hGH isoform differential immunoassays applied to blood samples from athletes: Decision limits for anti-doping testing

James A. Hanley a,b,⁎, Olli Saarela a, David A. Stephens b, Jean-Christophe Thalabard c,d

Article history:
Received 17 May 2014
Accepted 2 June 2014
Available online 11 June 2014

Keywords:
Quantile
Regression
Decision limits
Isoforms
Human Growth Hormone
Doping

Abstract
Objective: To detect hGH doping in sport, the World Anti-Doping Agency (WADA)-accredited laboratories use the ratio of the concentrations of recombinant hGH (‘rec’) versus other ‘natural’ pituitary-derived isoforms of hGH (‘pit’), measured with two different kits developed specifically to detect the administration of exogenous hGH. The current joint compliance decision limits (DLs) for ratios derived from these kits, designed so that they would both be exceeded in fewer than 1 in 10,000 samples from non-doping athletes, are based on data accrued in anti-doping labs up to March 2010, and later confirmed with data up to February–March 2011. In April 2013, WADA asked the authors to analyze the now much larger set of ratios collected in routine hGH testing of athletes, and to document in the peer-reviewed literature a statistical procedure for establishing DLs, so that it be re-applied as more data become available.

Design: We examined the variation in the rec/pit ratios obtained for 21,943 screened blood (serum) samples submitted to the WADA accredited laboratories over the period 2009–2013. To fit the relevant sex- and kit-specific centiles of the logs of the ratios, we classified ‘rec/pit’ ratios based on low ‘rec’ and ‘pit’ values as ‘negative’ and fitted statistical distributions to the remaining log-ratios. The flexible data-driven quantile regression approach allowed us to deal with the fact that the location, scale and shape of the distribution of the modeled ‘rec/pit’ ratios varied with the concentrations of the ‘rec’ and ‘pit’ values. The between-kit correlation of the ratios was included in the fitting of the DLs, and bootstrap samples were used to quantify the estimation error in these limits. We examined the performance of these limits by applying them to the data obtained from investigator-initiated hGH administration studies, and in athletes in a simulated cycling stage race.

Results: The mean and spread of the distribution of the modeled log-ratios depended in different ways on the magnitude of the rec and pit concentrations. Ultimately, however, the estimated limits were almost invariant to the concentrations, and similar to those obtained by fitting simpler (marginal) log-normal and Box–Cox transformed distributions. The estimated limits were similar to the (currently-used) limits fitted to the smaller datasets analyzed previously. In investigator-initiated instances, the limits distinguished recent use of rec-hGH from non-use.

Conclusions: The distributions of the rec/pit ratios varied as a function of the rec and pit concentrations, but the patterns in their medians and spreads largely canceled each other. Thus, ultimately, the kit- and sex-specific ratio DL obtained from the simpler model was very close to the ‘curve of DLs’ obtained from the more complex one. Both were close to previously established limits.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction and background

Human Growth Hormone (hGH) is a naturally occurring peptide hormone synthesized in and secreted by the pituitary (p) gland. phGH can also be medically supplemented or replaced by recombinant [r] hGH in the case of children’s growth disorders and adult deficiencies. rhGH has been listed as a prohibited substance in sport initially by the International Olympic Committee, and then by WADA. Large amounts of rhGH were uncovered during the 1998 Tour de France, at a time when its misuse was considered undetectable by laboratory methods.

In 1999, Strasburger and colleagues [1] described how changes in serum hGH isoform composition [2] could be used to detect the presence of exogenous [externally produced] GH, and they began to develop and validate selective immunoassays intended specifically to screen for
and confirm hGH doping [3]. To paraphrase one of them [4], these as-
says are based on the principle that whereas endogenous [produced
by the body] hGH consists of several isoforms (22-kDa being most abun-
dant, followed by 20-kDa, ...) – with relative abundances that are pre-
sumed to be largely invariant to the overall pH levels, and to be
largely unaffected by normal activities – exogenous hGH consists of
only one of these isoforms, the major, monomeric 22-kDa.

After rhGH administration, pH levels released and 22-
kDa hGH becomes predominant. By subjecting a serum sample to 2 as-
says, one preferentially recognizing the monomeric 22-kDa isoform, the
other a broader one recognizing a variety of isoforms, one can deter-
mine two concentrations. Instead of “22-kDa” and “general,” the two as-
says have been named “rec” and “pit” because of their preferential
binding to either rhGH or pHG. The “22-kDa”/“general” (or “rec”/
“pit”) ratio is taken as a measure of the relative abundance of monomeric
22-kDa hGH in the sample. An abnormally high ratio may indicate re-
cent rhGH administration.

The WADA International Standard for Laboratories [5] establishes a
requirement for a second, independent test to confirm any adverse an-
alytical finding (AAF) that is based on the use of immunoassays. There-
fore, two different kits (hereafter called “kit 1” and “kit 2”), using
capture antibodies that recognize different epitopes of the target hGH
molecule, were developed. Each kit (supplied by CMZ-Assay GmbH,
Germany) produces its own pair of “rec” and “pit” values, and, thus, its
own “rec/pit” ratio.

WADA-supervised testing of athletes to detect hGH doping began in
2004, when the first, research grade isoform differential immunoassays
developed by Strasburger, Bidlingmaier and Wu [6] were applied for
testing of athletes during the Athens Olympic Games. A detailed review
of the history of the development and implementation of tests for detec-
tion of doping with hGH in sport can be found here [7]. The current
WADA guidelines can be found at this URL [8].

The ‘A’ sample is used for screening, and the ‘B’ sample is only ana-
yzed later if need be, if requested by the athlete. Typically only one of
the two kits is used for the initial testing procedure (screening) using the
‘A’ sample. Currently, if, with a specific kit, the value of rec is
below 0.1 ng/mL, the sample is considered negative with respect to
that kit, irrespective of the value of pit or the resulting rec/pit ratio.
If rec is at or above 0.1 ng/mL, but the value of pit is below the assay’s
limit of quantification (“loq,” “pit”), the ratio is calculated as rec/
loq_pit rather than rec/pit. If the value of rec is at or above 0.1 ng/mL,
and the rec/pit (or, if applicable, the rec/loq_pit) ratio exceeds a
kit-specific decision limit (DL), the sample is considered ‘positive’
with respect to that kit, and the finding of the screening procedure
constitutes a Presumptive Analytical Finding (PAF) which would have
to be confirmed in the “A” sample and, if necessary (i.e. if
requested by the athlete), in the corresponding “B” sample. During
confirmation, the sample is analyzed with both kits in triplicate
aliquots, i.e. it is reanalyzed with the same kit used during the
screening procedure (e.g. kit 1) and also measured with the other,
complementary kit (e.g. kit 2). Only when the results of the con-
firmation analysis are positive for both kits simultaneously (i.e. the
rec/pit value obtained with each kit is higher than the gender- and
kit-specific DLs) is the finding for the “A” sample reported as an
AAF. If requested by the athlete, the confirmation analysis is repeated
aneon the “B” sample, and it shall confirm the “A” sample findings
for the AAF to hold true. In many cases, however, doping athletes opt
to accept the original “A” sample finding to avoid the further embar-
rassment of the “B” sample confirmation.

The DLs (males 1.81; females 1.46 on kit 1; males 1.68; females 1.55
on kit 2) were established and promulgated by WADA in 2010. They
were based on values for 1428 males and 691 females for kit 1 and
263 and 121 for kit 2, derived from samples of elite track-and-field ath-
letes collected during the IAAF World Championships in Athletics in
Berlin in 2009, athletes included in the German NADA anti-doping pro-
gam, and data collected from 9 WADA-accredited laboratories from Jan
2009 to March 2010 following the adoption of the current kits 1 and 2 in
routine anti-doping analysis.

The WADA/USADA hGH Working Group and the WADA Laboratory
Expert Group decided to proceed with the publication and application of
these DL values at that stage of test implementation. It was anticipat-
ed that as more data were collected by WADA-accredited laboratories, a
re-evaluation of the DLs would occur. The first such re-evaluation
(based on data on 2244 males and 772 females (kit 1) and 551 and
167 (kit 2) from 21 laboratories) suggested no need to revise the DLs
upwards. However, the statistical procedures used to set the DLs were
challenged in an appeal to the Court of Arbitration for Sport in 2011 [9].

In April 2013, WADA asked [JAH, OS, DAS] and J-CT to prepare two
independent reports describing a detailed statistical procedure to estab-
lish a decision limit DL1 for the ratio from kit 1 and a DL2 for that from kit
2. It provided them with updated datasets containing considerably
more observations than had been analyzed previously. The only stipula-
tion was that, as had been for the previous analyses, the DLs be such that,
of 10,000 samples, from sports persons whose hGH is entirely endogenous,
tested with one or other kit, and the other kit if indicated, fewer than 1
would have ratios that exceed both DLs.

In setting reference centiles for clinical medicine and anthropome-
try, the focus is often on the 3rd and 97th, or 1st and 99th; moreover,
abundant data are usually available, and samples always exclude
those with a condition known to influence the entity in question.
Here, in contrast, the focus is on the much more extreme 99.99%le
centile, where even our comparatively large sample sizes preclude
using direct sample centiles; moreover, as we will document, the loca-
tion and shape of the distribution of the log-ratio are functions of the
rec and pit concentrations. For these reasons, the fitting of extreme
centiles must rely on statistical models. Since the bulk of our data are
from routine anti-doping tests, we are unable to identify and exclude
samples influenced by the ‘condition’ (exogenous hGH) being screened
for. Thus, depending on the extent of exogenous hGH, the fits are likely
to overestimate the centile of interest — that for athletes who have not
recently used hGH.

This report describes how the sex- and kit-specific distributions of
the log-ratio depend on the values of rec and pit, and documents the
statistical modeling used to arrive at decision limits. It proceeds by
first answering the question of whether, for each sex and kit separately,
and after setting aside (treating as ‘negative’) the ratios based on low
serum hGH concentrations, a transformation could be applied to the
remaining ratios that would result in a single (homogeneous) distribu-
tion – free of any systematic patterns – that could then be
used to establish a single decision limit for each sex and kit. In light of
the (negative) answer, it then describes how, again for each sex and
kit separately, we modeled the systematic pattern using a flexible
semi-parametric regression model for the log-ratios, using a function
of the rec and pit concentrations as the ‘regressor,’ and how we used
this fitted regression model to establish concentration-specific decision
limits. We examine how much these limits differ from a single (inde-
pendent of concentration) decision limit for the sex and kit in question.
In addition to graphs, we present the DL ‘functions’ as Tables. We look
for any evidence of systematic distributions across sports. We report
how well the fitted model and resultant decision limits detect known
hGH doping.

2. Materials and methods

2.1. Data

Table 1 describes the 3 datasets provided to us. For the analyses of
the doping-control data set (the primary focus), it was not possible to
identify different samples from the same athlete, but we believe the
proportion is small enough that error-band corrections for this ‘cluster-
ning’ would be small. We included Atypical Findings. These were highly
suspicious values obtained either before the DLs had been officially
approved and implemented by WADA, and which triggered further target testing of the athlete, or samples for which the values of rec/pit were higher than the DLs just for one kit, but not for the other kit. We also included those Adverse Analytical Findings (3 males) that have been appealed by the athletes before arbitration courts, irrespective of how extreme these values may look with respect to the rest of the data (see below). We excluded, but show, data from 9 doped athletes i.e. those values corresponding to reported Adverse Analytical Findings for hGH from athletes who have either admitted to using recombinant hGH or have accepted the anti-doping sanctions without challenging the analytical result and thus have been sanctioned.

2.2. Statistical analysis

2.2.1. Preliminary remarks on screening data

We examined and used the distributions of 21,943 observations. Of these, most involved numerical values for both rec and pit, even if some of these values were below the laboratory limits of quantification (‘LOQ’ or ‘LQ’). Across the 4 kit × sex combinations, some 48, 18 and 51 (117 in total) of the records involved text (rather than purely numerical) entries (e.g., “< LQ”) or a mix of text and a number indicating that the rec or pit, or both values were below the respective LQ’s. In the mixed text-and-number cases, we did not try to extract the numbers from the text, and so classed them with the other “< LQ” ones. All of the numerical and non-numerical values were used, either for the ‘non-modeled’, or for the ‘modeled’ portion.

The kit- and sex-specific distributions of rec, pit and their ratio have longer right tails (with several orders of magnitude variations), and so we present the distributions of their logs (log, scale) in the left portion of each panel in Fig. 1. The proportion of low (below the log) hGH values was much higher for males than females. For kit 1, the median rec and pit values are approximately 0.60 and 1.25 ng/ml in females and 0.15 and 0.35 ng/ml in males, but the medians of the sex-specific ratios are much closer to each other: 0.51 in females and 0.47 in males. For kit 2, the rec and pit values are again higher in females, but again the medians of the sex-specific ratios are closer to each other: 0.59 in females and 0.53 in males. Although one cannot readily use boxplots to visually judge log-normality, the rough log-symmetry of all 12 distributions, and in particular those of the 4 ratios, is of note. It provided a natural starting point for the statistical modeling necessary to establish sex- and kit-specific decision limits: throughout we took the log-ratio as the ‘raw’ dependent variate.

2.2.2. Dealing with low hGH concentrations

Laboratories are reluctant to consider limits for ratios of small (and thus less reliably quantified) quantities. Likewise, we did not wish to model the excessive variation caused by these low concentrations. Thus in order to focus on genuine inter-individual variation, we followed the current two-part approach of treating samples with low rec or pit values as automatically ‘negative’ and fitting a statistical model to the remaining ratios for the sex and kit in question. For the latter, we used a cutoff that allowed us to get good fitted values for ratios based on concentrations that are considered to have been reliably measured.

2.2.3. The influence of hGH concentration on the distribution of the remaining log-ratios

After setting aside the log-ratios based on low serum hGH concentrations, we looked for systematic patterns in the distributions of the remaining ones, by constructing concentration-specific boxplots. We used four measures of hGH concentration: rec alone, pit alone, the geometric mean of rec and pit, and the minimum of rec and pit. We found the same systematic patterns (see the rightmost portion of each panel in Fig. 1) with all measures, and so adopted a concentration-based ‘centile regression’ approach, using as the regressor the geometric mean (GM) of rec and pit. For coherence, we also used the GM to divide each sex- and kit-specific dataset into the ‘concentration too low’ and ‘used in modeling’ portions. The reasons for the choice of the geometric mean of rec and pit, rather than one or the other or some other function of both, and for the GM boundary of 0.075, are given in Appendix A.

2.2.4. Form of centile regressions

As is evident from Fig. 1, each centile regression needed to accommodate the fact that the distributions of the log-ratios at different hGH concentrations had means, medians, standard deviations and shape (possible skewness) that varied with these concentrations. When plotted against (the ranks of) concentration, the medians of the log-ratios tended to have (in women) a mostly monotonic or (in men) a more quadratic relationship, while the interquartile ranges tended to be smaller (‘taper’) at higher concentrations. As is commonly done when establishing reference limits for growth charts, we sought a Box–Cox transform of the log-ratios that would make the residual variation at each hGH concentration close to Normal. We accommodated these features by using the LMS model for centile regression [10], which allows the mean, standard deviation and skewness to be modeled as separate functions of the
hGH concentration. A more technical description, along with the fitting criteria we followed, can be found in Appendix A. A further advantage of the LMS model was the possibility to reduce it to the simplest nested case so that it yielded a single (not-concentration-specific) limit derived after a conventional (single) Box–Cox transform. The series of transformations induces a scale where fitting of parameters is less affected by extremes, and on which it is easier to fit statistical models.

2.2.5. Adjustment of kit-specific DL’s for between-kit correlations in the log-ratios

The fitted regressions allowed a separate DL to be calculated for each concentration for each sex and the kit, but using a modification that reflects the correlation between the ratios on the two kits. If the decision were based on a single kit, we would have used a 99.99% DL that was 3.72 standard deviations above the mean log-ratio. Since a decision involves both kits, and the correlation between the log-ratios on kit 1 and kit 2 is less than 1, it reduces the chance that both test results would exceed 3.72 standard deviations. In samples with concentrations above the GM cutoff, the ‘paired’ data on athletes yielded a correlation of 0.84 in the log-ratios in males and 0.85 in females, so we used 0.85 for both sexes. Thus we used a deviate derived from a bivariate Normal distribution, where an expected proportion 0.0001 of the modeled ratios would exceed 3.40 (rather than 3.72) standard deviations on each of the two kits. After carrying out all of the limit-fitting on the Box–Cox scale, we transformed the fitted values and limits back to the original ratio scales. There are limited data on A and B samples; we did not build in a correction for imperfect correlation between the ratios in the A and B samples, or for the requirement, before a sanction, that the results of both kits applied to sample B would also have to have exceeded the kit-specific DLs.

2.2.6. Assessment of model fit

In order to assess whether the LMS model provides a reasonable fit, we used a number of diagnostic checks. These are described in more detail in Appendix A. We did not use p-values from traditional test-of-fit statistics: the sample sizes are large enough that even small deviations from the assumed models, or larger deviations involving low ratios (of lesser interest), or even a few extreme high ones, will produce small p-values. Moreover, the situation is not directly analogous to that in medicine, epidemiology and clinical chemistry, where only those subjects known to be free of the condition/behavior of interest are used to fit reference percentiles. We had not such assurance that this was the case: some of the values below (and some above) the fitted limits may well be from athletes who had recently doped with hGH. In view of this, we did not pursue models that would result in such high and particularistic (peculiar to this dataset, ‘overfitted’) limits that fewer than 1 value in 10,000 in the dataset would exceed them.

Moreover, even if we could have been reassured that none of the samples was taken following recent doping, it would have been difficult – without having paired values from both kits on a very large number of samples – to check the overall 1/10,000 exceedance frequency. In practice, exceeding the DL on one kit (as shown in Fig. 2) would not necessarily lead to a sanction. First, such values would lead to the use of the second kit, and if need be to a confirmation analysis, and then, if desired, to the analysis of the B sample. Each of these steps would reduce the overall false positive rate.
2.2.8. Ethnicity-specific limits

Given the complexity of the concept of 'ethnicity', the large percentage of cases where it was not reported, and the large and not easily defined, number of subgroups there would be even if it were, we did not pursue ethnicity-specific limits.

2.2.9. Variations across different sports

We collapsed the over 300 sports categories (and different spellings) to a short list. We used box-plots of the residuals for the categories with at least 50 ratios. We looked for any patterns that were consistent across genders and kits.

2.3. Performance of fitted DLs in serial blood samples from subjects in controlled studies of (a) investigator-administered exogenous rec-hGH, and (b) a simulated training and competition regime

We used the data generated by Jing et al. [11] and Voss et al. [12] to learn how often the fitted DLs would be exceeded in serial blood samples from subjects who had been administered rec-hGH at various intervals before testing, and from athletes who performed a simulated nine day cycling stage. hGH isoforms were analyzed by the of Jing et al. [11] and Voss et al. [12]. The raw data, as well as the centiles fitted by various models, are shown in Fig. 2. So as to orient the reader to the format used, we first consider in more detail the test results for the 4546 females tested with kit 1 (upper left panel). The vertical location of each result is the

Fig. 2. Kit- and sex-specific distributions of the rec/pit ratio: raw data, empirical quantiles, and fitted quantiles and decision limits, both overall and concentration-specific. Samples with low concentrations, not used in fitting, are shown in green. Samples with higher concentrations are shown as gray dots. The concentration-specific empirical 25th, 50th and 75th centiles are shown as solid black lines. The smooth curves (the 25th, 50th and 75th centiles are in blue; the thicker gray dotted lines are the DL point estimates, and the thinner ones are the 95% upper limits) were fitted using LMS models. The three numbers shown vertically at the bottom left of each sub-panel indicate the complexity of each of the 'best' fitted L, M and S curve. All ratios shown as gray dots were used in the fitting. Values corresponding to atypical findings are enclosed by hollow red diamonds; those corresponding to Adverse Analytical Findings that have been appealed by the athletes are enclosed by hollow purple triangles (all dots have been used in the fitting). Values not used in fitting, but measured in 1 athlete who had been medically treated with hGH (under an approved TUE for hGH) and in 8 males and 1 female with reported Adverse Analytical Findings for hGH who have either admitted to using recombinant hGH (and thus have been sanctioned) or have accepted the anti-doping sanctions without challenging the analytical result, are shown as solid red squares.
rec/pit ratio (on a log scale), and the horizontal location is where the result ranked (on a 0–100 scale) with respect to the geometric mean (GM) of rec and pit. We treated the 193 with concentrations with a GM < 0.075 (shown as green dots) as ‘automatically negative’ and used the log-ratios in the remaining 4353 (shown as gray dots) to fit the centiles.

The 25th, 50th and 75th centiles obtained under three methods that ignored the horizontal location of each gray dot (i.e., the magnitudes of the two concentrations used to form the ratio) are shown on the right, as blue dots, above the word “overall”. The three methods are labeled as Empirical: log ratios, no model assumed; Log-Normal: log ratios assumed to follow a Gaussian distribution, and Box–Cox: log ratios, after a shift to make them positive, and then subjected to a Box–Cox transformation, assumed to follow a Gaussian distribution. As one can see, the median ratios by the three approaches are all very close to 0.5. The DLs (with accompanying upper 95% confidence limits) given by the two statistical models are shown directly above them as red dots with error bars: the DL of 1.8 based only on a log-Normal distribution (the model used to establish the current limits) differs considerably from the 1.5 obtained by the Box–Cox approach. There is no corresponding distribution-free limit, since it is not possible to establish an extreme centile without assuming some distributional form.

3.2. Centile-regression based DLs

The empirical 25th, 50th and 75th centiles as a function of concentration are shown as solid black lines. The 25th, 50th and 75th centiles and the DL values fitted by centile regressions are shown respectively as solid blue and red dotted lines; the thicker red dotted lines are the point estimates, and the thinner ones are the 95% upper limits.

As would be expected from Fig. 1, the fitted median (50th centile) is a mostly-increasing function of the concentration, but when coupled with tapering SDs, and transformations induced by the Box–Cox transforms, the fitted 75th centile curve is less steep. In women, with very few ratios above 1.5, the fitted DL ‘function’ is almost flat, i.e., almost independent of concentration. This may reflect better-measured input values to the ratio at the upper end of the (rec.pit) scales, as well as other unknown factors. In men, with a number of ratios above 1.5, the fitted DLs are slightly higher than in women; again, however, despite the shape of the curve of medians, the DL curve is largely constant, and could, for practical reasons, be readily replaced by the ‘independent-of-concentration’ single value, such as that given by the ‘overall’ DL based on the Box–Cox transformation.

That the error bands accompanying the point estimates of the DLs are slightly wider at the extremes is an expected feature of any regression technique.

The diagnostic plots [Fig. 3] show that the ‘raw’ (untransformed) log ratios are not as Normal as those derived from even a single-number Box–Cox transformation, and that these in turn are generally improved by fitting the LMS model. We caution against over-interpreting some of the seeming deviations from Normality, since (because of the finite sample sizes) some seeming ‘imperfections’ are also seen in the data drawn from a known-to-be-Normal distribution (the histogram at the bottom right of each panel).

The ‘residuals’ from the fitted LMS models for male ratios do include some extreme cases, but we hesitate to try to fit (what would have to be much more particularistic and ‘tailored’) distributions in which virtually all observations would be below the fitted limits. Moreover, as has been addressed above, the practice of using the other kit to test a screening sample that is elevated on the screening kit, and of further

Fig. 3. Histograms (with bins 0.2 units wide, and actual frequencies shown on the y-axes) of the Z-score residuals from the various fits, with the Normal curve superimposed on them.
testing if desired, offers clean athletes additional protection against false accusations.

Since we do not have the sample sizes (or the assurance on the homogeneity of the sample) to directly check the accuracy of the DLs, we instead checked the percentage of the actual observations below the fitted 97.5% limit. We found that across the 4 panels, the percentages ranged from 97.3 to 97.8%. Within each panel, the variation in the percentage across the quintiles of concentration levels was also satisfactory—the accuracy did not fluctuate by more than would be expected (under binomial variation) for 5 equal subgroups of the numbers involved.

Had we excluded from the curve fitting the data points corresponding to Atypical Findings or Adverse Analytical Findings that have been appealed by the athletes (marked with a diamond or triangle—see legend, as well as above text), the limits for the ratios would have been lower than those in Fig. 2. Since the ultimate decision on where to set the DLs is for WADA to take, we present a separate Fig. 4 based on the same statistical models, but with these data points removed.

3.3. Tabulated limits

Table 2 shows the same limits as those in Fig. 2, but in tabular form. The “overall” limits shown at the bottom are derived from “univariate” modeling that uses the geometric mean of 0.075 as a divider, but does not use the ranks of the GM values above 0.075 as a regressor. Table 3 provides the corresponding versions, but with values indicated by a diamond or triangle excluded from the fitting. In all instances, the entries represent the upper 95% limit of the fitted DL, rounded up to the 2nd decimal place.

3.4. Variations across sports

Fig. 5 shows boxplots of regression residuals for categories with 50 or more athletes. Mostly, there do not seem to be any obvious or consistent patterns. A sport that ‘seems’ to have higher/lower ratios in one kit in one sex doesn’t necessarily have the same pattern with another kit or sex. The one notable exception is baseball, where the median ratio is consistently high. Since this could be a chance finding, we hesitate to calculate DLs with this category removed, and instead await replication in an independent dataset.

3.5. Ratios derived from samples from athletes who admitted or were sanctioned for doping

We were also provided with values measured in a male athlete who had been medically treated with hGH (under an approved TUE for hGH) and in those with reported Adverse Analytical Findings for hGH who have either admitted to using recombinant hGH or have accepted the anti-doping sanctions without challenging the analytical result. Naturally, we did not use these to fit the curve, but for interest, we have merely superimposed them on Fig. 2 and denoted them by solid squares.

One reviewer suggested that Figs. 2 and 4, by virtue of their logarithmic ordinates, may give a distorted visual impression of the data cloud and the separation between ‘clean’ and ‘doped’ samples, with the top area compressed, and that the discriminating power of the hGH detection test would be more obvious if a linear ordinate were employed. To this end, we have added in the Supplementary Material a version of Fig. 2 with a linear y-axis.

![Fig. 4. As in Fig. 2, but with atypical and adverse analytical findings excluded from the fitting.](image-url)
Table 2
The same fitted ‘concentration-specific’ decision limits as shown as the upper curves in Fig. 2 (all ratios based on a geometric mean (GM) concentration of 0.075 ng/ml or higher), but given in tabular form. Each entry is the upper 95% limit of the confidence interval that accompanies the point estimate. The ‘Overall’ limits shown in the bottom row are derived from ‘univariate’ modeling that uses the geometric mean of 0.075 as a divider, uses a Box–Cox transformation, but does not use the ranks of the GM values above 0.075 as a regressor.

<table>
<thead>
<tr>
<th>GM of rec & pit (ng/ml)</th>
<th>Kit 1</th>
<th>Kit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Females</td>
<td>Males</td>
</tr>
<tr>
<td>0.075</td>
<td>1.62</td>
<td>1.59</td>
</tr>
<tr>
<td>0.1</td>
<td>1.61</td>
<td>1.65</td>
</tr>
<tr>
<td>0.2</td>
<td>1.59</td>
<td>1.81</td>
</tr>
<tr>
<td>0.3</td>
<td>1.60</td>
<td>1.84</td>
</tr>
<tr>
<td>0.4</td>
<td>1.61</td>
<td>1.82</td>
</tr>
<tr>
<td>0.5</td>
<td>1.62</td>
<td>1.80</td>
</tr>
<tr>
<td>0.6</td>
<td>1.63</td>
<td>1.78</td>
</tr>
<tr>
<td>0.7</td>
<td>1.63</td>
<td>1.77</td>
</tr>
<tr>
<td>0.8</td>
<td>1.63</td>
<td>1.75</td>
</tr>
<tr>
<td>0.9</td>
<td>1.63</td>
<td>1.73</td>
</tr>
<tr>
<td>1</td>
<td>1.62</td>
<td>1.72</td>
</tr>
<tr>
<td>2</td>
<td>1.56</td>
<td>1.64</td>
</tr>
<tr>
<td>3</td>
<td>1.50</td>
<td>1.61</td>
</tr>
<tr>
<td>4</td>
<td>1.45</td>
<td>1.60</td>
</tr>
<tr>
<td>5</td>
<td>1.40</td>
<td>1.59</td>
</tr>
<tr>
<td>6</td>
<td>1.37</td>
<td>1.58</td>
</tr>
<tr>
<td>7</td>
<td>1.34</td>
<td>1.58</td>
</tr>
<tr>
<td>8</td>
<td>1.31</td>
<td>1.58</td>
</tr>
<tr>
<td>9</td>
<td>1.29</td>
<td>1.58</td>
</tr>
<tr>
<td>10</td>
<td>1.28</td>
<td>1.58</td>
</tr>
<tr>
<td>12</td>
<td>1.25</td>
<td>1.57</td>
</tr>
<tr>
<td>14</td>
<td>1.23</td>
<td>1.57</td>
</tr>
<tr>
<td>16</td>
<td>1.22</td>
<td>1.57</td>
</tr>
<tr>
<td>18</td>
<td>1.21</td>
<td>1.57</td>
</tr>
<tr>
<td>20</td>
<td>1.21</td>
<td>1.57</td>
</tr>
<tr>
<td>Overall</td>
<td>1.51</td>
<td>1.68</td>
</tr>
</tbody>
</table>

Table 3
The same fitted ‘concentration-specific’ decision limits as shown as the upper curves in Fig. 4 (i.e., atypical samples excluded from the fitting), but given in tabular form. Each entry is the upper 95% limit of the confidence interval that accompanies the point estimate. The ‘Overall’ limits shown in the bottom row are derived from ‘univariate’ modeling that uses the geometric mean of 0.075 as a divider, uses a Box–Cox transformation, but does not use the ranks of the GM values above 0.075 ng/ml as a regressor.

<table>
<thead>
<tr>
<th>GM of rec & pit (ng/ml)</th>
<th>Kit 1</th>
<th>Kit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Females</td>
<td>Males</td>
</tr>
<tr>
<td>0.075</td>
<td>1.63</td>
<td>1.54</td>
</tr>
<tr>
<td>0.1</td>
<td>1.62</td>
<td>1.58</td>
</tr>
<tr>
<td>0.2</td>
<td>1.57</td>
<td>1.68</td>
</tr>
<tr>
<td>0.3</td>
<td>1.56</td>
<td>1.69</td>
</tr>
<tr>
<td>0.4</td>
<td>1.56</td>
<td>1.68</td>
</tr>
<tr>
<td>0.5</td>
<td>1.56</td>
<td>1.66</td>
</tr>
<tr>
<td>0.6</td>
<td>1.56</td>
<td>1.65</td>
</tr>
<tr>
<td>0.7</td>
<td>1.55</td>
<td>1.63</td>
</tr>
<tr>
<td>0.8</td>
<td>1.55</td>
<td>1.62</td>
</tr>
<tr>
<td>0.9</td>
<td>1.54</td>
<td>1.61</td>
</tr>
<tr>
<td>1</td>
<td>1.54</td>
<td>1.6</td>
</tr>
<tr>
<td>2</td>
<td>1.48</td>
<td>1.55</td>
</tr>
<tr>
<td>3</td>
<td>1.42</td>
<td>1.53</td>
</tr>
<tr>
<td>4</td>
<td>1.38</td>
<td>1.52</td>
</tr>
<tr>
<td>5</td>
<td>1.34</td>
<td>1.52</td>
</tr>
<tr>
<td>6</td>
<td>1.31</td>
<td>1.52</td>
</tr>
<tr>
<td>7</td>
<td>1.29</td>
<td>1.52</td>
</tr>
<tr>
<td>8</td>
<td>1.26</td>
<td>1.52</td>
</tr>
<tr>
<td>9</td>
<td>1.25</td>
<td>1.52</td>
</tr>
<tr>
<td>10</td>
<td>1.23</td>
<td>1.52</td>
</tr>
<tr>
<td>12</td>
<td>1.21</td>
<td>1.52</td>
</tr>
<tr>
<td>14</td>
<td>1.19</td>
<td>1.52</td>
</tr>
<tr>
<td>16</td>
<td>1.19</td>
<td>1.52</td>
</tr>
<tr>
<td>18</td>
<td>1.18</td>
<td>1.52</td>
</tr>
<tr>
<td>20</td>
<td>1.18</td>
<td>1.52</td>
</tr>
<tr>
<td>Overall</td>
<td>1.47</td>
<td>1.58</td>
</tr>
</tbody>
</table>

3.6. Performance of fitted DLs in serial blood samples from subjects in controlled studies

The data from serial measurements in studies of (a) investigator-administered exogenous rec-hGH [11] (Jing et al.) and (b) a simulated intense training and competition regime in cyclists [12] (Voss et al.) can be used to assess how well the DL’s discriminate persons who have recently doped from those who have not. Fig. 6 shows the raw data. The displayed ratios from (b) include some where the absolute concentrations were low. Despite this, they show the quite limited range of rec/pit ratios, well below the DLs (and, as can be assessed from Fig. 1 in the original publication, with no obvious ‘real’ between-person variation). Despite this added noise, there is a clear separation of these ratios from those in (a). In approximately 50% of instances of recent (within 12 h) hGH administration, ratios exceeded the fitted DLs. Moreover, these ratios are very similar to those values in athletes who have admitted to doping. Detection rates would have been lower in more distant-in-time samples, indicating the narrow time-window of detection (for more details, see the original publication [11]).

4. Discussion

One major difference between this statistical analysis and the ones that led to the current limits is our pursuit of limits that are specific to the magnitudes of the rec and pit values used to calculate the rec/pit ratio. We continued to use log-normality, but did so in the context of concentration-specific (rather than all) ratios, and after data-suggested Box–Cox transformations. The transformation is not modulated by one (constant) global parameter, but by one that changes with concentration in a smooth curve. The regression model also allowed for the fact that log-ratios were considerably more variable when the rec and pit values were small (but above the dividing boundary) and less variable when the rec and pit values were larger. The limits reflect not just this tapering, but also the fact that the overall locations (middles) of the specific distributions of log-ratios themselves vary with concentration. By allowing flexibility in how the means, and the patterns in which the observations lie on each side of them, are described, the adopted approach yields limits that are very much chosen by the patterns present in the data.

In our approach, a much larger proportion of values in males are below our GM cutoff of 0.075. As is described more fully in Appendix A, this dividing line was chosen as a compromise between the loq of 0.05 and the 0.10 threshold often used for rec, and to allow more data to improve the stability of the fitted centile regressions. Since the central tendencies in the non-modeled datapoints (in green) seem to be a smooth continuation of the patterns seen at higher concentrations, one might be inclined to set the cutpoint even lower to further increase the stability of the fitted curves, especially around the GM value of 0.075 itself. However, adopting such an approach actually led to a decrease in stability.

Interestingly, even though the concentration-specific distributions were quite different from each other, the mean and standard deviation patterns largely canceled each other: ultimately, the single (not-concentration-specific) DL obtained from the simpler model was quite close to the ‘curve of DLs’ obtained from the more complex one.

The limits implied by these models are generally in close agreement with current ones. Possible explanations for the differences include sampling variation, our use of the Box–Cox and other modeling features, and the addition of error bars to reflect the estimation error. Simplifications of the 4 curves for use as a basis for decision limits will of course need to be based on what would be practical and feasible in the field.

Given our imperfect knowledge as to the behavior of the athletes before the samples were taken, we did not expect to find a model that fitted all of the quantiles perfectly. The empirical performance at 97.5%, where we have sufficient data, was however very close to what would be expected with samples of these sizes. We were unwilling to
tune the model further (either by increasing the flexibility of the L, M and S functions, or by modeling the residuals as a mixture) so that the fitted DL had no ratios above it. Doing so would not protect the clean athletes. Rather, it could encourage the very behavior that hGH testing is designed to minimize, and push the DLs in the next revision even higher. The only a priori reason to fit a mixture is designed to minimize, and push the DLs in the next revision even higher. The only a priori reason to fit a mixture is the very reason one fitted in Fig. 2. Only those sports categories with samples sizes (at right) of 50 or more are shown. The left and right boundaries of each box are the 25th and 75th centiles, and the band inside the box is the median. The whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

5. Summary/conclusion

The distributions of the rec/pit ratios varied as a function of the rec and pit concentrations, but the patterns in their medians and spreads largely canceled each other. Thus, ultimately, the kit- and sex-specific ratio DL obtained from the simpler model was very close to the previously established limits.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.ghir.2014.06.001.

Appendix A. Additional statistical details

A.1. Choice of ‘hGH concentration’ metric as regressor in centile regression

We selected the geometric mean of rec and pit, rather than one or the other or some other function of both. We did so in order to be more ‘neutral’ and to avoid inducing the types of correlations seen when the difference of two quantities (the log of the ratio is a difference of the logs of rec and pit) is regressed against one or other of them.

A.2. The LMS model

To quote the authors who first described it, “the distribution at each covariate value is summarized by three parameters, the Box–Cox power

Fig. 5. Boxplots showing between-sports categories variations in the residuals from the centile regression fits in Fig. 2. Only those sports categories with samples sizes (at right) of 50 or more are shown. The left and right boundaries of each box are the 25th and 75th centiles, and the band inside the box is the median. The whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.
(lambda) the mean (mu) and the coefficient of variation (sigma), and the initials of the parameters give the name to the LMS method. But, rather than first fit and use a single lambda [L] in a Box–Cox transformation, and then fit a standard regression model for the mean [M] log-ratio at each concentration, with the same standard deviation [S] at each concentration, one instead fits 3 smooth ‘parameter’ curves, one for L, one for M, and one for S, over the range of concentrations, i.e. each ‘parameter’ is a function of the concentration. The variation described by S is assumed to have a Normal distribution.

We took two approaches to the fitting of these LMS curves. In the first (implemented in the lms function of the gamlss package for the R statistical language [14]) the method of penalized Likelihood was used to ensure that the different parameter curves (fitted as splines) are not too esoteric (i.e. not over-fitted); the extent of smoothing required can be expressed in terms of smoothing parameters or equivalent degrees of freedom. The number of additional degrees of freedom (d.f., how flexible the L, M and S portions of the lms model were allowed to be, beyond the default M spline, and linear S and L functions) was the \(\text{d.f.L, d.f.M, d.f.S} \) combination that yielded the smallest value of the Bayes Information Criterion (BIC, or the \(\text{sbc} \) value returned by the lms function). The search was over the set of models with \(0 < \text{d.f.L} < \text{d.f.M} < \text{d.f.S} < 1 \). Since we have more information about the center than the spread or the shape, the M function was allowed to be more flexible, and S and L were allowed to be up to quadratic in shape. We did not wish to have the models ‘chase’ or be unduly influenced by unusual observations, or to be unstable at the extremes of the ordinate.

In the second, slightly simpler, approach, we were guided by the regularity of the curves seen in Fig. 1, and by the shapes of the fitted splines. Thus, we used the gamlss function directly to fit the M S and L curves as polynomials, thereby maintaining more direct control over the shapes of the fitted functions. Again, greater flexibility was allowed for the M than S and the S than L curves, with powers of 5, 3, and 1 as the upper limits, and with the final choice (displayed as three numbers on the left of each panel in Fig. 2) determined by the combination that yielded the minimum BIC. Centiles, shown in blue and red in Fig. 2, were calculated using the \text{centiles.pred} function applied to the polynomial fits.

A.3. Double transformations

Typically, Box–Cox transformations are applied directly to untransformed values: a ‘lambda’ of zero yields the log of the value, and a non-zero lambda a power transform. In the interest of greater flexibility, we first applied a log transform to all ratios (thereby treating the log ratios as the ‘raw’ data), and then analyzed the log-ratios with the LMS software, thereby allowing for a second transform. (We found that the direct application of the LMS transforms to the rec/pit ratios themselves ‘chased’ the most extreme values, and was overly sensitive).
A.4. Dealing with negative log-ratio values

Box-Cox transformations are designed for positive values, but our derived log2 ratios ranged from approximately -4 (ratio: 1/16) to 1 (ratio:2). In order to fit the LMS models, we shifted all values upwards so the minimum is at least 1, and later shifted the fitted values back. This is like multiplying all ratios by a constant so that they start at 2, and later dividing by this same constant. We tested if this mattered by shifting all log-ratios by 5, 7.5 and 10 and found that it made virtually no difference to the fitted DLs. The ones shown are based on an offset of 6.

A.5. Checks

In order to assess whether the LMS model provides a reasonable fit, we used a number of diagnostic checks. The first was the shape of distributions of the residuals, shown as a histogram in the bottom left corner of each panel in Fig. 3 (the top row shows histograms of the log-ratios before and after a simple Box-Cox transformation, but foregoing the LMS approach). As a comparison we also generated and displayed (bottom right) histograms of values from the same-sized sample but from a known Normal $N(0,1)$ distribution.

In addition to visually judging how well the fitted and observed quantiles (Q_{25}, Q_{50}, Q_{75}) agree, we numerically assessed how well the fitted limit curves were calibrated at the 97.5 centile by calculating what percentage of the residuals were less than 1.96 fitted SDs above the fitted mean (there are not sufficient data to directly assess the fit of the 99th or higher percentiles). We did so both at an overall level, but also for each 20% vertical (concentration-based) slice of the data, since it is possible to have an overall pattern of residuals that looks satisfactory, without it being satisfactory all along the regressor axis. To do so, we calculated the root mean square error (RMSE) of the deviations of the 5 empirical percentages from the target of 97.5%, and compared it with the RMSE expected if the model applied to each data slice.

Conflict of interest

JH, OS, DS and JCT were asked by WADA to analyze the data and prepare independent reports. They have no commercial interest in the testing kits used to produce the data analyzed. At WADA’s request, JH attended a CAS hearing in Lausanne in August 2013, but the ‘McGill Report’ was not addressed in the hearings.

References

Generalized Additive Models for Location Scale and Shape (GAMLSS models), http://www.gamlss.org/ (Repository: CRAN Built: R 2.15.1; 2012-09-30).