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The method of generalized estimating equations (GEE) is often used to analyze longitudinal and other
correlated response data, particularly if responses are binary. However, few descriptions of the method are
accessible to epidemiologists. In this paper, the authors use small worked examples and one real data set,
involving both binary and quantitative response data, to help end-users appreciate the essence of the method.
The examples are simple enough to see the behind-the-scenes calculations and the essential role of weighted
observations, and they allow nonstatisticians to imagine the calculations involved when the GEE method is
applied to more complex multivariate data.
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The generalized estimating equations (GEE) (1, 2)
method, an extension of the quasi-likelihood approach (3), is
being increasingly used to analyze longitudinal (4) and other
(5) correlated data, especially when they are binary or in the
form of counts. We are aware of only two articles which try
to make the GEE approach more accessible to nonstatisti-
cians. One focuses on software (6). The other, an excellent
expository article (5) covering several approaches to corre-
lated data, has limited coverage of GEE. Examples in most
texts and manuals are too extensive, and the treatment too
theoretical, to allow end-users to follow the calculations or
fully appreciate the principles behind them. In this paper, we
attempt to redress this. To illustrate the ideas, we use the data
shown in table 1. They consist of the age- and sex-standard-
ized heights (and data on the covariates gender and socioeco-
nomic status) of 144 children in a sample of 54 randomly
selected households in Mexico (7).

Textbooks all advise researchers not to treat observations
from the same household (or “cluster”) as if they were inde-
pendent and thus not to calculate standard errors using n =
144 as the sample size. For example, Colton (8, pp. 41–43)
warns against being misled by “great masses of observa-
tions, which upon closer scrutiny, may often vanish,” and he
uses as an example an n of 800 blood pressure measure-
ments—10 taken each week over an 8-week treatment
course, in 10 patients! He stresses that “appropriate conclu-
sions regarding the drug’s effect rely on subject-to-subject
variation, so that the sample size of 10 subjects is crucial to
such analysis.” However, few texts explain how one is to
properly use all 800 (or, in our example, 144) data points, or
how much each observation contributes statistically.

Although some articles do discuss how much statistical
information is obtainable from observations on paired organs
(9) or individuals in clusters such as classrooms or physicians’
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practices (10), investigators often take a conservative
approach. In one example, where all eligible children in a
household were randomized to the same treatment (11), statis-
tics were computed as if the observations were independent
but standard errors were based on the numbers of households.
In another (12), where one fourth of the subjects had a sibling
in the study, the authors excluded the data obtained from one
of the two siblings.

In this expository article, we show how the GEE approach
uses weighted combinations of observations to extract the
appropriate amount of information from correlated data. We
first motivate and introduce the approach using hand calcu-
lations on small hypothetical data sets. We use households as
clusters, with the letter “h” (household) as a subscript. We
use the Greek letters µ and  and the uppercase letters P, B,
and R when referring to a parameter (a mean, standard devi-
ation, proportion, or regression or correlation coefficient);
and we use the symbol  and the lowercase letters p, b, and r
for the corresponding statistic (empirical value, calculated
from a sample) which serves as an estimate of the parameter.

ELEMENTS

Variability of statistics formed from weighted sums or 
weighted averages of observations—the general case

The instability of a statistic is measured by its variance.
Many statistics involve weighted sums of observations or
random variables; weights that add to 1 produce weighted
averages. In the general case, the variance of a weighted
sum of n random variables y1 to yn is a sum of n2 products.
These involve 1) the n weights, w1 to wn; 2) the n standard
deviations, σ1 to σn, of the random variables; and 3) the n ×
n matrix of pairwise correlations, R1,1 to Rn,n, of the random
variables. As figure 1 illustrates, the variance of a weighted
sum or average can be conveniently computed by placing
w1 to wn and σ1 to σn along both the row and column
margins of the n × n correlation matrix, forming the product

wrow × wcolumn × σrow × σcolumn × Rrow,column

for each {row, column} combination, and then summing
these products over the n2 row-column combinations.

TABLE 1.   Heights (expressed as number of standard deviations above US age- and sex-specific 
norms) of 144 children in a sample of 54 Mexican households*

SES† of household Household identifier Heights‡ of children§

3 1 –0.76 –0.90 –1.20 –0.93

3 2 –1.61

3 3 –0.78 –0.96

3 4 –3.12 –2.57

3 5 –0.01 –0.50 –0.02 –0.74

3 6 –1.36 –0.33 –0.31 –0.50

3 7 –0.80 0.02

3 8 –1.03 –0.38 –1.05

3 9 1.07 –1.02 –0.57 0.76

3 10 –1.35 –1.14

3 11 –1.13 –2.12 –2.39

3 12 –2.67 –3.12 –2.24

3 13 –0.53 –1.55

4 14 0.36 –2.54

4 15 –2.87 –1.26 –1.22

4 16 –1.51 –2.68 –2.24

4 17 0.71 –1.21 –0.03

4 18 –2.00 –1.14 –1.29

4 19 0.47 –0.64

4 20 –0.92 –1.64

4 21 1.54 0.19

5 22 –1.22 –1.11 –2.49

5 23 –2.38 –2.30 –1.24 –1.96

5 24 –1.06

5 25 0.37 0.29

5 26 –1.61 –1.87 –2.57 –0.72

5 27 –1.75 –0.77 –2.55

Table continues

σ
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For the remainder of this section, we will assume that the
σ’s are all equal.

Variability of statistics derived from uncorrelated 
observations

When the observations are uncorrelated, the off-diagonal
elements in the correlation matrix are zero. If each of the n
weights equals 1/n, then the weighted sum is the mean, . Its
variance (the sum of the diagonal elements in part b of figure
1) is thus

,

yielding the familiar formula SD[ ] = σ/ .
With equal statistical weights of 1 each, the variance of the

simple sum is Var[Σy] = n σ2, so that SD[Σy] =  σ.

Although our main example involves “physical” heights and
“statistical” weights, a side example is instructive. Assume
that the “physical” weights of elevator-taking adults vary
from person to person by, for example, σ = 10 kg. Then
elevators of 16 persons each (i.e., n = 16), randomly chosen
from among these, will vary from load to load with a stan-
dard deviation of (only!) (10) = 40 kg, while the average
per person in each load of 16 will vary with a standard devi-
ation of only 10/  = 2.5 kg.

Variability of statistics derived from correlated 
observations

In the elevator example, the “σ/ ” and “  σ ” laws for
the variability of the two statistics do not hold if the variable
of interest on sampled individuals tends to be similar from
one individual to the other (“co-related”)—for example, if

TABLE 1.  Continued

* Source: Forrester et al. (7).
† SES, socioeconomic status.
‡ Expressed as number of standard deviations above US age- and sex-specific norms.
§ Boldface denotes female.

SES† of household Household identifier Heights‡ of children§

5 28 –0.99 0.19

5 29 –1.40 –0.24 –2.28

5 30 –2.80 –2.30 –2.18

5 31 1.10 0.77

5 32 1.70 –0.31

5 33 –0.64 –0.40

5 34 –1.02 –1.04 –1.03

6 35 0.47 0.56

6 36 0.28 –1.06

6 37 –2.05 –1.73

6 38 –1.44 –2.37 –2.29

6 39 –0.99 –1.11

6 40 –0.93 0.57

6 41 –1.93 –0.42 –0.96

6 42 –0.15 –0.65 –0.53

6 43 –0.18 –1.56 0.53 –0.33

7 44 –2.31

7 45 –1.47 0.81 1.03

7 46 0.93 1.10

7 47 –0.90 –1.93 –2.78 –2.66

8 48 –1.22 –1.66 –0.50 –2.70

–0.00 –2.26 –2.06 –1.80

–2.48

8 49 0.38

8 50 –1.86 –0.43

8 51 –0.85 2.04

8 52 –1.40 –2.88

8 53 –2.39 –1.83

9 54 1.43 –1.31 –2.59

y
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elevators are sometimes used by professional football teams
and sometimes by ballet dance classes. The variance of a
weighted combination of such observations now involves—
in addition to the 1’s on the diagonal—the pairwise nonzero
off-diagonal elements of the correlation matrix.

When the y’s of individuals in a cluster are positively
correlated, as is typical, the additional off-diagonal elements
in part b of figure 1 make the standard deviation of the
unweighted average  greater than σ/ .

Preamble to GEE: optimal combination of correlated 
observations

Suppose, for simplicity, that households have either one or
two children and that the mean (µ) and standard deviation
(σ) of the variable being measured are the same in both types
of households (in some applications (see Hoffman et al. (13),
p. 440), µ may vary systematically with cluster size, but that
situation will not be considered here). Let the correlation of
measurements within two-child households be R. Consider
the estimation of µ using a measurement on each of three
children (n = 3), one from a randomly chosen single-child
household and two from a two-child household. The 3 × 3
correlation matrix (figure 2) for the three y’s is made up of a
1 × 1 matrix for the response from the singleton, a 2 × 2
matrix for the two responses from the two siblings, and
zeroes for pairs of responses from unrelated children. The y’s
for some actual pairs of unrelated children will both be above
or below µ, but on average, across all possible such pairs, the
expected product of deviations is zero.

The first three rows of figure 3 list different possible esti-
mators of µ—each one a different weighted average of the
three random variables. The first is the “straight” average of
the three observations, using weights of one third each. The
second estimator discards one of the related observations.
The third uses all three, first creating an average of the two
related observations and then averaging it and the unrelated
observation.

Since all three are “valid” (unbiased) estimates of µ, one can
use their relative precision to choose among them. The vari-
ance of each (i.e., over all possible such samples of three) is
given by ΣrowΣcolumnwrowwcolumnRrow,columnσ2, where summation
is over all nine pairs. Since four of these nine pairwise correla-
tions, and thus the products involving them, are zero, and two
others are identical, the variance simplifies to that shown in
the third footnote of figure 3. The different sets of weights lead
to the different variances shown in the third column of figure
3. From these, a number of lessons emerge: The greater the
correlation, the greater the variability of the estimator that
gives a weight of one third to each observation (first row);
unless there is perfect correlation, the estimator that discards
one of the two correlated observations is more variable (i.e.,
less “efficient”) than the others; and the estimator formed by
averaging the two correlated observations and then averaging
this with the other observation (third row) is less variable than
the others in high-correlation situations but more variable than
the others in low-correlation situations.

For any given R, there is a less variable estimator than the
three considered. Suppose that, relative to a weight of 1 for
the observation on the singleton, the weight for the y for each
sibling is w, yielding the weighted average

FIGURE 1. Calculating the variance of a weighted sum of three correlated random variables, y1 to y3. Var[w1y1 + w2y2 + w3y3] is a function of
1) the weights, w1 to w3, 2) the standard deviations, σ1 to σ3, and 3) the matrix of the pairwise correlations, R11 to R33—all shown on the left side
of the figure (part a) (R11 = R22 = R33 = 1). The variance of the weighted sum is the sum of the nine products (3 × 3 = 9) shown on the right (part b).

y n

FIGURE 2. Expected (theoretical) correlations of three responses
(n = 3), one from a randomly chosen single-child household (ysingleton)
and two from a two-child household (ysib1 and ysib2). The “block-
diagonal” pattern is indicated in boldface.

y1:w:w
1

1 2w+
----------------y gletonsin  +

w
1 2w+
----------------ysib1

1
1 2w+
----------------ysib2.=
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One can show that its variance, σ2(1 + 2w2 + 2Rw2)/(1 + 2w)2,
is lowest when w = 1/(1 + R). For example, if R = 0.5, the
optimal (relative) weights are in the ratio 1:(2/3):(2/3), and the
variance is (3/7)σ2, smaller than that of the competitors.

More generally, suppose the sample of n consists of
several sets of children from 1-, 2-, …, k-child households,
with the same µ and the same pairwise within-household
correlation R in all households, regardless of size. If the
responses are ordered by household, then the n × n correla-
tion matrix consists of several repetitions of various “block-
diagonal” patterns, as in figure 2. One can show by calculus
that the optimal weights for combining the responses of indi-
vidual children from households of sizes 1, 2, 3, ..., k are 1,
1/(1 + R), 1/(1 + 2R), ..., 1/(1 + {k – 1}R). These values can
be obtained by summing the entries in any row or column of
the inverses of the 1 × 1, 2 × 2, ..., k × k submatrices in the
overall n × n block-diagonal matrix used in the GEE equa-
tions (see next subsection).

With data from paired organs, all “clusters” are of size k =
2. Rosner and Milton (9) illustrate this idea of “effective
sample size” using responses of a person’s left and right eyes
to the same treatment: If these have a correlation of 0.54, then
200 eyes, two from each of 100 persons, contribute the
“statistical equivalent” of one-eye contributions from each of
130 persons (200 × 1/(1 + 0.54) = 130). The closer the corre-
lation is to 1, the closer the effective sample size is to 100.

Estimation by GEE: the “EE” in GEE

In the n = 3 example in figures 2 and 3, consisting of just
one household of size k = 1 and one of size k = 2, each y is a
separate legitimate (unbiased) estimator, , of µ (the

circumflex or “hat” over µ denotes an estimate of it, calcu-
lated from data). As was the practice in the pre-least-squares
era (14), one can combine the three separate estimating
equations: ysingleton –  = 0, ysib1 –  = 0, and ysib2 –  = 0, using
the weights wsingleton, wsib1, and wsib2, to obtain a single esti-
mating equation

In this simple case, .

In this didactic example, the value of R used to construct
the weights was considered “known”; in practice, it must be
estimated, along with µ. The process is illustrated in figure 4,
using a total of five observations (n = 5) from two clusters.
Beginning with R = 0, one calculates five weights and, from
them, an estimate of µ; from the degree of similarity of the
within-cluster residuals, one obtains a new estimate, r, of R.
The cycle is repeated until the estimates stabilize—that is,
until “convergence” is achieved.

The estimating equation for the parameter µ has an obvious
form. Equations for multiple regression parameters—repre-
senting absolute or relative differences in means, proportions,
and rates—are formed by adapting the (iteratively re)weighted
least squares equations used to obtain maximum likelihood
parameter estimates from uncorrelated responses (3).

Estimation of a proportion (or odds) rather than a mean: 
the “G” in GEE

Figure 5 shows the GEE estimation of the expected
proportion P from 0/3 and 4/5 positive responses in eight

FIGURE 3. Four estimators of µ and their associated variances. Estimators are based on a sample of three observations, one from a randomly
chosen single-child household and two from a two-child household. Correlations between pairs of y’s are the same as in figure 2.

µ̂

µ̂ µ̂ µ̂

wsingleton ysingleton µ̂–( ) + wsib1 ysib1 µ̂–( ) + wsib2 ysib2 µ̂–( )=0.

µ̂ Σwy
Σw

----------
w

Σw
-------y∑= =
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subjects in two households. The weights are 1/(1 + 2R) and
1/(1 + 4R) for the individuals in households of size three and
five, respectively. The final estimate of P is p = 0.42, corre-
sponding to r = 0.45. It is a weighed average of the eight 0’s
and 1’s, with weights of 1/(1 + 2r) = 0.53 for each of the
three responses in household 1 and 1/(1 + 4r) = 0.36 for each
of the five responses in household 2; that is,

 

         

The sum of the eight weights, 0.53 each for the three
persons in household 1 and 0.36 each for the five persons in
household 2, can be viewed as the “effective” sample size of
3.39. Estimation of logit[P] = log[P/(1 – P)] involves the
same core calculations.

If P is different for different covariate patterns or strata,
then the “unit” variance σ2 = P(1 – P) is no longer homoge-
neous. Nonconstant variances can be allowed for by incorpo-
rating a function of σ2 into the weight for each observation
(this is the basis of the iteratively reweighted least squares
algorithm used with the usual logistic regression for uncorre-
lated responses).

Indeed, using different weights for each of n uncorrelated
outcomes allows a unified approach to the maximum likeli-

FIGURE 4. Generalized estimating equations estimation of a mean µ and correlation R in a simplified hypothetical example with n = 2 + 3 from
clusters of size 2 and 3. Shown are the first two cycles and the results of the final cycle. To simplify the display, numbers were rounded after each
calculation. See the Appendix for the SAS and Stata statements used to produce these estimates.

p
0 0.53 3 0 0.36 1 1 0.36 4××+××{ }+××

0.53 3 0.36 5×+×
----------------------------------------------------------------------------------------------------------=

1.44
3.39
----------= 0.42.=
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hood estimation of a family of “generalized linear models”
(15, 16). Parameters are fitted by minimizing the weighted
sum of squared residuals, using functions of the σ2’s as
weights. For binomial and Poisson responses, where σ2 is a
function of the mean, weights are reestimated after each iter-
ation. With GLIM software (17), Wacholder (18) illustrated
how the risk difference, risk ratio, and odds ratio are esti-
mated using the identity, log, and logit “links,” respectively.
This unified approach to uncorrelated responses has since
become available in most other statistical packages. GEE
implementations for correlated data use this same unified
approach but use a quasi-likelihood rather than a full likeli-
hood approach (3). Since correct specification of the mean
and variance functions is sufficient for unbiased estimates,

the model used does not fully specify the distribution of the
responses in each cluster.

Standard errors: model-based or data-based 
(empirical)?

Two versions of the standard error are available for
accompanying GEE estimates. The difference between them
can be illustrated using the previously cited estimate, p =
0.42, of the parameter P. The “model-based” standard error
is based on the estimated (exchangeable) correlation r =
0.45. This in turn implies the “effective sample size” of 3.39
(Σw = 3 × 0.53 + 5 × 0.36 = 1.59 + 1.80 = 3.39) shown above

FIGURE 5. Generalized estimating equations estimation of a proportion P and correlation R in a simplified hypothetical example with two clus-
ters of size 3 and 5, in which proportions of positive responses are 0/3 and 4/5. To simplify the display, numbers were rounded after each calcu-
lation.
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and in the last footnote of figure 5. Thus, based on the bino-
mial model,

SEmodel-based(p) = {p × (1 – p)/Σw}1/2 

                           = {0.42 × 0.58/3.39}1/2 = 0.27.

The “empirical” or “robust” standard error uses the actual
variations in the cluster-level statistics, that is, the p1 = 0/3 =
0 and p2 = 4/5 = 0.8, and the “effective sizes” of the
subsamples

SEempirical(p) = {[1.592(0 – 0.42)2 

+ 1.802(0.8 – 0.42)2]/3.392}1/2 = 0.28.

Unless data are sparse, the empirical standard error is
likely to be more trustworthy than the model-based one.
Agreement between the model-based and empirical standard
errors suggests that the assumed correlation structure is
reasonable. However, the robust variance estimator, also
known as the “sandwich” estimator, was developed for
uncorrelated observations, and its theoretical behavior with
correlated data has only recently received attention (19).
Methods designed to improve on the poor performance in
small samples (20) include bias-correction and explicit
small-sample adjustments, that is, use of t rather than z (21).
A second concern has been the case in which the cluster size
itself is related to the outcome and so is “nonignorable.” In

such instances, within-cluster resampling, coupled with the
use of a generalized linear model for uncorrelated data (13),
provides more valid confidence intervals than GEE.

APPLICATION

Figure 6 shows—for the lower socioeconomic status
group in table 1—the various estimates of , the average z
score, and p, the proportion of children with z scores less
than –1. The GEE estimate  = –1.02, based on an estimated
r of 0.50, is a weighted average, with heights of children in
households of size 1, 2, 3, ... receiving weights of 1, 0.67,
0.50, ... . Thus, for estimating µ, the 90 children (in 34 house-
holds) constitute an “effective sample size” of 48.3 “unre-
lated” individuals. The proportion p = 0.542 is obtained
similarly, with weights calculated from r = 0.45.

The model-based and empirical standard errors agree to
two decimal places in the case of GEE and differ only
slightly (7.0 percent vs. 7.2 percent) in the case of the
proportion p. Of interest is the fact that the empirical stan-
dard error of 7.2 percent is identical to that calculated from
the variance formula for a proportion estimated from a
cluster sample in the classic survey sample textbook (22).

Figure 7 contrasts the Low and High socioeconomic status
groups with respect to µ, mean height, and P, the proportion
of children with z scores less than –1. We can estimate a
difference by subtracting the specific estimates, and we can
estimate its standard error from the rules for the variance of
a difference between two independent estimates. Alterna-
tively, the difference can be estimated as the coefficient of

µ̂

µ̂

FIGURE 6. Estimates of (part a) mean height µ (measured as the number of standard deviations above US norms) and (part b) the proportion
P of short children calculated using data from households with a socioeconomic status index of 5 or lower (see table 1).

µ̂
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the indicator variable IHigh (1 if high socioeconomic status, 0
if not) in a regression model applied to the combined data.
For height measured quantitatively, the intercept represents
the mean of low socioeconomic status children, and the coef-
ficient of IHigh represents the L-H difference in means.

GEE estimates of the proportions are shown in the right
half of figure 7. The proportions are compared using various
regression forms applied to the combined data. The slight
discrepancy between the difference of the separately esti-
mated group-specific proportions and the difference
obtained directly from the regression model stems from the
fact that the latter uses a common covariance rather than two
separate covariances. The 11.0 percent standard error of the
difference in proportions, calculated using the pooled cova-

riances, and the (7.02 + 8.22)1/2 = 10.8 percent obtained from
the two separate standard errors are nearly identical.

In the above examples, groups can be compared directly.
However, to assess trends in responses over levels of one or
more quantitative variables measured at a cluster level (here,
household level), a regression approach is more practical.
Since GEE analysis is carried out at the child level, it can
also include covariates, such as illness histories, that differ
from child to child within a household.

DISCUSSION

This orientation focused on correlated data arising from
the relatedness of several individuals in the same cluster,

FIGURE 7. Comparison of (part a) estimated mean height µ (measured as the number of standard deviations above US norms) and (part b)
the proportion P of short children among children of lower and higher socioeconomic status.
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rather than several “longitudinal” observations in the same
individual. We chose examples that 1) could also be handled
by classical methods and 2) were small enough to hand-
calculate the weights induced by the correlations. These
weights are used both to generate parameter estimates and to
calculate standard errors. Although they are nuisance param-
eters, the correlations do provide for efficient estimates of
the primary parameters and for accurate quantification of
their precision.

The GEE approach differs in a fundamental conceptual
way from the techniques included under the rubric of
“random-effects,” “multilevel,” and “hierarchical” models
(e.g., the MIXED and NLMIXED procedures in SAS, MLn
(23, 24), or other software described in the paper by Burton
et al. (5)). Besides the seeking of more efficient estimators of
regression parameters, the main benefit of GEE is the
production of reasonably accurate standard errors, hence
confidence intervals with the correct coverage rates. The
procedures in the other set of techniques explicitly model
and estimate the between-cluster variation and incorporate
this, and the residual variance, into standard errors. The GEE
method does not explicitly model between-cluster variation;
instead it focuses on and estimates its counterpart, the
within-cluster similarity of the residuals, and then uses this
estimated correlation to reestimate the regression parameters
and to calculate standard errors. With GEE, the computa-
tional complexity is a function of the size of the largest
cluster rather than of the number of clusters—an advantage,
and a source of reliable estimates, when there are many small
clusters.

However, because the GEE approach does not contain
explicit terms for the between-cluster variation, the resulting
parameter estimates for the contrast of interest do not have
the usual “keeping other factors constant” interpretation. To
appreciate this, consider the (admittedly extreme) situation

in table 2. If all N clusters are sufficiently large, one can fit
an unconditional logistic regression model to the data. If
clusters are small, one can avoid fitting one nuisance param-
eter per cluster (and the consequent bias in the estimated
parameter of interest) and instead fit a more economical
conditional logistic regression model, using each cluster as a
“set.” The appropriate logistic regression model “recovers”
the common within-cluster ratio of 9, as does the nonregres-
sion Mantel-Haenszel approach. However, the GEE
approach, with clusters identified as such, yields an odds
ratio of only 5.4. The 5.4 contrasts the P1 for an individual
selected randomly from the population with the P0 for
another individual selected randomly from the population,
that is, without “matching” on cluster. In addition, this
“population averaged” measure, from the marginal model
(5) used in the GEE approach, is specific to the mix of clus-
ters studied. In contradistinction to this, the odds ratio of 9
contrasts the P1 for an individual with the P0 for another indi-
vidual from the same cluster.

The subtleties of combining ratios, where the rules for
“collapsibility” vary with the comparative measure (25),
have long been recognized; indeed, the example of
combining a 1 percent versus 5 percent contrast in one
stratum (odds ratio ~ 5) and a 95 percent versus 99 percent
contrast in the other (again, odds ratio ~ 5) was used by
Mantel and Haenszel (26, p. 736). Gail et al. (27) used the
even more extreme example with odds ratios of 9 (as in table
2) to show how a covariate omitted from a regression anal-
ysis can lead to attenuated estimates of what the authors call
a “nonlinear” comparative parameter (such as the odds ratio
and the hazard ratio), even if—as in table 2—it is “balanced”
across the compared levels of the factor.

The above extreme examples are quite hypothetical. In
practice, with much less variation in P0 across clusters, the
discrepancy is usually relatively minor. The discrepancy

TABLE 2.   Meaning of parameters in models fitted by means of generalized estimating equations: 
comparisons of response proportions, P0 and P1, in a hypothetical example with extreme variation in P0 
from some clusters to others*

* This example was modified from that of Gail et al. (27).
† For the sake of illustration, all clusters were taken to be of equal size; the factor is present in half of the

individuals in each cluster.
‡ Obtained via the unconditional model logit(P) = B0 + B1 × factor + C1 × I1 ... + Ch × Ih ... + CN × IN, where Ih is an

indicator variable for cluster h and C1 to CN are the corresponding regression coefficients (or via conditional
logistic regression if cluster sizes are small).

§ Logit (P) = B0 + B1 × factor, with clusters identified as such.

Response 
proportion (%) in 

those with the 
factor absent (P0)

Response 
proportion (%) in 

those with the 
factor present (P1)

Comparative parameter

Difference (%) Odds ratio

Clusters†

1 to N/2 10 50 40 9.0

N/2 + 1 to N 50 90 40 9.0

Summary measures 

“Crude” (from aggregated data) 30 70 40 5.4

Mantel-Haenszel  40 9.0

Logistic regression‡  9.0

Generalized estimating equations§  40 5.4
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does not arise with absolute differences, since, with balanced
sample sizes, the difference in an aggregate is the aggregate
of the within-cluster differences. Table 2 confirms this,
showing that the GEE approach, with the identity link, accu-
rately recovers the common 40 percent “risk difference”
within each cluster.

Unfortunately, as currently implemented in most software,
the GEE approach cannot handle several levels of clustering/
hierarchy, such as households selected from randomly
selected villages that in turn were selected from selected coun-
ties. For binary responses, it is possible to use alternating
logistic regression (28), an extension of GEE, implemented in
S-PLUS, to model different correlations at different levels, but
this procedure is not yet available in SPSS, Stata, and SAS
implementations of GEE. Likewise, unlike multilevel models,
the GEE approach cannot accommodate both cluster-specific
intercepts and slopes in longitudinal data.

In our height example, several children within the house-
hold are measured cross-sectionally, that is, just once, each
at a different age. Consider a different study, in which (unre-
lated) children are followed and their heights and covariates
are measured at several different ages (times). In such longi-
tudinal data, now with the child as the “cluster,” unless the
model includes at least a separate intercept for each child,
the successive residual heights of a child will be correlated,
with stronger correlations among residuals that are closer
together in time. Autoregressive correlation structures are
commonly used for longitudinal data. The main analytical
challenges are accounting appropriately for missing data and
dealing with observations spaced unevenly in time. The
reader is referred to the work of Liang and Zeger and
colleagues (1, 2, 4) for a treatment of the GEE analysis of
quantitative longitudinal data.
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