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Commentary

Mantel-Haenszel techniques and logistic
regression: always examine one’s data first and
don’t overlook the simpler techniques

E.E. Zeiss and ].A. Hanley

Department of Epidemiology and Biostatistics, McGill University,
Montreal, Canada

Summary. The authors point out that, in addition to logistic re-
gression, there are other, simpler techniques available for making an
adjusted estimate of association between an outcome and a risk factor.
Also, the consequence of mismodelling with regression, i.e. of missing
the real relationship between an outcome and a risk factor, is illustrated
with an example. The need to ‘examine one’s data’ prior to performing
multivariable techniques is emphasised.

Introduction

The two excellent expository articles by Brand and Keirsel-? on using logistic
regression in perinatal epidemiology were very much needed. We would like to
make two points.
First, contrary to the impression that the authors’ statement!
The 0.75 estimate itself cannot be computed from the table; however it has been obtained

by a logistic regression analysis of the data in Figure 10T
(p-33)

may have inadvertently given, logistic regression is not the only method of
deriving an adjusted or ‘mean’ within-stratum estimate of an association between
a risk factor and an outcome. In the authors’ data set from the first article,! the
mortality for boys is less than or equal to that of girls at all six gestational ages,
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with odds ratios (OR) ranging from 0.63 to 1.0. However, the crude odds ratio was
1.15 because of confounding by age (Figure 10D).! Logistic regression yielded an
age-adjusted ratio of the odds of 0.75. In fact, an adjusted estimate can be
calculated simply by calculator or spreadsheet, from the age stratified 2 X 2 tables
(see Figure 1 and/or their Figure 10T)! by several other, simpler approaches.

An obviously oversimplified method would have been to average the six odds
ratios over all six gestational age categories to yield an unweighted average odds
ratio of 0.765. A more sophisticated approach is to take a weighted mean of the
odds ratios. The most commonly used is the Mantel-Haenszel adjusted estimate
which averages the odds ratios for the individual 2 X 2 tables using weights which
reflect the sample size of each 2 X 2 table.?4 The method of Woolf produces similar
results but works with weighted calculations carried out in the log odds scale.35

For example, if the numbers in the four cells of each of the 2 X 2 tables are
represented by the traditional letters:

boys girls
dead a b
alive C d

and n = a+ b 4- ¢ + d, the Mantel-Haenszel adjusted estimate is derived from the
formula

OR = sum(ad/n)/sum(bc/n)

Using the data from their Figure 10T? one can calculate this from Table 1 by
dividing the sum of column 6 by the sum of column 7: 16.93/22.60 = 0.7491. This is
mathematically equivalent to an average of the 6 odds ratios (ad/bc) using weights
of (bc/n)/sum(bc/n) as is illustrated in columns 8, 9 and 10. In this example, the
Woolf method yields the same answer to the third decimal. With the Mantel-
Haenszel or Woolf method, one can also calculate standard errors to construct
confidence intervals and tests.>

Since this was a follow-up study, one could have measured the association
using the relative risk (RR) instead of the OR. A Mantel-Haenszel type weighting
procedure, similar to that used for ORs, to average the stratum specific RRs, is
available and described in both Kleinbaum et 4l.# and Rothman.> (Using a re-
gression model to estimate an adjusted RR is also possible but less
straightforward.)

Our second point concerns modelling confounding variables when their re-
lationship to outcome is not linear in the log odds scale, as for example in Figure 13
of the second article.? In this situation (which Brand and Keirse only mentioned
briefly), if the confounder-outcome relationship is mistakenly treated as linear,
the resulting adjusted estimate of the odds ratio relating the risk factor and
outcome could be very misleading. In fact, the six subtables from Figure 10T
of the first article! (reproduced in Table 1 here) do describe a downward linear
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(a) Hypothetical mortality data for boys versus girls, for each of six gestational
ages (D =dead, A = alive)

Gestational age

24 25 26 27 28 29
D A D A D A D A D A D A
Boys 7 20 36 24 15 3 34 1 177 23 2 8
Girls 13 26 28 14 8 1 20 5 30 30 5 20
OR 0.70 0.75 0.63 0.77 0.74 1.00

(b) Odds of death

B boys O girls

ODDS of DEATH (log scale)

24 25 26 27 28 29
Gestational age

(c) Estimates from a logistic regression which incorrectly modelled gestational
age as linear

Parameter Constant Sex Gestational age
Coefficient 1.033 0.130 ~0.036
ODDS RATIO - 1.139 0.965

Figure 1. Adjusted odds ratio (OR) comparing mortality in boys versus girls, estimated
via a logistic regression which treats gestational age linearly. The data, shown in tabular
form in (a) and graphically in (b), are hypothetical and involve the same numbers as in
Table 1. The mortality for boys is less than or equal to that of girls at all gestational ages. As
in Table 1, the gestational age-specific ORs range from 0.63 to 1.00 and the Mantel-
Haenszel adjusted average is 0.75. The crude OR of 1.15 gives the reverse impression.
Modelling age linearly fails to remove the confounding (adjusted OR = 1.139). m =boys;
0 = girls.
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relationship between the odds of death (on the log scale) and age. Suppose,
however, that exactly the same data and odds ratios were obtained in a study, but
at different gestational ages, in such a way that the relationship is an inverted
U-shape rather than linear; such a pattern is depicted in Figure 1.

Figure 1 also provides the parameter estimates which are produced if, for this
data pattern, age is treated as linear. The apparent estimate for the association
between gender and outcome, adjusting for gestational age, is OR = e013=1.14,
even though within each gestational age stratum the odds ratio is approximately
0.75. Since the 1.14 is so close to the crude odds ratio of 1.15, one might falsely
conclude that age does not confound the sex—outcome relationship. Thus, unless
the nature of the relationship between outcome and gestational age is examined
closely and correctly accounted for in the logistic modelling, the regression
estimate will not reflect the real relationship between sex and outcome. The failure
in this example is not in the logistic regression methodology per se, but in blindly
modelling the relationship between a variable and outcome as linear rather than
quadratic (which might better reflect the U-shaped relationship).

Alternatively, one might want to treat gestational age as a categorical variable,
in which case the adjusted OR will coincide with the Mantel-Haenszel OR. In this
example, logistic regression, in which age is modelled as a categorical variable,
produced an OR estimate of 0.75. However, using several dummy variables to
represent the categorical variable may waste degrees of freedom if the quadratic
equation does just as well.

Whether one uses the tabular or modelling approach, it always pays to
examine one’s data closely first and to understand the nature of the confounding
variables (and also to check heterogeneity of odds ratios (effect modification))
through tables. Obviously, with many covariates and/or when data become
sparse, the preferred approach for making an adjusted estimate is logistic re-
gression, making assumptions which are reflected in the data.

References

1 Brand, R., Keirse, M.].N.C. Using logistic regression in perinatal epidemiology: an
introduction for clinical researchers. Part 1: basic concepts. Paediatric and Perinatal Epidemi-
ology 1990; 4:22-38.

2 Brand, R., Keirse, M.].N.C. Using logistic regression in perinatal epidemiology: an
introduction for clinical researchers. Part 2: the logistic equation. Paediatric and Perinatal
Epidemiology 1990; 4:221-235.

3  Schlesselman, J.J. Case-Control Studies. Design, Conduct, Analysis. New York: Oxford
University Press, 1982; pp. 171-193.

4 Kleinbaum, D.G., Kupper, L.L., Morgenstern, H. Epidemiologic Research. Principles and
Quantitative Methods. New York: Van Nostrand Reinhold, 1982; pp. 320-363.

5 Rothman, K.J. Modern Epidemiology. Boston: Little, Brown, 1986; pp. 177-236.



Paediatric and Perinatal Epidemiology 1992, 6, 316-322

From our own correspondents

Fumes from the spleen

Ithinkinformed consent is a farce . . . The information [given parents] is what I want it
to be.
an American neonatologist

Until fairly recently, patients who appeared on the doctor’s doorstep were seen as
self-directed supplicants. The sick arrived, seemingly, as the result of their own
free will. Many patients expressed their need in the form of a plea: ‘Please do
everything possible, Doctor!” For countless ages, healers interpreted such volun-
tary submission as clear evidence of unrestricted consent for any and all treat-
ments, including untried experimental interventions. Practitioners responded
with enthusiasm and with imagination.

The requirement of formal and specific consent for a medical action, particu-
larly the notion of patients’ informed consent for previously unevaluated treatment
and for medical exploration to improve understanding, is a relatively recent
development.? The new stipulation has been put in place to restrict the time-
honoured paternalistic predilections of the medical profession. The beginning of a
change in prevailing attitudes can be traced to a startling incident that took place
in America in 19632 - the appalling episode called attention to the need for critical
examination of long-standing informal arrangements for the conduct of bedside
research.

The incident began when a young resident physician at a chronic disease
hospital in New York was approached by the director of the department of
medicine who asked whether the houseman would be interested in participating
in a clinical project conducted by two experienced and highly regarded cancer
researchers. The study, funded by the US Public Health Service and already
under way at two other institutions, involved the subcutaneous injection of live
cancer cells in order to measure the rate of rejection of the foreign cells by weak,
debilitated, chronically ill patients. The rate was to be compared with the findings
after similar injections already given to cancer patients in a famous American
cancer institute and to healthy ‘volunteers’ in a state prison.

In July 1963, each of 22 patients in the chronic disease hospital received a test
injection - it was completely unrelated to their usual care. The helpless patients
were not told they had been selected by the houseman to be participants in a
clinical experiment. The soon-to-be-infamous episode precipitated stormy
debates among the hospital’s doctors and these led to investigations by the
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