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The binormal form is the most common model used to formally fit ROC curves to the data
from signal detection studies that employ the “rating” method. The author lists a number of
justifications that have been offered for this choice, ranging from theoretical considerations
of probability laws and signal detection theory, to mathematical tractability and convenience,
to empirical results showing that “it fits!” To these justifications is added another, namely
that even if an alternative formulation based on another underlying form (e.g., power law)
or model (e.g., binomial, Poisson, or gamma type distributions) were in fact correct, the
binormal fit differs so little from the true form as to be of no practical consequence. Moreover,
the smali fack of fit is unlikely to be demonstrated in practice: it is obscured by the much
larger variation that can be attributed to sampling of cases. In addition, even if a very large
sample of cases could be studied, the small number of rating categories used does not
permit seemingly very different models to be distinguished from one another. Key words:
binormal assumptions; ROC curves; signal detection theory; rating method. (Med Decis

Making 8:197-203, 1988)

The binormal form? is the one most commonly used
to formally fit a receiver operating characteristic (ROC)
curve to data from a signal detection study employing
the “rating" method. It describes a curve with the same
functional form as that implied by two underlying
Gaussian distributions for the decision variable (hence
“binormal”). The curve is described by two adjustable
parameters: the distance between the two distribu-
tions (standardized by the standard deviation of the
“signal + noise” distribution) and the ratio of their
standard deviations. These parameters can be esti-
mated from the slope and intercept of a straight-line
fit to the observed ROC points plotted on binormal
deviate paper.® Since 1969, a formal method has been
available for estimating the parameters and their un-
certainty 2 :

Some new users of ROC methodology refer to the
binormal form as “the ROC curve generated by two
overlapping normal distributions.” However, from the
beginning, several authors have continued to empha-
size that "while two distributions determine a ROC
curve, a ROC curve does not fully determine the un-
derlying distributions,” i.e,, any monotonic transfor-
mation of the decision-variable axis yields generally
different underlying distributions but the same ROC
curve *#1213 In practice, however, since the distribu-
tions are “latent” and thus, their form unobservable,
the binormal ROC curve is often inaccurately de-
scribed as “having arisen from two Gaussian distri-
butions” rather than “from two distributions which
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can, by some monotonic rescaling of the decision axis,
be transformed into two Gaussian ones.”

Several ROC forms have been catalogued and de-
scribed by Egan.* They are of two types. In one type,
which Swets termed ‘“‘algebraic,”*® the curve can be
described by an equation—without beginning with
underlying distributions. The simplest example is the
power ROC, in which the true-positive (TP) and false-
positive (FP) proportions are linked by the equation
TP = FP* with one parameter k ranging from 0 (perfect
discrimination) to 1 (chance performance). The second
type of ROC curve is generated by specifying two over-
lapping (but latent) probability distributions. The bi-
normal one is the commonest example, although marny
other pairs of distributions are possible.

In spite of the wide choice of distributions, none of
these competitors to the binormal form has ever be-
come popular. In the case of algebraic forms, this is
not surprising, since it is more difficult to estimate
their parameters by conventional statistical methods.
Moreover, the estimation process does not yield a
measure of the uncertainty of these estimates, and so
it is difficult to make statistical inferences (the latter
is now less of a problem with the use of “sample re-
use” methods such as jackknifing and bootstrap-
ping®?).

The same general estimation method (maximum
likelihood) can be used to fit all “distributional” forms.
However, the full computational procedure has been
laid out for only two of these, the binormal and the
“bi-logistic.”** Like the Dorfman and Alf procedure,
fitting the bi-logistic ROC by maximum likelihood in-
volves an iterative procedure, but the computations
require fewer specialized statistical functions. How-
ever, it has been passed over in favor of the Dorfman
and Alf procedure published the next year.
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Talile 1 e Justifications of the Binormal Form*
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The Gaussian distribution is a natural one

. many of the random variables describing natural phenomena may be considered to be the sum of a large, relatively constant number

of other independent, random variables; . . .

since we often believe that sensory events are composed of a muititude of similar, smaller

events, the Central Limit Theorem might be invoked to justify the Gaussian assumption® [pp 54—-58)

Other distributions can be approximated by Gaussian ones

. the binomial, Poisson, hypergeometric, and chi-squared distributions can, under certain conditions, be closely approximated by the

normal distribution® [p 58]

The decision axis can be transformed to produce Gaussian distributions

. any monotonic transformation of the decision-variable axis yields generally different underlying distributions but the same ROC

curve*?

Other ROC forms look “almost straight”’ on binormal paper

. the plot of Power-Law ROCs in binormal coordinate shows that they are nearly straight lines* [p 100]

Empirical results showing that “the binormal form fits”

. illustrative results from one observer are shown. The ROC curve is not very different from the curve that we expect if the underlying

distributions were Gaussian® [p 185-187]

. it is a highly robust, empirical resuit, which is now substantiated in dozens of diverse applications, that the empirical ROC is very .
similar in form to a theoretical ROC derived from normal probability distributions. In practice, in other words, the ROC curve is
adequately described by a straight line when plotted on a binormal graph'® [pp 5 and 30]

Mathematical tractability and convenience

. it has the convenient property that all possible binormal ROC curves are transformed into stralght lines if plotted on “normal deviate”

axes [Metz,® quoting Green and Swets®]

. it is relatively easy to fit by eye and is easily fitted by statistical techniques that give estimates of the slope and intercept of the

binormal ROC [p 31]

*Quotes have been edited.

A number of justifications had been offered for the
binormal form. These are grouped under six main
headings in table 1. The claim that “the binormal model
fits” has recently been considerably strengthened by
Swets’ survey of empirical ROC forms in experimental
psychology and in several practical fields.** In addi-
tion, his other recent paper,*® dealing with the models
implied by certain ROCs, rules out some on purely
theoretical grounds.

One must add to this list of reasons for the popu-
larity of the binormal form one very practical one,
namely the availability of specialized computer pro-
grams. Formally fitting any form requires matrix in-
version and the use of several statistical subroutines;
thus, the computations cannot easily be programmed
by naive users. Dorfman made widely available a FOR-
TRAN program to carry out the estimation and curve
fitting of the binormal form, and a complete listing of
a revised version of this program has been included
in the text by Swets and Pickett.!® Also, a comprehien-
sive computer package (including procedures to com-
pute statistical power and to estimate the parameters
of correlated binormal ROC curves®) has been made
‘available by Metz.'?

With this many justifications or reasons for using it,
the binormal model is likely to continue to be used.
However, many of the justifications for the binormal
form are either pragmatic or else too technical to eval-
uate, and it is difficult to assure the less sophisticated

user that the binormal form will serve as well as or
better than other models. Such a user could legiti-
mately ask: what if the underlying decision scale can-
not be transformed to produce Gaussian distributions?
What if some alternative form or pair of distributions
are the (unobserved) truth? What if the good empirical
fits are merely a consequence of sample sizes that are
too small to distinguish the binormal from other forms?

To answer these questions, we assessed the effect
of fitting the binormal form to a ROC curve that we
knew had arisen from another form. We wished to
determine whether, with samples large enough to sep-
arate pure lack of fit from sampling variability, the
misspecification of the ROC form had any serious con-
sequences.

Materialg and Methods

DATA

As described below, we studied each of the major
alternative ROC forms discussed by Egan; by varying
the parameters of each form, we examined several ROC
curves within each form. Depending on the form, we
used four to seven rating categories. In order to min-
imize sampling variation and allow real lack of fit to
show itself, for each ROC curve we used a sample of
10,000 noise-only (n) and 10,000 signal-plus-noise (s +n)
observations. The frequencies in the different rating
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categories were designed so that the observed points
fell exactly on the true ROC curve (see below).

POWER ROCS. We chose six rating categories by hav-
ing five FP operating points of 0.09, 0.25, 0.49, 0.64, and
0.81. The corresponding TP operating points were cal-
culated using the equation TP = FPX, with the values
of the parameter k varying in the six different datasets
from 0.02 to 0.75. The frequencies in each rating cat-
egory for the “n” and “s+n” distributions were cal-
culated by taking differences of successive FPs and
TPs.

ROC CURVES BASED ON BINOMIAL DISTRIBUTIONS. The
frequencies in seven rating categories were taken pro-
portional to the seven binomial probabilities B(6,7),
with the parameter for the distribution of signal +
noise ratings (m;,,) always larger than that for the
noise-only rating (7). Some 45 different sets of rating
data were generated by varying the parameter pairs
m, and 1, within the range 0.1 < 7, < m,,, =09
in increments of 0.1.

ROC CURVES BASED ON POISSON DISTRIBUTIONS. The in-
tegers from 0 to infinity were grouped into (0,1), (2,3),
(4,5), (6,7) and (=8) to simulate five rating categories.
The frequencies in these five rating categories were
taken proportional to the Poisson probabilities P(j.g, ,)
for the distribution of signal + noise ratings and P(j.,,)
for the noise-only ratings. Some 15 different sets of
rating data were generated by varying the parameter
pairs p, and p, ., within therange 1 = p, < g4, =6
in increments of 1. An additional 36 datasets were
generated using 0.1 = p, < gy, =09,

ROC CURVES BASED ON CHI-SQUARED DISTRIBUTIONS.
The chi-squared range was divided into six “rating
categories,” with the cutoffs varying depending on the
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FiGURe 1. The overlapping rectangular and triangular distributions

used to produce ten ROC curves. In each pair, the shape of the
“signal plus noise” distribution is shown using bolder lines.
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locations of the n and s+ n.distributions. The fre-
quencies in the six rating categories were taken pro-
portional to chi-squared distributions with v, ,, and
v, degrees of freedom. Some 23 different datasets were
generated in the range 1= v, < vy, =10.

ROC CURVES BASED ON GAMMA DISTRIBUTIONS. The scale
parameter was set equal to 1. Datasets were created
by varying a pair of location parameters over the range
1 to 10. Using the procedure already described for the
chi-squared distributions and using the same cutoff
points, 26 datasets were created. '

ROC CURVES BASED ON RECTANGULAR/TRIANGULAR DIS-
TRIBUTIONS. Ten datasets were created by overlapping
rectangular and triangular distributions, as shown in
figure 1. Five rating categories were used in each case.

We omitted logistic-based ROC curves because it
had been pointed out by Birdsall® that they are difficult
to distinguish from binormal ROCs.

ANALYSIS

We used the computer program ROCFIT,*® kindly
supplied by Charles Metz, to fit a two-parameter ROC
curve to each dataset. To judge the fit, we used the
following measures:

1. The maximum discrepancy, in the TP or FP direction,
between the fitted ROC points and the true ones. As
an example, the discrepancies from fitting a binormal
curve to the power curve with k = 0.1 are shown in
table 2. The largest discrepancy, 0.0034, was found at
the second TP (correct TP value 0.8705]. [We could also
have used the Euclidean distance between the true and
fitted (TP, FP) points (which can be as much as V/2 times
larger, but, as will become clear below, it would not
have materially changed the conclusions.]

We compared two series of four or five points rather
than two entire curves, for two reasons. First, two of
Egan's forms (Poisson, binomial) give rise to ROC curves
that can be somewhat arbitrarily drawn between the
discrete cutpoints, so that the cutpoints are the only
natural points at which to compare these curves with
the binormal fits. Second, if two smooth ROC curves
are within 0.01 of each other at four or five points in
the unit square, then they must also be close at all the
other places where we didn't calculate them.

2. The significance level of the chi-square goodness-of-fit
statistic (in the example shown, it was p = 0.03]. This
statistic,2 based on the discrepancies between the ob-
served (or in our case, the true) and the fitted counts
in each category, is compared with a x? distribution
with three fewer degrees of freedom than there are
rating categories. While one could argue that in this
study we know what model was used to generate each
dataset, what we wished to know was whether the only
test-of-fit procedure available in practice can detect that
the model that generated the data was not the binormal
one.
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Talle 2 e Fit of Binormal Model to Data from Power-Law Curve TP = FP2! with 10,000 Noise Only and 10,000 Signal + Noise
Observations

Rating Category

1 2 3 4 _ 5 6
Response data '
Noise trials ' 1,900 1,700 1,500 2,400 1,600 900
Signal + noise trials 209 228 252 606 845 7,860
Observed operating points
False positive 0.0800 0.2500 0.4900 0.6400 0.8100 1.000
True positive 0.7860 0.8705 0.9311 0.9563 0.9791 1.000
Fitted operating points (binormal model)
False positive 0.0918 0.2480 0.4878 0.6393 0.8114 1.000
True positive 0.7854 0.8739 0.9332 0.9565 09772 1.000
Discrepancies (absolute)
False positive 0.0018 0.0020 0.0022 0.0007 0.0014
True positive 0.0006 0.0034 0.0022 0.0002 0.0019
Maximum discrepancy 0.0034
Goodness of fit chi-square 9.15
Degrees of freedom 3
Significance level 0.03
3. For the power law curves, where the area under the Resiilts
true ROC curve could be calculated analytically, the
difference between this area and the area under the The main results are summarized in table 3. It can
fitted curve. ~ be seen that except for the power law and rectangular/
triangular forms, the binormal form fitted exception-
We summarized the results still further by reporting, ally well, with discrepancies occurring only in the third
for each family of distributions, the worst discrepancy, decimal place of the TP and FP values. In the two
as calculated in 1, and the number of datasets that power law forms where the binormal model showed
showed a statistically significant lack of fit, ie., p < 0.05. statistically significant lack of fit, the discrepancies were

Tahie 3 e Fits of Binormal Model to Various ROC Curves

No. with

Maximum Significant
Error of Lack of
Parameters n Areas Fit* Fitt
ROC curves
Power law k: 0.02, 0.10, 0.20, 6 0.57-0.98 0.0035 2
0.33, 0.50, 0.75
Binomial Noise: = = 0.1-0.8 45 0.66—-0.99 0.0019 0
Signal + noise: w = 0.2-0.9
Poisson Noise: w = 1-5 15 0.62-0.98 0.0004 0
Signal + noise: u = 2-6
Noise: w = 0.1-0.8 36 0.53—-0.84 0.0002 0
Signal + noise: n = 0.2-0.9
Chi-squared Noise: v = 1-9 23 0.75-0.99 0.0018 0
Signal + noise: v = 2-10
Gamma Noise: a = 1-9; b =1 26 0.77-0.99 0.0015 0
) Signal + noise: a = 2-10;b = 1 :
Rectangular/trianguiar See figure 1 10 0.50-0.96 0.0302 7

*The error in each curve was the biggest [TPye — TPied| OF |FPrue — FPines| among the operating points.
1The fit is measured by a chi-squared type of statistic comparing actual and fitted frequencies.
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entirely negligible, and can be shown only on graphs
with very high resolution (see fig. 2). In all six power
faw curves, the area under the fitted curve was within

0.0006 of the true area.

The largest discrepancies were seen in the ROC curves
constructed by overlapping rectangular and triangular
distributions. Figure 3 shows the true and fitted curves.

Niscussion

Egan has described in considerable detail the ROC
curves that arise from different distributions and forms;
he assessed how close one of them (the power law
ROC] is to the binormal model by plotting it on bi-
normal paper. Swets®3 has recently plotted the logistic,
power law, and threshold models on binormal axes,
but one can only judge by eye how nonlinear they
appear. Our approach was different in that we took
the data implied by several models, converted them
to the tabular format typical of rating method data,
and produced formal binormal fits, along with derived
indices. We then compared these binormal-based fits
with the original ROC curves. The results reported
here indicate that the binormal-based fits are certainly

good enough for all practical purposes.

Figure 3. Four ROC curves, based on rec-
tangular/triangular distributions, to which
the binormal model showed a statisti-
cally significant lack of fit (p < 0.05). The
four curves, correspond to the paired
distributions ¢, €, i, and j of figure 1. The
open circles represent the curves fitted
by the binormal form.
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FIGURE 2. Two power-law ROC curves, of the form TP = FP¥, in which
the binormal model showed a statistically significant lack of fit
{p < 0.05). The true power-law curves are shown as solid lines (up-
percurve k = 0.1, lower curve k = 0.2). The open circles lie on curves
fitted by the binormal model. The lack of fit is negligible, and due
only to the large sample sizes used.

The only serious exception we were able to docu-
ment was in four ROC curves generated by rectan-
gular/triangular distributions (see fig. 3). In all four, the
true curve approaches FP = 0 abruptly, implying what
Swets calls a threshold model; in two of the four (c and j),
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FIGURE 4. One explanation of why the binormal form fits rating data
so well. (a) The observed distributions of = 57,000 non-cases (upper
distribution, with lighter lines) and = 2,500 cases (lower distribution,
with bolder lines) of postsurgical wound infections across the “sim-
plified risk index” developed by Haley et al® (b) The binormal dis-
tributions fitted to the data in (a); again, the upper distribution
(lighter line) represents non-cases and the lower one (heavier line),
cases. The fitting procedure consists of matching as closely as pos-
sible the five areas marked 1 to 5 with those marked 1' to 5" and
those marked 1 to § with those marked 1' to 5'.

it does likewise at TP = 1. One could argue that this
form is notunrealistic, in that there may often be some
sample stimuli about which there is no diagnostic
doubt. The poor fit to the curve in panel ¢ was to be
expected, in view of the curve's concave upwards form.
The binormal curve fitted to the curve in panel | is
also notable, since it too is partly concave and crosses
the positive diagonal. Although the binormal form is
not necessarily always strictly convex upwards, it usu-
ally is in practice. Again, the anomaly is in the ROC
region of least interest. Moreover, Swets argues that

MEDICAL DECISION MAKING

such ROC curves are “irregular” and that they are not
observed in practice.

One other index that we might have used to com-
pare the true and fitted curves is the optimum (TP,FP)
point, obtained, as described by Swets and Pickett'®
(pp 40-42), through the slope (B) of the ROC curve. If
we use this index with the six power law curves (which
are the most tractable mathematically), we find that
in the B range 0.5 to 2.0 [excluding one point where
the FP was 0.5 (50%)], the Euclidean distance between
the true and fitted optimum (TP,FP) points is not more
than 0.017. Thus, although this index produces a larger
discrepancy than the “maximum error” reported in
table 3, the differences are still very small.

Although the empirical evidence provided by Swets
and by this investigation for the robustness of the bi-
normal form is compelling, one could still suspect that
this robustness is not an intrinsic characteristic of ROC
curves. Why, then, is it so in all the cases, both em-
pirical and simulated, that have been examined?

The most important reason is the small number of
rating categories. A recent study® of the accuracy of a
prognostic scale to predict cases of postsurgical com-
plications illustrates this. Some 2,500 cases and almost
60,000 non-cases were studied; in spite of the un-
usually high statistical power to separate sampling
fluctuations from true lack of fit, the fit to the binormal
model was virtually perfect (x* = 2.8 on 2 df). Figure
4 shows why the binormal form fits these data, or
almost any rating data, so well. As emphasized at the
outset, the binormal form does not restrict one to dis-
tributions that are explicitly Gaussian; a pair of asym-
metric distributions can often be made approximately
Gaussian by shrinking or expanding the underlying
scale. In this example, the cases already had a Gaus-
sian-like distribution on the risk index; more. im-
portantly, almost half the non-cases were in the
“lowest-risk” category, making the task of fitting a
Gaussian curve to the non-cases especially easy. If the
distribution of cases had had a long left tail, with a
large portion concentrated in the "highest-risk” cat-
egory at the right, the task would have been even eas-
ier, since one could likewise fit a "half-Gaussian”
distribution to them and disturb even less the fit to
the non-cases. One gets the clear impression that many
other distributions would fit the 2 X 5 data table equally
well. _

With the limited resolution inherent in rating data,
it is not possible accurately to distinguish one distri-
butional model from another. A true test of the bi-
normal model is possible only in signal-detection
systems yielding a fine-grain numerical quantity, such
as a tissue density or probability calculated from a
prediction equation.

Stated in equivalent, but more mathematical, terms,
the binormal form is highly parameterized relative to
the grain of rating method data. No matter how large
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the numbers of cases and non-cases, an experiment
that has five rating categories still produces only eight
independent pieces of data. The method of estimation
requires that six of these be used in the fitting, an
exceptionally large ratio of parameters to data points.
When so many of the data items are used to fit the
model, one should expect a good fit.

The above observations are not meant to disparage
the binormal model, but rather to elucidate why it fits
so well. Some other models, such as a pair of logistic
distributions with unequal variances, would probably
work just as well, but would require at least as many
parameters, and the computational effort required to
estimate their parameters would be the same. For all
of these reasons, the binormal model can continue to
be used.

This work was carried out with the technical assistance of Carl Brewer.
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A General Regression Methodology for ROC
Gurve Estimation

ANNA N. ANGELOS TOSTESON, MS, COLIN B. BEGG, PhD

A method for applying generalized ordinal regression models to categorical rating data to
estimate and analyze receiver operating characteristic (ROC) curves is presented. These
models permit parsimonious adjustment of ROC curve parameters for relevant covariates
through two regression equations that correspond to location and scale. Particular shapes
of ROC curves are interpreted in relation to the kind of covariates included in the two
regressions. The model is shown to be flexible because it is not restricted to the assumption
of binormality that is commonly employed in smoothed ROC curve estimation, although the
binormal model is one particular form of the more general model. The new method provides
a mechanism for pinpointing the effect that interobserver variability has on the ROC curve.
It also allows for the adjustment of ROC curves for temporal variation and case mix, and
provides a way to assess the incremental diagnostic value of a test. The new methodology
isrecommended because it substantially improves the ability to assess diagnostic tests using
ROC curves. Key words: ROC curves; ordinal regression; technology assessment; diagnostic

tests. (Med Decis Making 8:204—-215, 1988)

In recent years, heightened interest in advanced
methods for the assessment of diagnostic tests has
focused much attention on the methodology of re-
ceiver operating characteristic (ROC) curves. Two al-
ternative methods commonly used for generating ROC
curves when data are obtained using the rating method
are: 1) a nonparametric approach where the empirical
threshold points obtained by applying a successively
more stringent positivity criterion (the value above which
aresult is classified as positive) to the data are plotted
and joined in some arbitrary way, and 2) a parametric
approach based on the most widely used version of
the classic model of signal detection theory. The sec-
ond method produces a smooth ROC curve based on
the assumption of a latent (unobserved) scale of mea-
surement for the subject’'s test result on which the
results (or latent responses), or a monotonic transfor-
mation of them, are normally distributed. Method 2
requires the use of an iterative computer procedure
based on maximum likelihood estimation to generate
the ROC curve parameters.’® This method has been
extensively developed in the medical context by Swets
and Pickett,?** Metz,1¥19 and others 21?5
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When ROC curves are obtained using either of these
methods, their properties are well understood. Much
is also known about the shortcomings of the meth-
ods.**2 Prominent among these is the inability to in-
corporate covariates directly into a ROC curve analysis.
Covariates that may influence the accuracy of a test
are common (e.g. stage of disease, age, weight) and
should be accommodated in the evaluation of diag-
nostic tests. To account for covariates using standard
methods, one must divide the data set into subgroups
according to the levels of the covariate(s) of interest
and repeat the analysis in the subgroups. These sub-
divisions will typically result in subgroups that are too
sparse for meaningful analysis. In addition, this ap-
proach does not allow continuous covariates to be
included in ROC curve analyses.

An integral feature of categorical rating data, which
makes the statistical modeling of it complex, is its
ordinal nature. When outcomes are reported on a log-
ically ordered scale but occur with varying relative
frequencies (e.g., the five-point rating scale, 1 = defi-
nitely normal, 2 = probably normal, 3 = equivocal,
4 = probably abnormal, and 5 = definitely abnormal),
the category boundaries (or cutoffs) are constrained
in an awkward way, yet they must be simultaneously
estimated with all other model parameters. Although
this has made the statistical modeling of ordinal data
difficult, the recent methodologic development of gen-
eral regression models for ordinal data'® has greatly
expanded our capability for analyzing such data. In
addition to their ability to accommodate ordinal data
in a general form, these models allow adjustment for
covariates via regression equations. One feature of these
models is that they include the standard binormal
analysis of ROC (rating experiment) data'® as a special



