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A two-stage case-control design, in which exposure and outcome are determined for a large sample but co-
variates are measured on only a subsample, may be much less expensive than a one-stage design of comparable
power. However, the methods available to plan the sizes of the stage 1 and stage 2 samples, or to project the
precision/power provided by a given configuration, are limited to the case of a binary exposure and a single binary
confounder. The authors propose a rearrangement of the components in the variance of the estimator of the log-
odds ratio. This formulation makes it possible to plan sample sizes/precision by including variance inflation factors
to deal with several confounding factors. A practical variance bound is derived for two-stage case-control studies,
where confounding variables are binary, while an empirical investigation is used to anticipate the additional sample
size requirements when these variables are quantitative. Two methods are suggested for sample size planning
based on a quantitative, rather than binary, exposure.

case-control studies; confounding factors (epidemiology); efficiency; multivariate analysis; sample size; two-stage
sampling; variance inflation factor

Abbreviations: HRT, hormone replacement therapy; ln, natural logarithm; MI, myocardial infarction; or, empirical odds ratio:
estimate of the odds ratio parameter OR; V, vasectomy.

With efficient sampling, a two-stage case-control design,
in which exposure and outcome are determined for a large
sample but covariates (notably confounders) are measured
on only a subsample, may be much less expensive than a
one-stage design of comparable power (1). This design was
introduced independently byWalker (2) and White (3). Sub-
sequent statistical developments, such as those by Cain and
Breslow (4), Scott and Wild (5), and Chatterjee et al. (6),
have focused on a unified data analysis approach to the var-
ious two-stage designs; efficient estimators of the parame-
ters of interest; correct calculation of their precision; and
use of routinely available regression software that allows
weights or offsets, or repeated fitting of regression models,
with updating of these weights or offsets between iterations.

Despite its economic advantages over traditional case-
control studies, only a small number of investigators have
used the two-stage case-control design. Some of the resis-
tance may stem from a distrust of its ‘‘biased sampling,’’
which seems to violate a fundamental principle taught in
introductory epidemiology courses. Its slow adoption may
also have to do with the seemingly complex analyses, in-
experience with offsets and weights, and the technical level
of some of the papers that describe these analyses.

A related reason may be the lack of tools to plan the size
of a two-stage case-control study. Methodological papers
focus on the relative efficiencies of various data analysis
models, using simulated and already assembled data sets,
and give little guidance to those planning to collect new data
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by using this design. End users need to be able to calculate
statistical precision/power in absolute terms. The tools cur-
rently available for doing so are no further advanced than
they were when, in 1996 and 1998, we planned a series of
two-stage case-control studies (7–9). For the first, we devel-
oped a method, subsequently published (10), that accommo-
dates a binary exposure and a single binary confounder. For
the second, we extended the calculations to allow for mul-
tiple confounding variables and/or covariates but were still
limited to a binary exposure. Although some etiologic stud-
ies involve a natural all-or-none exposure (11, 12), most
examine the amount of exposure. Thus, while our prestudy
projections had to treat exposure as a binary variable, in our
actual statistical analyses it was represented by either a set
of indicator variates for exposure categories or a quantitative
variate for tests of trend.

In this article, we extend the planning tools to accommo-
date multiple confounding variables and/or covariates and
either a binary or a categorical exposure. We also indicate
how to proceed when exposure is represented as a quantita-
tive variate. Although sample size considerations are based
on projected variances, the components of these variances
are best understood in the context of an existing data set.
Thus, we begin by describing a simple data analysis situa-
tion (binary exposure, one binary confounder) and calculate
the variance of the natural logarithm (ln) odds ratio (OR)
‘‘by hand.’’ We rearrange the variance formula to make it
more useful for planning purposes. From our numerical in-
vestigations, and by taking advantage of the balanced struc-
ture of the stage 2 sample, we develop simple bounds for the
variance in the case of multiple binary covariates and less
formal ones for quantitative covariates. We conclude with
some ways to approach sample sizes for a quantitative ex-
posure factor.

ANALYSIS OF DATA FROM A TWO-STAGE STUDY:
WORKED EXAMPLE

Walker et al. (2, 11) examined the role of vasectomy (V¼ 0
or 1) in the etiology of myocardial infarction (MI), using
data from the already computerized records of a health
maintenance organization. Figure 1 shows the (V, MI) fre-
quencies in a case-control study, with a denominator (‘‘con-
trol,’’ MI ¼ 0) series 10 times the size of the case series,
created from this study. These frequencies yield an empiri-
cal odds ratio (or) of 0.96; the estimated variance of its ln is
0.0569. Walker et al. were concerned that smoking, which is
positively associated with MI, might be negatively associ-
ated with vasectomy. If it were, the 0.96 value would be too
low, and adjustment for smoking might move it considerably
above 1. Since it was too expensive to obtain smoking his-
tories (via written records or direct interview) for all 1,573
men, these histories were obtained for only a sample of 72 of
them. This second-stage sample was not a simple random
sample; instead, to minimize the variance of the estimate of
the ln odds ratio, the numbers sampled from each of the four
(V, MI) categories were chosen to be roughly equal.

The separate (V, MI) frequencies for the 37 nonsmokers
and 35 smokers are shown next in figure 1. As expected,

among the nonvasectomized, a substantially greater propor-
tion of those who had a history of smoking were found
among those who had suffered an MI than among those
who had not (11/16 vs. 8/20); furthermore, among those
who had not suffered an MI, the proportion of nonsmokers
was just slightly higher among the vasectomized than the
vasectomized (11/16 vs. 12/20). After adjustment for the
slight negative confounding by smoking, the odds ratio es-
timate for the V–non-V contrast is 1.09 (figure 1).

The variance to accompany the ln of 1.09 is calculated
from three separate items: 1) the variance reported by the
logistic regression applied to the stage 2 data, 2) the four cell
frequencies in the 23 2 table of stage 1 data (we refer to these
as the ‘‘4 N’s’’), and 3) the corresponding sample sizes in the
stage 2 data (the ‘‘4 n’s’’). With this notation, the original
expression of the variance for the ln or is as follows (3, 4):

Var½ln or� ¼Varlogistic½ln or�� ½Sumf1=ng
�Sumf1=Ng�: ð1Þ

In the above example, Varlogistic[ln or] ¼ 0.2478. If what
is in effect Woolf’s formula is applied to the stage 2 fre-
quencies, Sumf1/ng ¼ 1/20 þ 1/16 þ 1/16 þ 1/20 ¼ 0.2250.

FIGURE 1. Stage 1 and stage 2 data sets created from the Walker
et al. (11) study of vasectomy (V) and myocardial infarction (MI).
Shown is the point estimate of the empirical odds ratio (or ), adjusted
for confounding by smoking (S). Estimated variance of its natural
logarithm (ln), obtained by using the Cain and Breslow (4) method. In
the upper portion, frequencies from stage 1 are shown in slightly
larger type, and those from stage 2 in smaller type, with inverses of
sampling fractions in parentheses.
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The stage 1 frequencies lead to Sumf1/Ng¼ 1/23þ 1/238þ
1/120þ 1/1,192¼ 0.0569. Substituting these three items into
equation 1 yields

Var½ln or� ¼ 0:2478�½0:2250�0:0569� ¼ 0:0797:

In the next section, we take advantage of three sets of
arithmetic facts. First, the 0.0797 could also have been cal-
culated as 0.0569 þ [0.2478 � 0.2250] ¼ 0.0569 þ 0.0228.
Second, and most important, the 0.0228 is a difference of
two variances, obtained from two different logistic regres-
sions fitted to the stage 2 data: the 0.2478 when smoking
was included in the model, the 0.2250 when it was not; and
the 0.0228 is 10 percent of the 0.2250. Third, the 0.0569 is
the variance associated with the ln of the crude or calculated
from the stage 1 data.

THE VARIANCE FORMULA: REARRANGED FOR
PLANNING PURPOSES

Rather than use equation 1 as it is given in the original arti-
cles (3, 4), our worked example shows that, for planning pur-
poses, it can bewrittenmore profitably in an alternative form:

Var½ln or�
¼ Sumf1=Ng
þðamount bywhichVarlogistic½ln or� exceeds Sumf1=ngÞ

¼ Stage 1 varianceþ some percentage of Sumf1=ng: ð2Þ

The advantages of this rearranged formula are threefold.
First, the stage 1 variance is familiar to those who plan tradi-
tional case-control studies, and the design factors and pop-
ulation parameters that determine its magnitude are well
understood. Second, the quantity Sumf1/ng is easily calcu-
lated for any proposed set of stage 2 sample sizes and is also
readily recognized as both the Woolf- and the logistic-based
variance of the crude ln or in the stage 2 data set. Third, the
literature already provides some guidance on the factors that
influence the extent to which Sumf1/ng is increased when
additional variables are included in a logistic model. For
example, table 2 of Smith and Day (13) and table 7.10 of
Breslow andDay (14) deal with the analysis of a ‘‘one-stage’’
case-control study, with equal numbers of cases and controls.
These tables give the ratio of the required sample size if the
analysis incorporates (via stratification) a binary confound-
ing variable, relative to that required if stratification is
ignored. Using the same broad approach, and taking advan-
tage of the representation in equation 2, the next two main
sections of the text derive results specific to two-stage stud-
ies. First, however, to provide a template, we describe the
two-stage case-control study, the planning of which prompted
this work.

In our study of the role of hormone replacement therapy
(HRT) in the prevention of colon cancer, we expected to
have detailed, computerized stage 1 information on HRT
prescriptions for a case series of 650 women diagnosed with
colon cancer. We planned to obtain similar data in a denom-
inator (‘‘control’’) series of 2,600. We were concerned that
covariates, not in the databases and available only through
interview, could confound the comparison. From our guess-

timates of trends in HRT use (subsequently documented by
Csizmadi et al. (15)), we calculated that, if 15 percent of
controls had long-term HRT exposure, then the 650 women
would include almost 100 so exposed. Thus, in ‘‘stage 2,’’
we planned to interview as many of the 100 as possible,
together with a random sample of 150 of the 550 ‘‘less- or
unexposed’’ cases, 150 of the expected 390 highly exposed
controls, and 150 of the 2,210 less- or unexposed controls.
These numbers, as close as possible to ‘‘balanced,’’ were
chosen to optimize precision.

Our projections of power were based on null and nonnull
versions of equation 2. The stage 1 variance was calculated
from the anticipated frequencies in the 23 2 table (SumfNg ¼
3,250). We calculated what the variance of the long-term
HRT regression coefficient (for now, long-term HRT was
taken to be a binary variable) would be if we omitted the
covariates and fit the reduced model to the Sumfng ¼ 550
stage 2 observations

logit½Prob½ColonCancer joffsetHRT��:
This variance, not a function of the offsets, is simply f1/
100þ 1/150þ 1/150þ 1/150g ¼ 0.03. Thus, it remained to
anticipate by how much the variance obtained under the
larger model

logit½Prob½ColonCancer joffsetHRTcovariates��

would exceed the 0.03 obtained from the reduced one.

ONE BINARY CONFOUNDER

When a covariate is added to a logistic regression model,
the estimated variance of the regression coefficient [ln or] of
interest is increased. In the case of a binary covariate C and
a binary ‘‘exposure’’ variable E, the increase is a function of
six factors: the prevalences of C and E, how strongly each
one is associated with the outcome, how correlated they are
with each other, and how common the outcome is. In a case-
control study with incidence density sampling, this last
factor is fixed by the investigator. Moreover, as evident in
appendix 1, provided that rates are multiplicative in E and C,
the ‘‘stage 2’’ variance component of equation 2 does not
depend on how strongly E is associated with the outcome.
Of the remaining four factors, we show the two most im-
portant in figure 1 and deal with the remaining two (the
prevalences of E and C) by calculating the maximum value
of [Varlogistic[ln or] � Sumf1/ng]/Sumf1/ng, expressed as
a percentage, over a wide range of possible prevalence con-
figurations. These maxima are shown in figure 2.

As expected, the percentage by which Varlogistic[ln or] in
the stage 2 regression exceeds Sumf1/ng is a strong function
of the two features that make C a confounder, namely, the
degree to which it is associated with the outcome and is cor-
related with E. The percentages are slightly lower than those
obtained by subtracting 100 from each of the entries for
‘‘p ¼ 0.5’’ in table 2 of Smith and Day (13) and table 7.10
of Breslow and Day (14). For example, for ORC ¼ 5 and
ORCE ¼ 5.4, our figure 2 predicts that the second term in
equation 2 equals 43 percent of Sumf1/ng, while their ta-
bles, with p¼ 0.5 and ORE¼ 2, predict 49 percent. That they
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should differ is not surprising because the two settings, and
specific calculation methods, are somewhat different. The
cited tables refer to a traditional one-stage case-control study,
while the values in figure 2 are derived from a two-stage case-
control study, where the prevalence ofE in the stage 2 data set
is designed to be as close as possible to 0.5. The tabulated
increases show a small dependence on ORE, while our per-
centages are independent of this parameter. The two sets of
calculations do have several features in common: the table is
based on equal numbers of cases and controls, while the
control:case ratio in the second-stage data set is designed
to be close to 1:1; in both settings, the ORC and ORCE

parameters refer to those in the source population, and
Woolf’s method is used to calculate the variance.

A general rule of thumb

For a potential confounding variable only weakly as-
sociated with the outcome and the exposure, that is, when
ORC < 2 and ORCE < 2, figure 2 suggests that the second

component in equation 2 would be less than 7 percent of
Sumf1/ng. The upper bound would be approximately 12
percent if one of the odds ratios was 3 and the other was 2.
This symmetry in the impact of ORC and ORCE leads us to
round up each percentage to the next 5 percent and to arrive
at simple upper bounds for the stage 2 component of the
variance:

ORCþORCE : 4 5 6 7 8 9 10
Upper bound : 10% 15% 20% 25% 30% 35% 40%

Doing so brings these percentages closer to those in Smith
and Day’s table and their observation that, for a weak-
confounder scenario, it is only ‘‘necessary to increase the
sample size by about 15%’’ (13, p. 358). From the pattern
above, we can, for ORC and ORCE both being less than 5,
give a general upper bound

Var½ln or� � Sumf1=Ngþ0:053 ½fORC�1g
þfORCE�1g�3Sumf1=ng: ð3Þ

Applications

It is first of interest to check this inequality by an ‘‘after-
the-fact’’ application to the data in the worked example
considered in figure 1, where Sumf1/ng ¼ 0.2250 and the
variance from the logistic regression that included C ¼
smoking was 0.2478, an increase of 0.0228 or 10 percent
over that from the model in which C was omitted. The esti-
mate, exp[1.0917], of ORC is approximately 3, whereas the
ORCE value, calculated from the controls, was (5 312)/
(8311) ¼ 0.68. Since the influence of an ORCE of less than
1 is the same as that of one of magnitude 1/ORCE, we sub-
stitute 1/ORCE in equation 3 to obtain

5%3 ½f3�1gþfð1=0:68Þ�1g�;
that is; an upper bound of 12% of Sumf1=ng:

The values in figure 2 were calculated by assuming a
balanced design (note that the values in parentheses in each
row of the appendix 1 figure add to unity). In the worked
example, the 4 n’s were 20, 16, 16, and 20. However, this
imbalance is already reflected in the Sumf1/ng, so small
deviations from a perfect balance should not have a serious
impact on the percentage.

When planning our own study, wewere unable to postulate
any strong confounder of the HRT–colon cancer association.
Therefore, we relied on Smith and Day’s advice (13), so—to
account for a single binary covariate—we projected that the
second component in equation 2 would be less than 15 per-
cent of the Woolf variance obtained if one omitted such a
confounder from the stage 2 model.

SEVERAL CONFOUNDERS

Confounders represented as binary variates

Although it is more difficult to project the additional vari-
ance when there are multiple confounders, the multivariable
extensions of equations 2 and 3 are a useful point of

FIGURE 2. Percentage by which the variance of the natural log-
arithm of the odds ratio, obtained from a logistic regression model
(with one binary exposure variable E, one binary covariable C, and
offsets) fitted to stage 2 data, exceeds the sum of the reciprocals of
the stage 2 sample sizes. The strength of C is given by the odds ratio
ORC (horizontal axis), and the degree of association of C with E is
given by the C–E odds ratio. Each plotted value is the maximum
excess within the range 0.05 � Prob[Eþ], Prob[Cþ] � 0.95.
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departure. We focus first on confounders represented by
binary variates. Since it is difficult to study several, we
focus, heuristically, on two, C1 and C2. The way in which
we created these two variables and calculated the ‘‘percent-
age excess’’ is described in appendix 2. The fitted equation
linking the ‘‘percentage excess’’ to the influential parame-
ters suggests that we can omit the small effect of ORC1�C2

and round the other coefficients up slightly to obtain, for two
confounders, a relation similar to that in equation 3:

Var½ln or� � Sumf1=Ngþ0:053 ½fORC1�1g
þfORC2�1gþfORE�C1�1g
þfORE�C1�1g�3Sumf1=ng: ð4Þ

The common form, and the same ‘‘5% per unit of excess
OR’’ rule for equations 3 and 4, suggests that it can also be
used in the case of k > 2 covariates. Since investigators will
be unable to precisely anticipate what the parameters’ values
will be, they will probably base their plans on their sense of
how strong the overall confounding is likely to be.

Application

We did not expect strong confounders of the HRT–colon
cancer association, so we calculated the projected power
based on the variance from the first stage, plus 20 percent
of that from the second stage, that is, ‘‘Var[N]’’ þ 0.20
‘‘Var[n]’’. Doing so allows for 1) a single confounder with
ORC � 3 and ORC–E � 3 or 2) two confounders, each with
ORC � 2 and ORC–E � 2. Table 1 gives the range of statis-
tical power for a number of scenarios, and table 2 shows the
sequence of hand calculations for a specific scenario.

Confounders measured quantitatively

We first considered the literature on planning the size of
a single-stage case-control study with, say, k such covariates
to be adjusted for by logistic regression. Smith and Day (13)
suggested that, when the correlation ofEwith eachC equals r,
and the correlation of each C with each other C equals r2,
the excess variance can be expressed as k 3 fr2/(1 � r2)g.

TABLE 1. Statistical power (%) for a two-stage case-control

study with 650 cases and 2,600 controls providing stage 1 data

and xx/150/150/150* of these persons providing stage 2 datay

Prevalence (%) of
long-term exposure

Rate ratio

0.50 0.55 0.60 0.65 0.70 0.75

25 >99 99 96 89 77 60

20 99 98 94 85 72 55

15 98 95 89 78 64 47

10 94 87 78 66 52 38

5 76 67 56 45 34 25

* Denotes a plan to interview xx cases with long-term exposure,

150 less- or unexposed cases, 150 controls with long-term exposure,

and 150 less- or unexposed controls at stage 2. xx will be a function

of the prevalence of long-term exposure in the 650 cases, and it is

assumed that 50% of these cases with long-term exposure will be

interviewed.

y Power is given as a function of the prevalence of long-term

exposure and the true rate ratio.

TABLE 2. Illustration of power calculation for the prevalence ¼ 20%, rate ratio ¼ 0.70 entry in table 1

Stage(s)
Null Nonnull

Cases (no.) Controls (no.) Cases (no.) Controls (no.)

1

Long-term HRT* 130 520 97 520

Less- or unexposed 520 2,080 553 2,080

V*1: Variance[ln* or*]y 0.0120 0.0145

2

Long-term HRT 65z 150 48 150

Less- or unexposed 150 150 150 150

V2: Variance[ln or ]y 0.0354 0.0407

1 and 2

V ¼ V1 þ (20% of V2) 0.0191 0.0227

�1.96 3 square root of [Vnull] � ln 0.7 (a): 0.0858

[Vnonnull]
1/2 (b): 0.1528

Z*b (a) O (b): 0.57

Power: Prob[Z < Zb ] 0.72

* HRT, hormone replacement therapy; V, variance; ln, natural logarithm; or, an estimate (empirical) of the odds

ratio parameter OR; Z, deviate in a Normal distribution.

yV1 and V2 were calculated by using Woolf’s formula.

z Assuming half of the exposed cases would be interviewed.

Two-Stage Case-Control Studies 5

Am J Epidemiol 2005;162:1–10



They recommend using this variance inflation factor only
if the covariates are relatively weak, for example, when
‘‘considering the effect on sample size in a case-control
study of breast cancer in which adjustment will be necessary
for, say, age at first birth, age at menarche, parity and socio-
economic status’’ (13, p. 358). Their ‘‘variance inflation
factor’’ is derived from regression models for a quantitative
dependent variable and the usual identity link and normal
(and homoskedastic) error, thus ignoring the fact that, in
logistic regression, the variance is itself a function of the
mean. Moreover, our investigations indicated that, depend-
ing on the value of prob[Eþ], the correlations in the stage 2
data can sometimes be larger than those in the source pop-
ulation. For these two reasons, we are unable to extend this
to a general rule of thumb for the variance in stage 2 studies
in which covariates are mostly quantitative.

In the absence of general expression for bounds on the
variance inflation factor, we examined empirically the ‘‘cost
of adjustment’’ by using examples with varying degrees of
confounding. The results are shown in table 3. In example 1,
discussed above, the ‘‘price’’ of adjusting for the one covar-
iate, smoking, was relatively minor despite its large influ-
ence on incidence rates, because its association with the
factor of interest was weak. Example 2 is of particular in-

terest because, although it appears that there is one variable,
age, both linear and quadratic age terms are required to
properly describe the onset (diagnosis) rate as a function
of age. Adjustment for the quite different child-years distri-
bution in the vaccinated and unvaccinated reduced the
excess risk of 53 percent (ORcrude � 1g to just 6 percent
fORadjusted � 1g, indicating considerable confounding. This
confounding is reflected in the variance inflation of 23
percent, comparable to that produced by a single binary
variable C where, say, ORC ¼ 4 and ORC–E ¼ 3. Example
3 focuses on the hypothesis that women are more suscep-
tible than men to tobacco carcinogens, a hypothesis that
has also been examined with other designs and more recent
data (16). It too shows considerable confounding, involving
several factors. Not surprisingly, the ratio of the variances
from logistic regressions that included and excluded these
factors was 1.46; that is, the stage 2 variance was 46 per-
cent of Sumf1/ng. In example 4, the adjusted or was only
slightly lower than the unadjusted one. Nevertheless,
inclusion of several important covariates added substan-
tially to the second-stage variance.

From these investigations, we suggest that, unless con-
founding is extreme, an amalgam of 50 percent of the
‘‘Woolf’’ variance calculated from the stage 2 frequencies,

TABLE 3. Variance inflation factors in stage 2 logistic regression: four studies with varying degrees of

confounding

Outcome/contrast and details or*1 oradj*,y V2L*
V2L – Sumf1/ng

[‘‘Excess’’]
Excess as %
of Sumf1/ng

1. Nonfatal MI*/vasectomized vs. notz 0.96

N : 23/238/120/1,192; Sumf1/Ng ¼ 0.0569

n : 20/16/16/20; Sumf1/ng ¼ 0.2250

Covariate: smoking 1.09 0.2478 0.0228 10

2. Autism/MMR* vaccinated vs. not§ 1.53

N : 936/4,242/1,780/3,605; Sumf1/Ng ¼ 0.0260

n : 200/200/200/200; Sumf1/ng ¼ 0.0404

Covariates: age, age squared, year of birth 1.06 0.0260 0.0094 23

3. Lung cancer death/female vs. male smokers{ 0.45

N : 936/4,242/1,780/3,605; Sumf1/Ng ¼ 0.0021

n : 200/200/200/200; Sumf1/ng ¼ 0.0200

Covariates: age, education, smoking intensity
and duration 0.76 0.0021 0.0091 46

4. Coronary heart disease/males vs. females# 2.39

N : 176/99/1,177/1,584; Sumf1/Ng ¼ 0.0173

n : 150/99/150/150; Sumf1/ng ¼ 0.0301

Covariates: smoking (three categories), age,
body mass index, serum cholesterol, systolic
and diastolic blood pressures 2.24 0.0173 0.0141 48

* or, an estimate (empirical) of the odds ratio parameter OR; adj, adjusted; V2L, Var[natural logarithm (ln) oradj]

calculated from multivariable logistic regression, with offsets, of second-stage data (V, vasectomy); MI, myocardial

infarction; MMR, measles-mumps-rubella.

y Although not shown, the correct variance for ln oradj is Sumf1/Ng þ [V2L – Sumf1/ng].
z Study analyzed in table 1.

§ Data set created by the authors to closely match findings in Madsen et al. (18).

{ Created from data in Gillespie et al. (19) from 6 years of follow-up in the American Cancer Society’s Cancer

Prevention Study II. Analysis here was restricted to those classified as ‘‘current smokers’’ at study entry.

# New cases in the first 10 years of the Framingham study (Massachusetts).
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together with 100 percent of the Woolf variance based on
stage 1 frequencies, provides a useful upper bound for many
multivariable analyses of two-stage case-control studies.

QUANTITATIVELY MEASURED EXPOSURE

In many studies, exposure is recorded quantitatively (e.g.,
duration of HRT in our study of colon cancer). Before pro-
ceeding to stage 2, one must divide the exposure scale into
(K þ 1) > 2 categories. The closer to equal (balanced) the
sizes of the separate second-stage samples are from each of
the two fcase,controlg 3 (K þ 1) cells, the smaller the var-
iance of the estimated coefficient(s). In the second-stage
analysis, odds ratios for the K index categories can be esti-
mated by including K indicator variables in the logistic re-
gression and exponentiating the estimates of theK regression
coefficients c1, c2, . . ., cK. The precision of each estimated c
can be anticipated from a form of equation 1, where the four
N’s and four n’s are now the first- and second-stage frequen-
cies in the reference category and in the index category in
question. However, the K estimates are (positively) corre-
lated, since each one represents a contrast with a common
reference category. Their covariances and correlations can be
calculated by using the expression given in Cain and Breslow
(4, p. 1200).

In practice, at the time of the analysis, onemight instead—
for greater statistical efficiency and parsimony—represent
the exposure as a single quantitative variablewith coefficient
b (the offsets must be included irrespective of the represen-
tation of the exposure). Unfortunately, with such an analysis,
the variance of b̂ is no longer expressible in the same way as
in equation 1, so it is more difficult to anticipate its mag-
nitude. As a first approximation, one might anticipate the
average value of E in each category and the proportions of
the source population (controls) that would be classified
into these categories. For example, if exposure duration cat-
egories hadmidpoints 0, e1, e2, . . ., one could treat the fitted ĉj
for category j as an estimator of b3 ej. Thus, one could use
a weighted average of the (correlated) estimates fĉ1=e1;
ĉ2=e2 . . . ĉk=eKg as an estimator of b.

This approach worked well in a two-stage case-control
study we created from the same Framingham data as those
used in table 3, but now with the focus on the coefficient of
the quantitative variate representing the reported average
number of cigarettes smoked per day. We selected the
second-stage sample by using (and, in the logistic regres-
sion, included offsets for) the three categories (0, 1–15, and
�25) but used the quantitative representation in the regres-
sion equation. The coefficient of this variable was
b̂ ¼ 0:0214 (standard error, 0.0062). Had we represented
smoking by two indicator variables, their fitted coefficients
would have been 0.2563 (variance ¼ 0.02999) and 0.8159
(variance ¼ 0.0567). Dividing these estimates by the mid-
values of 14.7 and 36.1 cigarettes, respectively, yields two
estimates of b: 0.0174 (variance¼ 0.0299/14.72¼ 0.000138)
and 0.0226 (variance ¼ 0.0567/36.12 ¼ 0.000044). A
precision-weighted weighed average of these two (posi-
tively correlated, r¼ 0.48) estimates yields a single estimate
b̂ ¼ 0:0223 (standard error, 0.0065), very close to the ones

obtained directly. The variances of the 0.2563 and 0.8159
could have been projected by using equation 2 and their
covariance by using the expression in Cain and Breslow (4).

An alternative is to follow the suggestion of Vaeth and
Skovlund (17). They approximate the power against a non-
null value bALT for the coefficient of a quantitatively repre-
sented exposure by the power achievable with a specially
constructed binary exposure variable. To do so, they imag-
ine two groups, one situated 1 standard deviation below and
the other 1 standard deviation above the mean exposure
level. The log of the odds ratio arising from the contrast
of these two groups is D ¼ bALT 3 2 standard deviations.

However, given the many uncertainties in anticipating the
exact distribution of the exposures and the complexities in
calculating the variances, it may be more practical to plan
the sample size by using a binary version of E and to keep
the gains from using the quantitative version of E as insur-
ance against overly optimistic projections.

DISCUSSION

In this paper, we restricted our attention to one special
case of the two-stage design, namely, a case-control study in
which exposure information is readily available on cases
and controls but information on covariates (notably con-
founders) is obtained on only a subsample. We did not con-
sider other applications, such as those to investigations of
interaction and to studies involving surrogate exposures.

We focused on an exposure represented as a single binary
variable, whose associated coefficient is the ln odds ratio of
interest. For this situation, we showed how one can project
the magnitude of the variance for its estimator and de-
termine the expected statistical precision and power with
various sample size configurations and various amounts of
confounding. These calculations can be done by 1) rearrang-
ing the variance expression, 2) using Woolf’s formula with
the first- and second-stage frequencies, and 3) using upper
bounds for the variance inflation that occurs when covariates
are added to a logistic regression. The effect of including a
single binary covariate is quantified in figure 1 and the sim-
ple rule of thumb given by equation 3; the rule appears to
extend naturally to multiple binary covariates, as is evident
in inequality 4. For quantitative covariates, we could offer
only the general suggestions gleaned from the studies in
table 3. Ironically, our inability to provide a definitive ap-
proach for this type of covariate has as much to do with
logistic regression per se as it does with two-stage design
itself.

We also dealt, but in less detail, with an exposure mea-
sured on a quantitative scale. Analysts often categorize such
a variable and represent it by indicator variables. As shown
by Cain and Breslow (4, p. 1200), if they do so by using the
same exposure categories for the analyses as were used in
the second-stage sampling and include the obligatory off-
sets, the correct variance for each ln or can be computed
from the one provided by the logistic regression by using
a simple closed expression similar to equation 1. Thus, the
sample size calculations shown in figures 1 and 2 and ex-
pression 3 are easily adapted. When linearity is justified,
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analysts will want to summarize the effect of the exposure
by using a single linear coefficient. To project the power for
this analysis, we suggest two possible methods: either the
method of Vaeth and Skorlund (17) or the use of what is in
effect a meta-analysis of the separate estimates obtained
from the categorical approach.

Our aim was to bring out the broad principles, so that
those who consider using the two-stage design will have
a first approximation of the precision/power achievable with
various sample size configurations of stage 1 and stage 2
sample sizes. As with any sample size/precision calcula-
tions, even for simpler and better understood designs and
analyses, they are merely projections, using several approx-
imations and uncertain inputs. They should be treated
accordingly.
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APPENDIX 1

Basis for Figure 1

This example describes how an ‘‘excess’’ value was calculated, using a source population where the prevalence of Eþ is
Prob[Eþ]¼ 0.15 and that of Cþ is Prob[Cþ]¼ 0.20, and the codistribution of confounder (C) and exposure (E) yields an odds
ratio ORCE ¼ 2. In the E�, the outcome is three times as common in those Cþ as it is in those C�, that is, ORC ¼ 3. The
calculation was repeated for all combinations within the range of 0.053 Prob[Eþ]3 0.95 and 0.053 Prob[Cþ]3 0.95, and
the maximum excess over this range is the value 11.2 percent shown in figure 1.

APPENDIX 2

Two Binary Confounders

We created the trivariate distribution of a binary exposure, E, and two binary confounders, C1 and C2, by supposing that they
arise from two bivariate normal distributions of fC1,C2g—one for thosewho are ‘‘E�’’ centered on f0,0g and one for thosewho
are ‘‘Eþ’’ centered on fd,dg. The value d/2 was used to dichotomize the C1 and C2 values to create eight ‘‘cells’’ in all; the
frequencies in the source were obtained from the bivariate normal density functions and the marginal frequency prob[Eþ]. The
expected frequencies in cases and controls were then calculated in the sameway as in appendix 1, butwith four possible values of

* Same as in source.

y Event rates are multiplicative and are relative rather than absolute. Since the selected value does not affect the calculations, we arbitrarily

assumed that, in the C�, the outcome is four times as common in those Eþ relative to the rate in those E�, that is, ORE ¼ 4.

zRelative frequencies were obtained by multiplying source E–C frequencies by event rates, for example, 0.6963 1, 0.1543 3, 0.1043 4, and

0.046 3 12.

§ Proportions (in parentheses) scaled to add to 1 within each row to reflect separate stage 2 sampling within each row and a balanced design.

{ 1/0.82 þ 1/0.69 þ 1/0.60 þ 1/0.43.

# 1/0.18 þ 1/0.31 þ 1/0.40 þ 1/0.57.

** 1/1.00 þ 1/1.00 þ 1/1.00 þ 1/1.00.

yy Woolf variance of ln or, used to approximate variance calculated by logistic regression.
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the (now) two confounders. The eight source frequencies served as the frequencies for the controls. The (relative) frequencies of
cases in these eight cells were obtained by multiplying the source frequencies by the corresponding event rates (taken to be
multiplicative). Tomimic the balanced stage 2 sample, the 16 frequencies were then scaled so they summed to unity within each
of the four (fEþ/E�g 3 fCase/Controlg) combinations sampled from. A data set with 16 observations, one for each of the
fEþ/E�g 3 fCase/Controlg 3 fC1þ/C1�g 3 fC2þ/C2�g configurations, was then created and analyzed by using multiple
logistic regression, with the associated (scaled) frequency serving as theweight for each observation and the appropriate quantity
serving as an offset (inclusion of the latter has a large effect on the point estimate of ln ORE, but no effect on its variance). The
amount by which this variance exceeded the Sumf1/ng ¼ (1/1 þ 1/1 þ 1/1 þ 1/1) ¼ 4 was calculated and expressed as
a percentage.
This process was carried out for 324 combinations of values of prob[Eþ] (0.1–0.5), ORC1, ORC2, ORE–C1, ORE–C2, and ORC1–

C2 (each OR from 1 to 5) and yielded values for excess variance that varied from 0 percent to 72 percent. The percentage excess
showed virtually no relation with prob[Eþ] or ORE. Its dependence on the amount by which the odds ratios exceeded their null
values was estimated from the linear regression model (r2 ¼ 0.99):

% ¼ 4:7fORC1 � 1g þ 4:7fORC2 � 1g
þ 3:9fORE�C1 � 1g þ 3:9fORE�C1 � 1g
þ 0:6fORC1�C2 � 1g:
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