is no association in the
data ða=b ¼ c=dÞ, the exact cMLE, just as the uMLE, equals unity; and it is immediately obvious that
the proposed estimator satisfies this elementary requirement, exactly. Asymptotically (with m infinitely
large) the exact cMLE coincides with the uMLE = ad=bc, and this is satisfied because the asymptotic
value of f0 is zero. And at the other extreme, m ¼ 1, where f0 = 1, the proposition implies that, in

terms of the expected frequencies A0 etc., OR ¼ A0ðD0 þ B0Þ
B0ðC0 þ A0Þ, a relation that indeed is familiar from the

theory of individually matched data (Miettinen, 1970). Finally, it has been surmised, from examples,
and from numerical investigations such as those of Hauck (1984), that the value of the exact cMLE is
always closer to the null value of OR ¼ 1 than the uMLE is. Clearly, this relation is inherent in the
proposed structure for the cMLE.

We illustrate the stratum-specific calculations using the 2� 2 table employed above to introduce the
notation. It is the ‘reciprocal’ of the table used by Breslow and Day (1980, pp. 125–127) to introduce
conditional ML estimation and to illustrate the calculation of the exact cMLE. The unconditional
estimator yields the simple cross-product ratio

uMLE ¼ 3� 1
2� 1

¼ 1:50

while the exact cMLE is the solution of the polynomial (in this example, quadratic) estimating equation

0� 2
0

� �
5
3

� �
OR0 þ 1� 2

1

� �
5
2

� �
OR1 þ 2� 2

2

� �
5
1

� �
OR2

2
0

� �
5
3

� �
OR0 þ 2

1

� �
5
2

� �
OR1 þ 2

2

� �
5
1

� �
OR2

¼ 1 ;

i.e., of
4� ORþ 2� OR2 ¼ 2þ 4� ORþ OR2 :

The solution is

cMLEexact ¼ 21=2 ¼ 1:41 :

In relation to the minimum marginal frequency, m ¼ 2 for this table, the relevant frequencies for the

proposed estimator are a0 ¼ 1; b0 ¼ 1; c0 ¼ 2; d0 ¼ 3 and f0 ¼
5

12
, so that the augmented frequencies

are c0þ ¼ 2þ 5
12

� �
� 1 and d0þ ¼ 3þ 5

12

� �
� 1. The proposed crossproduct-like estimator therefore

yields

cMLEapprox ¼
1� 3þ 5

12

� �

1� 2þ 5
12

� � ¼ 1:41 :

While the exact cMLE was easily obtained in this particular instance, in general the estimating equa-
tion involves a polynomial of degree m. For example, the estimating equation that yields the cMLE of
6.41 involves a 4-th degree polynomial in OR. In contrast, the proposed approximation remains a
simple cross-product, no matter how large m is.

2.3 cMLE as a ‘shrunken’ uMLE

The proportional shrinkage in the cMLE relative to the uMLE, or orc relative to oru, is meaningfully
expressed by

ðoru � orcÞ
ðoru � 1Þ ;
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so long as or > 1. This measure, in the framework of the formulation of orc in expression (2g),
reduces to the simple form of

fa0

c0 þ fa0
;

so that

orc � 1 ¼ c0

c0 þ fa0
ðoru � 1Þ : ð3Þ

Since f is a weak function of OR (see Figure 1), substitution of the readily computed null value f0

yields an acceptably accurate measure of the shrinkage. For example, in the Breslow and Day exam-
ple used to illustrate conditional estimation, the shrinkage factor in the case of the exact cMLE isffiffiffi

2
p
� 1

1:5� 1
¼ 0:8284 ;

while that based on f0 is

c0

c0 þ f0a0
¼ 2

2þ 5
12
� 1
¼ 24

29
¼ 0:8276 :

Even in the extreme example above, where the uMLE is 9.0 and the cMLE is 6.4, so that the shrink-
age is 5:41=8:0; f0 implies 5:60=8:0:

When or < 1, the shrinkage factor is based on the inverses of the estimates. It, in turn, reduces to

fb0

ðd0 þ fb0Þ ;

so that

1
orc
� 1 ¼ d0

d0 þ fb0
1

oru
� 1

� �
: ð4Þ

The patterns can be summarized by noting that the discrepancy between the uMLE and the cMLE is
greatest when t is smallest, a0 þ c0 ¼ t=2; and the association in the data is substantial.

2.4 Performance of approximations to cMLE

Many users have access to high-level computer packages, and thus to exact cMLE’s. Thus, we do not
advocate that the computer algorithms that produce exact estimates be replaced with ones that produce
approximate ones; rather, our aim is didactic, to give a structure to the conditional estimator, so that
the difference between the conditional and unconditional estimates can be appreciated.

It nevertheless is of interest to examine the actual performance of the approximations to the cMLE:
In Table 1 the proposed point estimator is applied to six separate 2� 2 tables. The fourth one of these
has already been alluded to, while the last one was used by Satten and Kupper (1990) to illustrate a
numerically stable algorithm to calculate the exact expected value of the extended-hypergeometric
distribution.

The examples represent considerable deviations of the exact cMLEs from their corresponding
uMLEs. Nevertheless, the results produced by the simple point estimator with f0 as an approximation
to the exactly correct value of f , agree quite adequately with the exact cMLEs.

The accuracy of the simple approximation using f0 is at its worst when the discrepancy between the
uMLE and the cMLE is the greatest. Such configurations (see previous section) are represented by the
last three examples in Table 1. As illustrated by these examples, if greater accuracy is desired in such
situations, a refined approximation (provided in Appendix 2) is possible. The refined estimates are
accurate to all three digits of interest in all of the examples.

28 J. A. Hanley and O. S. Miettinen: Conditional Estimator of Odds Ratio
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2.5 Variance of ln of cMLE

Using the same four frequencies a0; b0; c0þ; d0þ as are used to obtain the point estimate of OR, it can
also be shown (see Appendix 1) that an adequately accurate approximation to the SE (asymptotic) of
the logarithm of the cMLE generally is

SElog ðorÞ ¼ ½1=a0 þ 1=b0 þ ð1� f0Þð1=c0þ þ 1=d0þÞ�
1=2 ; ð5Þ

representing the square root of the inverse of an approximation to the extended-hypergeometric var-
iance evaluated at A0 ¼ a0. This has a structure similar to that of the SE of the logarithm of the
unconditional estimate, but with the variance contributions from the two augmented frequencies re-
duced by a factor based on f0:

As for the properties of this, we note first that when there is no association in the data ðor ¼ 1Þ,
this estimator reduces to the square root of the inverse of the (null) hypergeometric variance, exactly.
Asymptotically (with m very large), where the distinction between the cMLE and the uMLE vanishes,
this formulation reduces, as it should, to the familiar one involving simply the sum of the inverses of
the observed cell-specific frequencies. And when m ¼ 1, so that a0 and b0 are Bernoulli realizations,
this formulation reflects the correct variance A0ð1� A0Þ. It might be noted also that, notably when m
is small, this SE is, as it should be, smaller than the familiar unconditional one.

For each individual 2� 2 table shown in Table 1, the Gaussian approximation to the distribution of
a0; or equivalently a; does not apply at the limits of OR, or even at the point estimate. Thus, even the
exact asymptotic SE is not helpful in these individual instances. However, an SE-based interval may
be appropriate if the OR is estimated by combining information from several strata (tables), a topic
that is considered in the next section.

3 Extension to Stratified Data

In the context of several 2� 2 tables, the focus has been on the a’s (e.g., Platt, Leroux, and Breslow,
1999). For the value of OR, presumed to be common across the strata, there is the corresponding

Biometrical Journal 48 (2006) 1 29

Table 2 Cell frequencies, redefined, and overall conditional estimates or1 of
OR for each of two datasets with individual matching2.

Number of
Dataset a0 þ c0 a0 such strata orf0 orexact orMcC

(i) 1 0 1
12 strata 1 1 3
with mj ¼ 1; 2 1 5 22.6 22.6 26.4
and tj ¼ 5 3 1 3

(ii) 1 0 4
58 strata 1 1 3
with mj ¼ 1; 2 0 1
and tj ¼ 5 2 1 17

3 0 1 7.95 7.95 8.11
3 1 16
4 0 1
4 1 15

1 orf0 : estimate obtained from the proposed approach using f0:
orMcC: McCullagh approximation to cMLE:

2 Sources: (i) Miettinen 1984, p. 151; (ii) Breslow and Day 1980, Appendix III.
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expected value, Aj; in stratum j for the conditional distribution (extended-hypergeometric) of the vari-
ate whose realization is aj: By the same token, any given estimate or of OR implies a corresponding
estimate ÂAj of the A0j. The cMLE is (Birch, 1964) that value of OR which implies a set of ÂAj values
such thatP

ÂAj ¼
P

aj :

Thus, if the six 2� 2 tables in Table 1 refer to six strata, then at the MLE of OR; the six implied ÂAj

values sum to 29.
To find the root of this estimating equation, one might use the Mantel-Haenszel (1959) estimate

(MHE) of OR as the first trial or: Using this or value one (i) evaluates the ratios of two polynomials
in or to calculate the implied values fÂAjg , (ii) compares

P
ÂAj with

P
aj; and (iii) revises or accord-

ingly before repeating these three steps. Given the numerical difficulties in evaluating these implied
expectations exactly, other––necessarily approximate––approaches are sometimes used. For example,
for a given estimate or; McCullagh (1984) suggested that one obtain the implied value of ÂAj by
solving the quadratic equation

ÂAjD̂Dj þ vj

B̂BjĈCj þ vj

¼ or ;

where vj ¼
tj

tj � 1
ð1=aj þ 1=bj þ 1=cj þ 1=djÞ�1; tj ¼ aj þ bj þ cj þ dj; and fBj; Cj; Djg are expressed

in terms of Aj and the four fixed marginal totals of table j: This formulation gives very satisfactory
results when each of the four marginal totals in the table exceeds 5 (McCullagh, 1983). The approx-
imation is not, however, very accurate in smaller-margins or extreme-OR situations (Breslow and
Cologne, 1986).

As we show in the next section, in these situations the approximation can be made more accurate
by focusing not on each aj, but on each a0j (and its corresponding expectation, A0j).

3.1 Approximations to cMLE

For any given value of OR, there is the corresponding expected value A0j for the conditional distribu-
tion (extended-hypergeometric) of the variate whose realization is a0j: The cMLE is that value, or; of
OR which implies a set of ÂA0j values such thatP

ÂA0j ¼
P

a0j : ð6Þ

Thus, if the six 2� 2 tables in Table 1 refer to six strata, then at the cMLE the implied ÂA0j values sum
to 18. Incidentally, it is the location of this observed sum in its range (0 to

P
mj) that determines how

appropriate a Gaussian-based confidence interval is.
For any given trial value or of OR, the corresponding value of ÂA0j is the solution of

ÂA0jD̂D
0
þj

B̂B0jĈC
0
þj

¼ or : ð7Þ

Upon expressing B̂B0j, ĈC0þj, and D̂D0þj in terms of ÂA0, the marginal totals, and f0j ¼
tj � mj

mjðtj � 1Þ, this quad-

ratic equation can be solved for ÂA0j, separately for each stratum. The solution is

ÂA0j ¼ jQjj �
Q2

j � mjða0j þ c0jÞ or

ð1� f0jÞ ðor � 1Þ

" #1=2
������

������ ;

Qj ¼
½mj þ ða0j þ c0jÞ=ð1� f0jÞ þ tj=ð1� f0jÞ ðor � 1Þ�

2
: ð8Þ

30 J. A. Hanley and O. S. Miettinen: Conditional Estimator of Odds Ratio
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With f0j ¼ 1 (exactly correct whenever mj ¼ 1) or or ¼ 1, the underlying relation is no longer quad-
ratic, and the result is (cf. Breslow and Cologne, 1986)

ÂA0j ¼
ða0j þ c0jÞ OR

ða0j þ c0jÞ ORþ b0j þ d0j
;

while or ¼ 1 implies ÂA0j ¼
mjða0j þ c0jÞ

tj
. These particulars are of note because when fj ¼ 1 and/or

or ¼ 1, the value of expression (8) is indeterminate. The ÂA0j values are summed and compared withP
a0j, and the trial value of OR is adjusted accordingly. The corresponding new values of ÂA0j are

computed; the comparison is repeated, etc., until the trial value of OR produces the equality in expres-
sion (6).

3.2 Performance of proposed approximation to cMLE

Over the six strata in Table 1, the exact cMLE of the common OR is 5.72 and its corresponding SE of
log (or) is 0.54. By focusing on the a0j rather than the aj, the proposed procedure yields or ¼ 5:74
with SE of log (or) = 0.54. The McCullagh approach yields or ¼ 5:81 with SE of log (or) = 0.56. The
MHE is 7.07 and its associated SE of log (or) (Robins, Breslow, and Greenland, 1986) equals 0.59.

Table 2 refers to two datasets resulting from individual matching. The first one, previously cited
(Miettinen, 1984, p. 151), concerns the role of induced abortion in the etiology of ectopic pregnancy.
Shown are stratum-specific data on matched quintuples (4-for-1 matching). While mj ¼ 1 and tj ¼ 5 in
each stratum, informativeness was nevertheless quite variable among the 12 informative strata
(1 � a0 þ c0 � 3). In 11 of the 12 strata, a0j ¼ 1: The single instance of a0j ¼ 0 was in a stratum with
a0 þ c0 ¼ 1: The exact cMLE is 22.6. For these data, the proposed approach replicates the exact cMLE
(= 22.6) exactly, with f0 already. This was to be expected, since the null formulation for f , while
generally an approximation, is exact ðfj ¼ 1Þ irrespective of the value of OR in the case of mj ¼ 1:
With careful attention to step sizes in the Newton–Raphson process, McCullagh’s series of iterative
approximations converges, yielding 26.4. Of further interest in this example is the much higher
uMLE ¼ 78:8; illustrating the danger of fitting a total of 13 parameters to such sparse data. Also of
note is the volatility of the result from the MHE, namely or ¼ 33:0: Had the single instance of a0j ¼ 0
fallen in one of the other two types of stratum, the MHE would have been 17.0 or 11.7. The cMLE is,
of course, independent of the split of the

P
a0j among the strata.

In the second dataset in Table 2, arising from a study of the effect of exogenous estrogens on the
risk of endometrial cancer (Breslow and Day, 1980, p. 162), again, mj � 1 and tj � 5. The proposed
approach converges, as expected, to the exact cMLE of 7.95, while the McCullagh approximation
converges to 8.11, and the MHE is 8.46.

3.3 Variance of ln of cMLE

If 0�
P

A0j �
P

mj; then the distribution of
P

a0j is close to Gaussian, and thus one can calculate a
reasonably accurate confidence interval based on the SE (asymptotic) of the logarithm of the cMLE:
This SE, in turn, can be calculated as ð

P
IjÞ�1=2; where Ij ¼ ÂA0jB̂B

0
jð1� f0jÞ.

4 Discussion

4.1 Shrinkage

While it is generally agreed that the cMLE is to be preferred to the uMLE; it involves extensive
computations, even in the case of a single table. Those who wish to inspect stratum-specific cMLEs
cannot readily calculate them with simple software, or appreciate from the marginal totals how discre-
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pant the cMLE and the uMLE are, or what are the factors that drive them apart. Nor is it obvious why
the conditional estimate is always closer to the null than the unconditional one.

As is evident in Eq. (2g), the shrinkage is brought about by augmenting the cell frequencies c0 and
d0. The augmentations involve the factor f reflecting the size of m, the minimum marginal total – a
feature that has not been exploited up to now. The null value of f is directly related to the ‘finite
population correction factor’ in sampling, and to the ratio of the variances of the central-hypergeo-
metric and binomial distributions. We derived its general form from the exact parameter relation link-
ing the conditional expectations A0;B0;C0; and D0 and the extended-hypergeometric variance V . This
relation’s re-expression (expression 1 in Appendix 1) in terms of f clarifies why and by how much the
cMLE is pulled away from the uMLE towards unity, and it shows the critical role of the minimum
marginal total, m; in this shrinkage.

While the disparity between the cMLE and uMLE of OR has been investigated numerically (Pike
et al., 1980, pp. 250–252), it has not been addressed theoretically. What, then, does expression (3)
imply for the case of or > 1? For one, that any given value of oru is associated with maximum
disparity when a0=c0 is maximal, which occurs when the value of b0=d0 is also maximal (as
a0=c0 ¼ oru � b0=d0). This situation arises when m=t is maximal, that is, when m ¼ t=2. The associated
added requirement is, of course, that f be maximal; and in terms of the f0 in expression (2n), it is
clear that this occurs when m ¼ t=2 is associated with minimal t consonant with the oru value at
issue. With or > 1, the proportional degree of augmentation in c0þ is the key, that in d0þ when or < 1.
These conclusions are illustrated by the results in Table 2. The implications of expression (4) for the
case of or < 1 follow by analogy, with oru replaced by its inverse.

4.2 Why and when are the approximations accurate?

Many widely available statistical packages can calculate exact cMLE’s for datasets much more exten-
sive that ours, and can do so to more decimal places than are needed in practice, all in a fraction of a
second. Although our acceptably accurate approximations can be computed even with a hand calcula-
tor or spreadsheet, accuracy per se was not our aim. Rather, our purpose was to clarify why and by
how much the cMLE is pulled away from the uMLE and towards unity. Nevertheless, the accuracy of
the approximations also is of some theoretical interest.

How does the accuracy of McCullagh’s approximation, and of the one proposed here, come about?
Both approaches are founded on the parametric relation of

OR ¼ ADþ V
BC þ V

:

In the context of a single table, McCullagh suggests replacing the expected values by the respective
realizations ða; b; c; dÞ; and for the variance estimate he suggests using the asymptotic one multiplied

by
t

ðt � 1Þ. This variance estimate is the source of the approximation in his estimator.

We replace the challenge of estimating the extended-hypergeometric variance by that of estimating

f ¼ V
A0B0

(Appendix 1). On the surface, this appears to adduce nothing new: we, too, appear to face

the estimation of V , followed simply by the division of this estimate by the a0b0 product; and were
one to do this and use McCullagh’s estimator of V , our results would be the same as his. The novelty
arises from our exploitation of the fact that we have four possible choices for the definition of f :
V

AB
;

V
CD

;
V

AC
and

V
BD

. When, in this framework, we define f in terms of that pair (A0; B0) of cell

expectations whose sum represents the minimum, m, of marginal totals, we bypass the challenge of
estimating V : we invoke the premise, justified by the patterns in Figure 1, that V is approximately
proportional to A0B0, so that

V
A0B0
� V0

A00B00
¼ t � m

mðt � 1Þ ¼ f0 :
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This is fully accurate whenever m ¼ 1, while the McCullagh estimate of V is not; and the greater
accuracy extends to m > 1 also. The McCullagh formulation, based on ad and bc augmented by v,
could be improved by using for v the formulation involved in expression (5).

As an illustration of the importance of the focus an a0 and b0 adding up to m, consider the case of
ða; b; c; dÞ ¼ ð6; 1; 1; 1Þ. With ða0; b0; c0; d0Þ as ð1; 1; 1; 6Þ, expression (2n) yields or ¼ 4:48, while
the exact cMLE is 4.58 (Table 1). If, however, expression (2n) were used with a in place of a0; aþ b
in place of m; and cþ d in place of t � m, the result would be 5.12. The McCullagh estimator in-
volves v ¼ 0:36, and the result is or ¼ 4:69. The formulation in expression (5) implies v ¼ 0:42,
corresponding to or ¼ 4:53, closer to the exact cMLE of 4.58.
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5 Appendix 1: Non-null (Extended) Hypergeometric Variance

We wish to express the extended-hypergeometric variance V (of any one of the cell frequencies) in
terms of f and the conditional expectations A0, B0, C0, and D0: We begin from the exact relation

OR ¼ A0ðD0 þ fB0Þ
B0ðC0 þ fA0Þ ; ð1Þ

where f ¼ V
A0B0

:

The non-null V can then be derived from the extended-hypergeometric probability of a0; with the
OR in it given the structure of that in expression (1). The inverse of V –– information on the parameter
A0 –– is the negative of the expectation of the second derivative, with respect to A0, of the logarithm of
this probability. Writing the probability first as a function of OR and then applying the chain rule
allows V�1 to be expressed as OR0=OR; where OR0 denotes the derivative of OR with respect to A0:
Expressing OR in terms of the marginal totals, applying the chain rule several times, and recognizing
that f itself is a function of A0; leads after some tedious algebra to the expression

V�1 ¼ 1
A0
þ 1

B0
þ 1� f

C0þ
þ 1� f

D0þ
� f 0tðA0 � A00Þ

C0þD0þ
; ð2Þ

where f 0 ¼ df
dA0

.

6 Appendix 2: Refinements

As was set forth in Appendix 1, the propositions in expressions (2n) and (5) in the text involve the

null value f0 of f ¼ V
A0ðm� A0Þ, that is, the hypergeometric (null) variance together with A00 in place of

A0. Those simple formulations do not involve notable inaccuracy on this basis because, due to the
definitions of a0 and b0, V remains quite closely proportional to A0ðm� A0Þ as A0 moves away from
A00. Another source of some inaccuracy is the f 0 term, proportionately quite small, that is involved in
the exact formulation of V (expression (2), Appendix 1) but is omitted in expression (5).

The ‘‘refined” results in Tables 1 and 2 are based on taking the extended-hypergeometric variance
to be, as a closer approximation,

V ¼ 1
½1=A0 þ 1=B0 þ ð1� f Þ ð1=C0þ þ 1=D0þÞ ð1� FÞ� ;

F ¼ f 2ð2A0 � mÞ ðA0 � A00Þ t=C0þD0þ
1� f 2A0B0ð1=C0þ þ 1=D0þÞ

:
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Use of f0 for the f in this, together with a0 for A0 etc., yields a first approximation V̂V1 for V̂V. Then,

f1 ¼
V̂V1

a0b0
leads to V̂V2, etc., until convergence. The final approximation for f is used as a replacement

for f0 in expression (2n) for the point estimate of OR; and the SE of log ðorÞ becomes the square root
of the inverse of fa0b0.

The variance approximation above involves an approximation to a very complex f 0 in the exact

variance (expression (2), Appendix 1). For its derivation, differentiated is, of course, f ¼ V
A0ðm� A0Þ,

but the f 0 term in V (exact) is omitted. Moreover, in the differentiation, 1=C0þ þ 1=D0þ is treated as a
constant, different from A0ðm� A0Þ and 1� f .

These refinements of the simple propositions in Sections 2.1 and 2.4 gain some potential relevance
in instances characterized by m > 1 (so that f < 1) yet m that is small (being far from asymptotic
case) and m=t that is large (so that the binomial approximation is inapplicable).
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