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ORIGINAL ARTICLE

Abstract: Panel study designs are common in environmental epide-
miology, whereby repeated measurements are collected from a panel 
of subjects to evaluate short-term within-subject changes in response 
variables over time. In planning such studies, questions of how many 
subjects to include and how many different exposure conditions to 
measure are commonly asked at the design stage. In practice, these 
choices are constrained by budget, logistics, and participant burden 
and must be carefully balanced against statistical considerations of 
precision and power. In this article, we provide intuitive sample size 
formulae for the precision of regression coefficients derived from 
panel studies and show how they can be applied in planning such 
studies. We show that there are five determinants of the precision 
with which regression coefficients can be estimated: (1) the resid-
ual variance of the responses; (2) the variance of the slopes; (3) the 
number of subjects; (4) the number of measurements/subject; and 
(5) the within-subject range of the exposure values “X” at which 
the responses are measured. The planning of such studies would be 
greatly improved if investigators regularly reported all of the vari-
ance components in fitted random-effects models: currently, litera-
ture values for the relevant variance parameters are often not readily 
available and must be estimated through pilot studies or subjective 
estimates of “reasonable values.”

(Epidemiology 2017;28: 817–826)

Panel study designs that measure subjects’ responses under 
two or more different conditions are often used to evalu-

ate the short-term health effects of continuous environmental 
exposures, including outdoor/household air pollution1,2 and 

ambient temperature.3 In planning such studies, questions of 
how many subjects to include and how many different expo-
sure conditions to measure are common questions in the design 
stage. In practice, these choices are constrained by budget, 
logistics, and participant burden and must be carefully bal-
anced against statistical considerations of precision and power.4

Unfortunately, even the most comprehensive and “user 
friendly” sample size programs do not explicitly handle panel 
studies as often applied in environmental epidemiology. Spe-
cifically, most deal only with between-subject comparisons 
rather than within-subject contrasts, which are more common 
in panel studies in environmental epidemiology. In addition, 
sample size software generally does not intuitively explain 
how the inputs are combined. As we have noted elsewhere,5,6 
the formulae for regression models are not always intuitive. 
Moreover, when it comes to regression-based within-subject 
comparisons in panel studies, the lack of guidance on where to 
find the pieces of information needed as inputs to the formulae 
is particularly frustrating.

In this article, we provide intuitive sample size formu-
lae for the precision of regression coefficients derived from 
panel studies and demonstrate their application in the plan-
ning of such studies. We show that there are five determinants 
of the precision with which regression coefficients can be esti-
mated: (1) the residual variance of the responses, even after 
the intersubject variability has been removed by using random 
intercepts; (2) the variance of the slopes, if it is demonstrably 
large enough to have to include in the model; (3) the num-
ber of subjects; (4) the number of measurements per subject; 
and (5) the within-subject range of the exposure values “X” 
at which the responses are measured. We discuss methods 
to obtain prestudy estimates of important variance compo-
nents. The R codes used in the examples below are provided 
in the eAppendix; http://links.lww.com/EDE/B249. An online 
tool is also available to implement the sample size calcula-
tions discussed below (https://corinne-riddell.shinyapps.io/
mcgilleboh-samplesizecalculator).

THE CENTRAL FORMULAE, ESTABLISHED FROM 
FIRST PRINCIPLES

Our heuristics will begin with the same type of paired-
samples example used in 1908 by “Student” (W.S. Gosset)7 
to illustrate the use of what is now called the t-distribution. 
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Student took his illustrative data from a report by Cushny 
and Peebles,8 who compared hours of sleep (“Y”) under a 
“usual” and multiple experimental conditions in the same 
n = 10 subjects (R code for the sleep duration example is 
provided in the supplemental digital content; http://links.
lww.com/EDE/B250). For each subject, the duration of 
sleep was recorded over several nights under each condi-
tion, but only the mean duration per subject, and the num-
ber of nights per subject (m), were reported by Cushny and 
Peebles8 (Student omitted the m’s). Later, when studying 
driver reaction times, we will again consider sleep but use 
the duration of sleep deprivation as the “exposure” or “X” 
variable.

To begin our thought experiment, we restrict ourselves 
to the usual (i.e., X = 0) condition and take as our estimand the 
mean duration of sleep (μY) over a large number of subjects 
(n), each mean being taken over a large number of nights per 
subject (say m =366):

µY =




∑ ∑1 1

1 1n m
Y

n m

.

The hypothetical distribution of these n subject-specific 
values is shown in the “interperson” column in the left half of 
Figure 1. If a random sample of say n = 60 of these subject-
specific values could be established without error (i.e., by 
obtaining and averaging all 366 measurements for each of the 
n = 60 subjects), then one could estimate μY as 1/60th of their 
sum. We could also calculate the standard error (SE) of this 
estimate as the sample standard deviation (SD) of these 60 
values divided by the square root of 60 and use it to obtain 
a confidence interval for μY. For didactic purposes, the indi-
vidual values in the interperson column of Figure 1 were taken 
to have an intersubject variance of σ2

inter = 1 hour2, and so 
the square of the SE for the estimate would be approximately 
σ2

inter/60 hours2. This formula is derived in the eAppendix; 
http://links.lww.com/EDE/B249 along with those for more 
complex real-world situations.

In practice, the feasibility of collecting 366 measure-
ments from 60 subjects (total = 21,960 individual measure-
ments) would be limited by high cost and great burden to study 
subjects and would likely waste resources. In this case, the fol-
lowing questions come to mind: (1) What could be achieved 
with just 60 measurements in total? (2) Would it be better to 
obtain 1 measurement for each of 60 subjects or 2 measure-
ments for 30 subjects, or 6 for each of 10, or even 30 for each 
of 2? In practice, the researcher must strike a balance between 
minimizing the effort required for data collection and having a 
reasonably small SE for the estimator. The latter depends both 
on the amount of interindividual variability and the amount of 
intraindividual variability, shown in the “intraperson” column 
in the left half of Figure 1. For simplicity, in our example, the 
“intraperson variability” is taken to be of the same magnitude 
(σ2

intra = 0.16 hours2) for every subject. The trade-off between 

effort and SE can be seen by calculating the SEs of the vari-
ous estimators. The squared SE of the estimate of μY can be 
expressed generically as:

SE inter intra
2 2 2= ( ) ( )+σ σ/ /n nm

where σ2
inter is intersubject variance (equal to 1 hour2 in this 

example), σ2
intra is the intrasubject variance (equal to 0.16 

hour2 in this example), n is the total number of subjects mea-
sured, and m is the number of measurements per subject.

Using the variances given above, we can estimate SEs 
for various configurations shown in Table 1. The guiding prin-
ciple that emerges is that if the measurement varies consider-
ably between people, then we need to counteract this by taking 
a larger number of people. On the other hand, if the average 
level varies little from person to person and the main sources 
of variability are within subjects, it may be acceptable to esti-
mate the mean population level using many measurements on 
fewer people.

We now move on to the “usual” versus “experimental” 
contrast and take our estimand to be μY|X = 1 − μY|X = 0. Again, 
for now, we remain hypothetical and use R-generated data. 
The distribution of the exact differences is shown in the cen-
ter column of Figure 1. Suppose now that the study budget 
is limited to a total of 120 measurements: 60 in X = 0 and 60 
in X = 1. If 30 subjects each measured twice is an acceptable 
compromise for each half of the X contrast, would it make 
more statistical sense to have the 30 subjects measured in the 
X = 1 condition be distinct from, or the same as, the 30 mea-
sured in the X = 0 condition? If independent samples are used, 
the variance for the estimated difference in means is:

σ σ σ

σ σ

2 2 2

2 2

30 30 60

30 60

inter intra

inter intra

 / / /

/ /

+ +

+ +

( )
(
DY/DX

)).
If self-matched samples are used, the two interperson 

variance components are removed by design, and the vari-
ance for the estimated difference in means is (σ2

DY/DX/30) + 
(2 σ2

intra/60), where σ2
DY/DX is the variance of individual slopes 

(i.e., 0 if a common slope).
Thus, there is a statistical advantage to pairing, but each 

subject would have to be measured 4 times instead of twice. 
This reduction in variance can be substantial owing to gains in 
efficiency achieved by removing intersubject variation.

Our variance expression can now be put into a more 
generic sample size formula for the number of subjects, n, 
each measured m/2 times in each condition, or m times in total. 
Suppose we are going to test the average difference of the n 
individual observed differences against the null hypothesis 
(H0) that μY|X = 1− Y|X = 0 = 0, using = alpha = 0.05 ( Zα  = 1.96). 
Suppose we wish to have power of 80% ( Zβ  = 0.84) against 
the alternative hypothesis (Halt) that μY|X = 1 − Y|X  = 0 = Δ. Before 
we can give the answer, we need to introduce one additional 
parameter: the range of the m values of X. Intuitively, the 
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greater the range of exposures, the more precisely we can mea-
sure the slope. The formula for the squared SE of the slope is 
typically presented as:

SE residuals2
2

2
=

∑ −( )
σ

x x�

The denominator of this expression hides the fact that the 
SE is made smaller by having more X values (distinct or not) in 

the sum and by having these X values as spread out as possible 
from the mean (i.e., having large squared deviations from the 
mean). A more useful way to write the denominator is:

∑ −( ) = ×( )
= ×

x x m

m

2 average or mean of thesquared deviations

MSX

Thus, in our example, with each subject measured m/2 
times in the X = 0 and m/2 in the X = 1 condition, or m times 
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FIGURE 1. Hypothetical inter- and intraperson variation in sleep duration, under two conditions (X = 0 and X = 1). The distribu-
tion shown as small black squares just to the left of the vertical line at X = 0 refers to the long-term values for each person and, 
therefore, shows the pure interperson variation. To its left is a distribution of the amounts by which the durations of sleep on dif-
ferent nights for one specific person (arbitrarily taken to be a long-term average of 7.3 hours) vary within this person (“intra”). 
One can also think of this intradistribution as being centered at zero, so that when it is added to the interdistribution, it produces 
at the far left a distribution of measurements. This distribution would be observed if each subject was measured once, each on 
a different randomly selected night. The rays in the center show by how much different persons’ averages in the X = 1 condi-
tion differ from their average in the X = 0 condition, even if they all have the same average in that X = 0 condition. To keep the 
diagram from being too cluttered, only the differences for those subjects with a mean Y of 7.3 in the X = 0 condition are shown. 
For simplicity, the distributions for subjects with values other than 7.3 are assumed to be the same, even though in practice they 
might vary with the baseline level. The distribution at the far right shows what would be observed if each subject was measured 
once in the X = 1 condition, each on a different randomly selected night.
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in total, the mean (i.e., x ) is 0.5. Therefore, the mean squared 
deviation (MSx) is:

MSX = =( )( ) + ( )( ) m m m/ . / . / . .2 0 0 5 2 1 0 5 0 252 2− −

If slopes are assumed to be common, then the sample 
size equation is simply:

n m≥ + × ×( ) ( )[ ]( )1 96 0 84 2 2 2. . / / ,σ intra 0.25 ∆

whereas if slopes are assumed to be variable, then the equation 
has an additional component:

n m≥ + × + ×( ) ( )[ ]( )1 96 0 84 2 2 2 2. . / /σ σDY/DX intra 0.25 ∆

where n is the number of subjects in the sample, Δ is the aver-
age within-subject difference (in this case slope) we wish to 
detect.

But what if X values were not binary, but took val-
ues along a continuum, possibly different for each subject? 
As before, if we let MSX denote the mean squared distance 
between the subject’s X’s and the mean of the subject’s X’s, the 
sample size formula becomes:

n m≥ + × + ×( ) [ ]( )1 96 0 84 2 2 2 2. . / /σ σDY/DX Xintra MS β

where β is the slope (i.e., strength of association) we wish to 
detect.

RANDOM-EFFECTS MODELS FOR 
PANEL STUDIES: THE STRUCTURE AND 

DETERMINANTS OF THE SE

Example 1: Dichotomous Exposure (i.e., X = 1 
or 0)

We now focus on real data and on two exposure condi-
tions studied in the original Cushny and Peebles article, desig-
nating the usual or “control” nights as X = 0 when no hypnotic 
was given and the “experimental” nights as X = 1 when the 
drug levo-hyoscine hydrobromate was administered. Ten sub-
jects were measured under both control and experimental con-
ditions: the numbers of within-subject measurements in the 
X = 0 condition ranged from m = 7 to 9 (84 subject-nights) 
and in the experimental (X = 1) condition from m = 3 to 6 
(47 subject-nights). In total, there were observations for 366 
subject-nights. The “intrasubject intracondition” variability 

was not reported by Cushny and Peebles, but using simula-
tions, we will investigate what difference it would have made 
had they reported each of the 366 individual observations. The 
20 reported durations (means), the same ones used by Student 
and available in the sleep data set in R, are shown in Figure 2 
as 10 pairs of colored dots.

In a paired t test analysis, the 10 within-person differ-
ences (X = 1 vs. X = 0) are first computed (Figure 2). Their 
mean is 2.33 hours and their SD is 2.00 hours. The result-
ing test statistic (t = [2.33 – 0]/[2.00/√(10)] = 2.33/0.63 =  
3.68) would be exceeded in only a very small proportion 
(P = 0.0025) of draws from a “Student’s” t9df distribution. 
A modern-day Student might instead analyze these 20 data 
points using a random-effects linear model. Since we do not 
have the individual measurements for the 131 nights, only a 
random-intercept model (a separate intercept for each subject, 
but a common slope) can be fit. Relevant output from the R 
lme4 software package is provided in eAppendix, eTable 1; 
http://links.lww.com/EDE/B249. The estimated slope of 2.33 
hours, the SE of 0.63 hours, and the t ratio (shown in the 
fixed-effects section of Table 1) agree perfectly with Student’s 
analysis. However, two important variance estimates (high-
lighted in the random effects section of eTable 1) tend not to 
be reported when models of this kind are used: the full fitted 
model is shown at the top left of Figure 2. The fitted model is 
also shown graphically, starting with the “fixed effects” model 
shown as a black line with intercept 3.25 hours and a slope of 
2.33 hours. The ten fitted “random effects” are shown as solid 
colored lines, one per subject, parallel to the central one. The 
SD of the population of intercepts, of which these 10 are con-
sidered a random sample, is estimated to be σinter = 0.98 hours. 
The residual variation (presumed to be entirely intrasubject) is 
estimated to have an amplitude of σintra = 1.42 hours.

If the “intrasubject” variability in sleep duration had 
been reported by Cushny and Peebles, how would it have 
changed the estimated slope and SE, and what model should 
be fit? Two different scenarios are considered in Figure 3: one 
where the intrasubject variability is quite low and the other 
where it is more substantial. The variability was artificially 
added by us in such a way that the observed mean over the 
number of nights involved was the same as that reported. In 
the low intrasubject variability scenario, it is quite clear that 
subjects have different slopes, whereas it is more difficult to 

TABLE 1. Standard Errors (SEs) of Selected Estimators of μY, Each Involving a Different Number of Subjects (n) and 
Measurements per Subject (m), When the Inter- and Intraperson Variances Are 1 and 0.16 hour2

No. Subjects (n) 60 60 30 10 2 1

No. measures per subject (m) 366 1 2 6 30 60

  Intersubject component (σ2
inter/n) 1/60 1/60 1/30 1/10 1/2 1/1

  Intrasubject component (σ2
intra/n m) 0.16/21,960 0.16/60 0.16/60 0.16/60 0.16/60 0.16/60

SE2 = (σ2
inter/n) + (σ2

intra/n m) 0.0167 0.0193 0.0360 0.1027 0.5027 1.0027

SE 0.13 0.14 0.19 0.32 0.71 1.00

http://links.lww.com/EDE/B249
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distinguish the “different slopes for different individuals” sce-
nario from the “common slope” scenario when intrasubject 
variation is large.

Models with random intercepts only and both random 
intercepts and random slopes are presented in eAppendix, 
eTable 2; http://links.lww.com/EDE/B249 using the data pre-
sented in Figure 3. Whether the intrasubject variability was 
simulated to be low or high, the SE of the slope of 2.33 hours 
was much lower in the random intercept model that forced 
the subject-specific slopes to be equal but remained at 0.63 
hours when the more appropriate random slope model was 
fitted. By itself, this comparison of the two models cannot 
tell us which SE is more appropriate, but a further simulation 
does provide some clarity (eAppendix, eTable 3; http://links.
lww.com/EDE/B249). In this simulation, we increased each 
m from what it actually was to 100 times that value, but the 
data set of 13,100 is still based on just 10 subjects under the 
usual and experimental conditions. Despite greatly increased 
evidence that the slopes cannot have a common value, the SE 
of the assumed-common slope is reduced. Meanwhile, the 
SE for the 2.33-hour average slope estimate from the random 

slope model remains at 0.63 hours, reflecting the fact that we 
still only have 10 subjects. The only way to reduce this SE is 
by recruiting more subjects into the study.

Example 2: X Values on a Continuum and 
Under Full Investigator Control

What if the X values were on a continuum rather than 
dichotomous? The “sleepdata” data set in the lme4 package 
in R provides an illustrative example. In this database of 18 
subjects,5 up to day 0 subjects had their normal amount of 
sleep; starting that night, they were restricted to 3 hours of 
sleep per night. The number of consecutive days (0–9) with 
just 3 hours of sleep per night is the “X” variable. The aver-
age reaction time (milliseconds) measured on a series of tests 
administered on the 10 study days is the “Y” (R code for the 
reaction time example is available in the supplemental digital 
content; http://links.lww.com/EDE/B251).

Figure 4 shows the subject-specific data along with a 
separate regression line fitted to each. As noted in the chapter 
devoted to this example,9 the ordering of the panels is quite 
strategic and allows us to judge visually that a “subject’s rate 
of change in reaction time [slope] does not seem to be strongly 
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FIGURE 2. The 20 reported average sleep durations from the Cushny and Peebles article, shown as 10 pairs of colored dots, with the 
subject number shown at the right end of the dotted line joining the pair of observed averages. The analysis using a paired t test is 
shown at the right. The fitted random-effects model, with random intercepts, but a common slope, is shown both in equation form 
and as a single black line (the average) together with 10 solid parallel lines of different colors; the same colors identify the observed 
averages for each subject. The subject number is shown at the left end of the solid (fitted) line. Figure is available in color online.
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related to the subject’s initial reaction time [intercept].” The 
author notes that “…there is considerable [intersubject] varia-
tion both in the initial reaction times [intercepts] and in the 

daily rate of increase in reaction time [slopes].” Thus, he does 
not even consider simpler “common intercept” and/or “com-
mon slope” models. However, for completeness, we show all 
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FIGURE 3. Simulated intrasubject 
intracondition data for reported sub-
ject-specific sleep durations in 10 sub-
jects in two conditions, X = 0 and X 
= 1, with intrasubject variability added 
for each of the nights that contributed 
to the average values in Figure 1, with-
out altering the 20 reported means. 
Subjects are numbered 01 to 10 as in 
the Cushny and Peebles article. The 
values in the top row represent a low 
intrasubject variability scenario, while 
those in the bottom row have more 
substantial intrasubject variability. 
 Figure is available in color online.
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Bates 2010.9 Figure is available in color online.



Copyright © 2017 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Epidemiology • Volume 28, Number 6, November 2017 Panel Study Sample Size

© 2017 Wolters Kluwer Health, Inc. All rights reserved. www.epidem.com | 823

of the models in eAppendix, eTable 4; http://links.lww.com/
EDE/B249 in practice, only the two models that contain ran-
dom intercepts are generally applicable. After working through 
the calculations for the SEs that include two variance compo-
nents, one will notice that the dominant contribution (more 
than 80%) comes from the variability of the slopes rather than 
the residuals. This makes sense in this particular application 
because it is quite obvious from the raw data in Figure 4 that 
different subjects react quite differently to increasing amounts 
of sleep deprivation and that the average slope in a different 15 
subjects might be quite different.

The unpredictable portions of the SE formulae are the 
variance components. In this example using balanced data, the 
mean of the 10 squared subject-specific distances of X values 
from their mean (i.e., MSX = [(0 – 4.5)2 + (1 – 4.5)2 + … + (8 
– 4.5)2 + (9 – 4.5)2]/10 = 8.25) and the product (m × MSX = 
82.5) was the same for each of the 18 subjects and was known 
in advance. Had each subject only been measured on days 0, 2, 
4, 6, and 8, this “sum of the squares” of the X’s for these 5 days 
would have been just (0 – 4)2 + (2 – 4)2 + (4 – 4)2 + (6 – 4)2 + 
(8 – 4)2 = 40, and the five measurements would have reduced 
the relevant (but not necessarily the biggest) portion of the 
squared SE by 40 rather than 82.5. Had some the subjects 

been measured on days 1, 4, 6, and 9, they would have reduced 
the relevant term by (1 – 5)2 + (4 – 5)2 + (6 – 5)2 + (9 – 5)2 = 
34, while subjects measured on days 0, 6, and 9 would reduce 
it by (0 – 5)2 + (6 – 5)2 + (9 – 5)2 = 42. This illustrates that in 
regression analyses, three measurements of Y “further apart in 
X” can be more informative than four “closer in X” ones.3 The 
next example also illustrates this principle.

Example 3: X Values on a Continuum Only 
Partly Under Investigator Control

In most panel studies in environmental epidemiology, 
it is not easy to have many predictable values of X. Figure 5 
shows acute changes in microvascular function (measured as 
a reactive hyperemia index) in the hours immediately follow-
ing exposure to traffic pollutants in 43 healthy nonsmoking 
women in Montreal, Canada (data and R code for the cyclist 
exposure example are available in the supplemental digital 
content; http://links.lww.com/EDE/B252, http://links.lww.
com/EDE/B253).1 Women were exposed to traffic-related 
air pollution for 2 hours on three separate occasions during 
cycling on high and low-traffic routes as well as indoors. Per-
sonal exposures to ultrafine particles (<0.1 μm, UFP) mea-
sured along each route will serve as the “X” here. Also shown 
as black lines at the top of each panel are the distances of each 
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FIGURE 5. For each of 43 subjects, the log of the post–pre reactive hyperemia ratio on each day plotted against the ultrafine 
particle (UFP) exposure during that day’s 2-hour exposure. Panels are ordered from bottom left to top right according to the slope 
of a regression line fitted just to that subject’s two or three data points. Also shown as two or three black lines at the top of each 
panel are the distances of each subject’s X values from their mean, and at the top right, again in black, the sum of their squares, 
with the larger sums denoting the more informative subjects. Figure is available in color online.
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subject’s X values from their mean and at the top right the 
sum of their squares, with the larger sums denoting the more 
informative subjects.

Table 2 shows the fitted components of one fixed-effect 
model and three random effects models. These models are 
also depicted in Figure 6. For sample size and other study 
design planning, the formulae in the last column of Table 2 
are the most important. Since end-users will only use one of 
the two models with random intercepts, we focus on these 
models and on their implications for improving precision 
and study power. As one can see from the last column, the 
squared SE from the random-intercept-common-slope model 
has just one component, the “residual” variance divided by 
the product of (1) the number of subjects; (2) the number 
of response measurements per subject; and (3) the range 
(measured as a mean squared distance from the mean) of the 
exposures at which these responses are measured. In prac-
tice, since m and MSX will vary from subject to subject, the 
divisor will be the sum, over the n subjects, of the product 
of each subject’s m and MSX. Thus, any configuration that 
increases this product decreases the square of the SE and, 
thus, the SE itself. The squared SE for the model with both 
random intercepts and random slopes has two components. 
One of these components is the “residual” variance divided 
by the product of the three quantities already described. The 
other is the between-subject variance in the slopes, divided 
by the number of subjects. The context will determine which 
component is dominant and thus needs to be given greater 
priority so as to minimize the SE.

The contrast with Example 2 is quite striking. Here, 
if one again works through the calculations for the SEs 
that include two variance components, one will notice that 
the dominant contribution to the squared SE (more than 
90%) comes from the residual component rather than the 
slope component. By default, the variance is assigned to 
the residuals unless it can be shown to be otherwise. In this 
example, it is also more difficult to choose among the mod-
els. Since the residual component dominates the SE, and 
the signals are small relative to the noise, the SEs from all 
three models that include at least one random component 
are similar.

Turning SE Formulae Into Sample Size 
Formulae

By inserting the SE for the estimate of the common or 
average slope into the inequality for 80% power of a statisti-
cal test with alpha = 0.05 of a zero slope against a slope of 
magnitude β

1 96 0 84. . , SE  SE+ ≤( ) β

we can solve for n, or m, or the MSX as a function of the other 
two. For example, for a given m and MSX, these become:

Random-intercept models:

n
m X

=
+( ) ⋅

×
1 96 0 84 2

2

2. .

β
σ residual

MS

Random-intercept and random-slope models:

n
m X

=
+( ) ⋅ +

×






1 96 0 84 2

2
2

2. .

β
σ

σ
slopes

residual

MS

where n is the number of subjects, β is the magnitude of the 
slope we wish to detect, σ 2

residual  is the within-subject vari-
ance of the response measure, σ 2

slopes  is the variance of 
subject-specific slopes, m is the number of within-subject 
measurements, and MSX is the mean squared distance between 
the subject’s X’s and their mean.

We have chosen to show the above formulae with the val-
ues of 1.96 and 0.84 so that they are familiar to those accustomed 
to working out sample sizes “by hand” rather than as an endorse-
ment of the commonly used type I error rate of 5% and a power 
of 80%. What statistical power is ultimately selected depends on 
several factors: some suggest that any one study is but a contri-
bution to an ultimate meta-analysis and that one merely contrib-
utes the amount (sample size) one can afford. In other contexts, 
where the planned investigation must stand alone, and will not 
be repeated by other researchers, the larger consequences of a 
false negative result argue for setting the power higher than 80%.

As an example use of these formulae, consider a hypo-
thetical new panel study of UFP exposures and changes in 
reactive hyperemia, using the conventional error rates implied 
by the 1.96 and 0.84. Using the residual variance in Table 2 
as our best estimate of what we might encounter, the number 

TABLE 2. Fitted Components of four Models for Reactive Hyperemia Changes (log of the Post to Pre Ratio) Shown in Figure 5, 
Together With the Standard Error (SE) of Estimated Common or Average Slope, and the Calculation of this SE from the Sample 
Sizes (n and m), the Intraperson Range of the X Values (MSX), and the Relevant Variance Components

Model Intercept(s) Slope(s) (/1000 UFP) Residual AIC SE Calculated SE

Common intercept, common slope 0.12 −0.0054 σ: 0.223 −16.5 0.0019 0.223/[13,587]1/2

Variable intercepts, common slope μ: 0.12; σ: 0.03 −0.0053 σ: 0.219 −14.5 0.0019 0.219/[10,788]1/2

Common intercept, variable slopes 0.11 μ: −0.0048 σ: 0.0034 σ: 0.211 −15.9 0.0021 (0.00342/43 + 0.2112/[10,788])1/2

Variable intercepts, variable slopes μ: 0.11; σ: 0.01 μ: −0.0048 σ: 0.0038 σ: 0.211 −11.9 0.0021 (0.00382/18 + 0.2112/[10,788])1/2

μ and σ represent the mean and standard deviation, respectively. In this example, n = 43 and m = 2 or 3 measurements per person (126 in total). For the first (entirely fixed effects) 
model, the squares of the distances of the 126 X’s from their mean range from 0.1 to 1179; their average is 107.8 and their sum is 13,587. As shown in the 43 panels of Figure 5, the 
product of the m and the MSX value, reflecting the number and range of the X values, varies from 1 to 1040. The 43 products sum to 10,788.
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of subjects required for a random-intercept model to detect 
a slope of −0.0025 per 1000 UFPs (assuming three measure-
ments per subject and an MSX value of 500) is:

n =
+( )

−
⋅

×






1 96 0 84

0 0025

0 219

3 500

2

2

2. .

.

.

n = 40 subjects.

The Price of Confounding
As described elsewhere,5,6 there is a simple and intui-

tive variance inflation for having to adjust for confounding. 
To reflect the fact that the effective range of the exposure of 
interest is reduced, one needs to reduce the MSX by a factor of 
(1 –R2

X:other Xs), where RX:other Xs is the multiple correlation of 
X with the ensemble of the other covariates.

DISCUSSION
The random intercept in random-effects models is fre-

quently used to remove intersubject variance in panel studies, 
but regression-based intrasubject contrasts in such studies are 
not well covered by existing sample size programs. However, 
once the basic structure of the standard error for a slope esti-
mate from a simple regression is understood, the extension 
to random effects regression models is straightforward. In all 
regressions, the key to this understanding is a quantity that 
measures the range of the X values by using the mean squared 
distances of these values from their mean. It acts like a third 
sample size factor, the other two being n (the number of sub-
jects) and m (the number of measurements per subject): all 
three combine to reduce the SE. Between-subject variances in 
slopes are likely to be most apparent in closely controlled situ-
ations. Conversely, large variations in slopes between subjects 
may not be readily apparent in panel studies of environmental 

exposures as they tend to be obscured by noise, either because 
of difficulties in maximizing within-subject exposure variance 
and/or inherent occasion to occasion variability in the response 
variable. Nevertheless, this challenge should not discour-
age investigators from evaluating the possibility of different 
slopes between study subjects as this may provide important 
information to further clarify exposure–disease associations 
in exposed populations. In particular, understanding why some 
people respond to exposure while others do not could help to 
inform individual-level risk management strategies, regulatory 
interventions, and/or public health communication. In most 
cases, it is useful to examine and report information from both 
types of models (i.e., random-intercept and common slope and 
both random-intercept random-slope models) to support both 
the planning of future investigations and to characterize poten-
tial heterogeneity in responses among exposed populations.

If panel study data will be analyzed assuming a common 
slope, the inputs to the sample size formula are m, MSX, the 
residual variance, and magnitude of the “signal” we wish to 
detect (i.e., β, the magnitude of association). If random slopes 
are also considered, additional information is needed on the 
variance of slopes between subjects. In practice, literature 
values and experience can be used to estimate some of these 
parameters: practical considerations will provide a range of 
plausible values for the number of measurements per subject 
(m). However, most studies generally do not report within-
subject variances in response measurements (σ 2

residual ) or 
between-subject variances in slopes (σ 2

slopes ). Instead, they 
tend to report only the observed between-subject variance 
seen at the two extremes of Figure 1. As shown there, this is an 
amalgam of what is truly between-subject and within-subject 
variation, a mixture that can only be separated by calculating 
an intraclass correlation from a pilot study.
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FIGURE 6. One fixed effects and three 
random-effects models fitted to the 
cyclist data in Table 6. Top Left, Com-
mon intercept, common slope; Top 
Right, random intercepts, common 
slope; Bottom Left, common inter-
cept, random slopes; Bottom Right: 
random intercepts, random slopes. 
Figure is available in color online.
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Without such preliminary data, investigators may need 
to instead try a range of plausible values in estimating sample 
size requirements or contact corresponding authors of existing 
studies in the hope that they will share the relevant informa-
tion. Alternatively, given budgetary constraints, investigators 
using random-intercept common-slope models may input 
feasible values for n, β, m, and MSx and solve for σ 2

residual

. This parameter can then be compared to literature values of 
the observed between-subject variance (which are generally 
reported). If the resulting σ 2

residual  is unrealistically small 
compared with the reported between-subject variance, and 
sensible values for how much of the observed variance is 
thought to be truly between-subject and truly within-subject 
variation, then some other elements of the sample size must be 
increased to compensate. A similar approach may be taken if 
random slopes are also considered, but in this case, investiga-
tors must estimate both σ 2

residual  and σ 2
slopes . In some cases, 

pilot studies may provide important information for within-
subject variance and between-subject variance in slopes if 
such studies can be conducted at little cost. In general, the 
planning of future panel studies would be greatly improved 
if investigators regularly reported all of the variance compo-
nents in fitted random-effects models.
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