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Summary

The prevailing lack of consensus about the comparative harms and benefits of cancer screening
stems, in part, from the inappropriate calculations of the expected mortality impact of a sustained
screening programme. There is an inherent, and often substantial, time lag from the time of
screening until the resulting mortality reductions begin, reach their maximum and ultimately
end. However, the cumulative mortality reduction reported in a randomised screening trial is
typically calculated over an arbitrarily defined follow-up period, including follow-up time where
the mortality impact is yet to realise or where it has already been exhausted. Because of this, the
cumulative reduction cannot be used for projecting the mortality impact expected from a sustained
screening programme. For this purpose, we propose a new measure, the time-specific probability
of being helped by screening, given that the cancer would have proven fatal otherwise. This can
be decomposed into round-specific impacts, which in turn can be parametrised and estimated
from the trial data. This represents a major shift in quantifying the benefits due to a sustained
screening programme, based on statistical evidence extracted from existing trial data. We illustrate
our approach using data from screening trials in lung and colorectal cancers.
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1 Introduction

1.1 Motivation

Developed countries spend considerable resources on cancer screening. Policy makers, fun-
ders and the public rely on experts who can readily tally the financial outlays and the harms
to individuals. Unfortunately, despite many long, costly randomised screening trials involving
very large numbers of people, the evidence produced on mortality impacts of cancer screen-
ing is commonly misinterpreted. It has not always been recognised that the mortality impact of
cancer screening is not constant over time and thus cannot be fully characterised by a single-
number summary statistic, such as the commonly reported cumulative mortality reduction,
which averages the impact of screening over the entire follow-up period in the trial.
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Single-number summaries would be more suitable for describing interventions that result in
virtually immediate and long-lasting reductions in disability, infection, sickness or death rates,
such as phenylketonuria screening at birth, adult circumcision, human papillomavirus vaccine
or screens for abdominal aneurysms. However, the benefit of breast cancer screening seen in
2014 is not due to mammograms carried out in 2014, but to some specific earlier ones. Similarly,
the returns on prostate-specific antigen screens for prostate cancer carried out in 2014 will
begin to emerge in the late 2010s and early 2020s. The cumulative mortality reduction ignores
this critical timing information and thus does not characterise the impact of a sustained cancer
screening programme. Naively pooling results from several trials, as many meta-analysts and
task forces do (e.g. Djulbegovic et al., 2010; CTFPHC, 2011), is even less meaningful.

The fact that the mortality reduction is not constant over time after the initiation of the screen-
ing has been recognised and discussed for instance by Morrison (1992, p. 36), Miettinen et
al. (2002), Hanley (2005, 2010, 2011), Miettinen & Karp (2012, p. 81) and most recently by
us (Hanley et al., 2013). Despite the obvious non-proportionality of the hazard functions, the
cumulative mortality reduction statistic is the one that is routinely used in reports of screen-
ing trials. It may be a legitimate basis for a test statistic aimed at rejecting the null hypothesis
thatm rounds of screening, spaced� years apart, will produce zero reduction in mortality over
the person years accumulated during an average of � years of follow-up. However, this statis-
tic cannot then be carried forward into projections of mortality reductions under some other
screening regimens.

For this purpose, we propose replacing the cumulative mortality reduction with a time-
specific analogue. This measure and the proposed estimation method enable reporting the
evidence of screening effectiveness in a form that is directly relevant to decision-making.

1.2 Model-based Approaches for Measuring the Benefits of Cancer Screening

Screening for a cancer in pursuit of early (pre-clinical) diagnosis (Miettinen, 2011, p. 26)
enables early treatment (in lieu of later ones) and eventually potential mortality reduction at the
population level. Randomised screening trials, in which subjects asymptomatic of the cancer are
randomly assigned to receive a number of screening examinations, are carried out to produce
evidence of efficacy. Diagnostic data collected from the screening period can be used to derive
early but imperfect indicators of the possible benefits. Two such indicators are the sensitivity
of the screening examinations and the lead time. The statistical estimation of these parameters
from trial data has been addressed by a number of authors, such as Walter & Day (1983), Day
& Walter (1984) and Shen & Zelen (1999, 2005), among others.

However, because earlier diagnosis does not necessarily translate into more successful treat-
ments, a reduction in cancer-specific mortality is considered more definitive evidence of the
benefit of screening. Building on early works (Zelen & Feinleib, 1969; Zelen, 1993), Hu &
Zelen (1997) developed a probability model for planning early detection trials using mor-
tality as the end point, by modelling the full disease history through state transitions. Since
then, Zelen and co-authors have refined this model to accommodate, for example, dependence
between the incidence or prevalence of the cancer and age (Shen & Zelen, 1999; Lee & Zelen,
2008). However, these models typically require a large number of parameter inputs, which are
not always available from published trial reports nor obtainable from a single data source, as
well as many assumptions that are generally unverifiable. Moreover, the focus in these mod-
elling efforts has been on planning trials, rather than on estimation of the mortality reduction
due to screening. Microsimulations used for the latter purpose (e.g. Berry et al., 2005; Zauber
et al., 2008; Mandelblatt et al., 2009) are also based on modelling of the entire disease history
(e.g. from disease-free to pre-clinical disease state to clinically diagnosed to dead).
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In contrast, the conditional approach we propose eliminates parameters characterising
prevalence, incidence, sensitivity, state transitions, stage shifts or sojourn time and produces
evidence-based, probabilistic projections. Our proposed approach is the first attempt to sta-
tistically decompose the bathtub-shaped mortality reduction function, described by Liu et al.
(2013), into round-specific components. These components can then be compounded to project
the reductions that a screening programme, with a possibly different and longer schedule than
in a trial, would produce.

We specify our estimand of interest as the conditional probability of being helped by screen-
ing (through earlier treatment) given that the cancer would have proven fatal in the absence of
screening. This estimand is equivalent to the ‘factor-conditional etiogenetic proportion’ of can-
cer deaths due to lack of screening-associated early treatments (Miettinen & Karp, 2012, p. 82).
We show that this conditional probability has a direct interpretation as the time-specific reduc-
tion in cancer mortality and that it can be decomposed into a function of round-specific
reductions. We suggest a parametric form for the round-specific reduction, based on which we
then formulate a likelihood function.

The remainder of this paper is organised as follows. The estimand and the assumptions nec-
essary to identify it are specified in Section 2. In Section 3, we formulate a parametric model to
characterise the round-specific impact and the resulting likelihood expressions for individual-
level and aggregated data. In Section 4, we fit our model to data from screening trials in lung and
colorectal cancers and illustrate the resulting projections. The paper concludes with a discussion
in Section 5.

2 Specifying the Estimand

2.1 Notation

In a randomised screening trial, subjects asymptomatic of cancer are randomly assigned to
either a screening or non-screening arm at time s0 D 0, and all are followed up for death due
to the cancer or another cause or until the end of follow-up at time � , whichever comes first.
During the interval Œ0; � �, a total ofm screening examinations are carried out at the ordered time
points s1 < s2 < � � � < sm in the screening arm, with the j -th interval denoted by Œsj�1; sj /
and its length by �j D sj � sj�1 for j D 1; 2; : : : ; m.

We define a screening assignment indicator Zi taking the value 1 if individual i is assigned
to the screening arm, with Zi D 0 otherwise. Let Ti denote the observed time of the event
(i.e. death due to the cancer, death due to another cause or type I censoring due to the end
of the follow-up period at � ). We take this to be Ti D ZiT1i C .1 � Zi /T0i , where T1i and
T0i denote the potential/counterfactual event times under screening and in the absence of it,
respectively (this corresponds to assuming either a ‘stable unit treatment value’, e.g. Angrist et
al., 1996, or ‘consistency’, e.g. Cole & Frangakis, 2009). Similarly, let Ei denote the observed
event type, taking the value of 1 for cancer-specific death, 2 for death due to another cause and
0 for censoring. This is given by Ei D ZiE1i C .1 �Zi /E0i , where E1i and E0i are indicator
variables for the potential/counterfactual event types under screening and in the absence of it,
respectively. The unobservable gained survival time due to screening for individual i is Gi �
T1i � T0i .

2.2 Object of Inference

We take the estimand to be the probability that a cancer-specific death in the absence of
screening was indeed ‘caused’ by the absence of screening-associated early treatments (cf.
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Miettinen & Karp, 2012, p. 48). This probability in turn is equivalent to the probability of being
helped by screening, had it been available. This is specified as the conditional probability

H.t/ � P.T1i > t j T0i D t; E0i D 1/ (2.1)

of surviving beyond time t under screening, given a cancer death at time t in the absence of it.
Because an individual’s cancer can be detected, and subsequently successfully treated, as a result
of only one screening examination, we introduce a random variable Si 2 ¹s1; s2; : : : ; sm;1º to
represent the time of being detected, and subsequently successfully treated, with Si D1 taken
to mean that the cancer was not detected in any of the scheduled screenings or was not success-
fully treated. Furthermore, because only the screening examinations before the time of death
T0i D t can potentially be helpful, we take m.t/ � max¹j 2 ¹1; 2; : : : ; mº W sj < tº to index
the last screening examination before t . Thus, we have thatH.t/ D P.Si 2 ¹s1; s2; : : : ; sm.t/º j
T0i D t; E0i D 1/ and can express (2.1) as

H.t/ D

m.t/X
jD1

P.Si D sj j T0i D t; E0i D 1/

D

m.t/X
jD1

P.Si D sj j T0i D t; E0i D 1; Si � sj /P.Si � sj j T0i D t; E0i D 1/: (2.2)

The first term inside the sum (2.2) is the probability of being helped as a result of the j -th
screening, given that the previous screenings at times s1; s2; : : : ; sj�1 failed to detect the cancer.
Because only new or previously undetected cancers can be detected in the j -th screening, we
take the probability

Qj .t/ � P.Si D sj j T0i D t; E0i D 1; Si � sj / (2.3)

as our measure to quantify the mortality impact of a single round of screening; modelling of
the round-specific impact is needed to project the mortality impact of a sustained screening
programme. The probability (2.2) is fully specified in terms of (2.3), j D 1; : : : ; m, as

H.t/ D

m.t/X
jD1

Qj .t/

j�1Y
kD1

¹1 �Qk.t/º D 1 �
m.t/Y
jD1

¹1 �Qj .t/º; (2.4)

which follows from the failure probability function for a discrete failure time random variable
(e.g. Kalbfleisch & Prentice, 2002, p. 9). The representation (2.4) in turn enables likelihood
construction through parametrisation of the functions Qj .t/ (Section 3).

2.3 Identifying Assumptions

Because (2.1) is defined in terms of unobservable quantities, further assumptions are needed
to identify it based on observed data. One possible approach would be to assume a deterministic
accelerated failure time model, such as T1i D T0ie

g.T0i / for the potential outcomes (e.g. Hernán
et al., 2005). In this case,

P.T1i > t j T0i D t; E0i D 1/ D P.T0i .e
g.t/ � 1/ > 0 j T0i D t; E0i D 1/

D P.g.t/ > 0 j T0i D t; E0i D 1/;

International Statistical Review (2015), 0, 0, 1–18
© 2015 The Authors. International Statistical Review © 2015 International Statistical Institute



Measuring Mortality Reductions Due to Screening 5

which equals 1 whenever the acceleration/deceleration function g is positive and 0 otherwise.
This suggests that direct modelling of the gained survival time Gi is unhelpful in addressing
the probability of being helped by screening. Instead, we pursue modelling in terms of cause-
specific subdensity functions fk.t/ � P.Tki 2 dt; Eki D 1/=dt (cf. Kalbfleisch & Prentice,
2002, p. 252), k D 0; 1, for individual i dying of the cancer at time t in the absence and
presence of screening, respectively. (We use dt to denote both an infinitesimally small interval
around t and the infinitesimal length of this interval.)

In order to estimate (2.1), four identifiability assumptions we make in this paper are (i) mono-
tonicity T0i � T1i ; (ii) strongly ignorable assignment, that is, ¹.T1i ; E1i /; .T0i ; E0i /º ?? Zi and
0 < P.Zi D 1/ < 1 (cf. Rosenbaum & Ruben, 1983, p. 43); (iii) curative early treatments, in
the sense that

P.T1i > t j T0i D t; E0i D 1/ D P.T1i > t;E1i ¤ 1 j T0i D t; E0i D 1/I (2.5)

and (iv) screening specificity, that is, E0i D 2) T1i D T0i ; E1i D 2.
Assumption (i) (cf. Angrist et al., 1996) states that the potential time of death of any cause

for an individual in the screening arm is at least as long as that in the non-screening arm, that
is, screening cannot shorten anyone’s life. Assumption (ii) states that the allocation in the trial
is randomised. Assumption (iii) states that the screening-associated early treatments cure the
cancer, in the sense of delaying the cause-specific death beyond a death due to a competing
cause (or censoring). Assumption (iv) states that the screening technique is specific in the sense
that it does not lead to early detection and treatment of conditions other than the site-specific
cancer of interest.

Nine different types of event histories, possible under assumptions (i) and (ii), are illustrated
in Figure 1. Subject 1 would die of another cause, which could not have been prevented by
screening. The death of subject 2 due to another cause was delayed because of screening. This
could occur if the screening can also lead to detection of conditions other than the site-specific
cancer of interest (which is unlikely). The same applies to histories for subjects 3 and 4. Subject
5 would be alive at the end of the follow-up time, and the time of death due to the cancer for
subject 7 would be the same with and without screening; thus, during the follow-up, neither
of them would have benefited from screening. Subjects 6, 8 and 9 would die of the cancer in
the absence of screening, but in the presence of screening, they would die of another cause
or die later as a result of the cancer or be censored at the end of the follow-up, respectively;
thus, they could benefit from early detection of the cancer and consequent therapy. Introducing
assumption (iii) rules out the event histories of type 8. As will be shown in Section 2.4, this is
required for identification of (2.1), because delayed cancer deaths in the screening arm cannot
be distinguished from the non-delayed ones based on the observed data. Similarly, we need to
use assumption (iv) to rule out histories of type 3, because these would show as excess cancer
mortality in the screening arm.

Further, we note that under continuous time, no two cause-specific counting processes can
jump simultaneously (Aalen et al., 2008, p. 55), unless they are in fact the same process (which
would occur if there is no screening effect). In the present setting, this means that T0i D T1i )
E0i D E1i , ruling out event histories of the type .E0i ¤ E1i ; Gi D 0/ not present in Figure 1.

2.4 Equivalence between the Probability of Being Helped and Mortality Reduction

We show that under the assumptions stated in Section 2.3, the probability (2.1) of being
helped by screening is equivalent to the time-specific reduction in cancer mortality, a quantity

International Statistical Review (2015), 0, 0, 1–18
© 2015 The Authors. International Statistical Review © 2015 International Statistical Institute



6 Z. (A.) LIU ET AL.

0 τ

9.  E0i = 1, E1i = 0, Gi = τ − T0i

8.  E0i = 1, E1i = 1, Gi = T1i − T0i

7.  E0i = 1, E1i = 1, Gi = 0

6.  E0i = 1, E1i = 2, Gi = T1i − T0i

5.  E0i = 0, E1i = 0, Gi = 0

4.  E0i = 2, E1i = 0, Gi = τ − T0i

3.  E0i = 2, E1i = 1, Gi = T1i − T0i

2.  E0i = 2, E1i = 2, Gi = T1i − T0i

1.  E0i = 2, E1i = 2, Gi = 0

T0i T1i

T0i T1i

T0i = T1i

T0i T1i

T0i = T1i

T0i T1i

T0i T1i

T0i T1i

T0i = T1i

cancer death (Ei = 1)
other death (Ei = 2)
right censoring (Ei = 0)

Follow−up time

Figure 1. Illustration of nine different possible event histories, one row per individual, possible under the identifying assump-
tions (i) and (ii) of Section 2.3. For identifying the causal estimand (2.1), event histories of types 3 and 8 need to be further
ruled out by the identifying assumptions (iii) and (iv) of Section 2.3. Only event histories of types 6, 7 and 9 eventually
contribute to the conditional likelihood expression (3.4).

that can be estimated based on the trial data. We may express (2.1) as

P.T1i > t j T0i D t; E0i D 1/ D 1�P.T1i � t j T0i D t; E0i D 1/

D 1�
2X
kD0

P.T1i 2 dt; E1i D k j T0i D t; E0i D 1/

D 1�P.T1i 2 dt; E1i D 1 j T0i D t; E0i D 1/

D1�
P.T0i 2dt;E0iD1jT1iD t; E1iD1/P.T1i 2dt;E1iD1/=dt

P.T0i 2dt; E0iD1/=dt

D 1�
f1.t/

f0.t/
:

The second equality is due to the monotonicity assumption (i). The third equality follows from
the continuous-time model for the counting processes. The fifth equality is due to P.T0i 2
dt; E0i D 1 j T1i D t; E1i D 1/ D 1, which follows from assumptions (i), (iii) and (iv). In
Appendix A, we point out that the measure obtained previously is a time-specific analogue of
the more familiar cumulative mortality reduction.

While the estimand is specified in terms of potential outcome variables, the ignorability
assumption (ii) enables its estimation using the observed outcomes in the two trial arms because

1 �
f1.t/

f0.t/
D 1 �

P.Ti 2 dt; Ei D 1 j Zi D 1/=dt

P.Ti 2 dt; Ei D 1 j Zi D 0/=dt
D 1 �

f .t j Zi D 1/

f .t j Zi D 0/
;
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where f .t j Zi / � P.Ti 2 dt; Ei D 1 j Zi /=dt . We further note that if we were only interested
in the time-specific mortality reduction curve 1 � f1.t/=f0.t/, only the identifying assumption
(ii) would be needed. The other identifying assumptions are required to connect this to the
probability of being helped (2.1), which can be decomposed into round-specific impacts.

3 Methods

In this section, we present a parametric model characterising the effect of a single round of
screening. The mortality reduction at time t can then be obtained as a compound of the impacts
of each screen that persons have received up to t , as shown in Section 2.2.

3.1 Model Formulation

As emphasised by several authors referred to in the introduction, a quintessential feature of
cancer screening is the non-constancy of its impact over time. According to Miettinen (2013),
it is a fundamental truism that the mortality reduction ‘cannot be constant over successive
intervals of time after the screening’s initiation; that it is initially nil, then increases and later
declines, and ultimately totally vanishes’. This can be understood in terms of a detectability–
curability trade-off; tumours in earlier stage are difficult to detect but presumably easier to cure,
while late-stage tumours are more detectable, but treatment may come too late. However, both
detection and successful treatment are required for cure. A cancer that would prove fatal within
months from now is not likely to be cured by screening today, while a cancer that is cured today
as a result of early detection would otherwise have proven fatal several years from now.

3.1.1 Stationarity property

To start with, we assume that the probabilities of being helped by each round of screening as
functions of time are shifted versions of each other, that is,

Q1.t/ D Q2.t C�1/ D � � � D Qm

 
t C

m�1X
kD1

�k

!
: (3.1)

For simplicity, take the screenings to be equally spaced so that �1 D �2 D � � � D �m�1 D �,
and take the successive examinations j and j C 1 as an example, in which case

Qj .t/ D QjC1.t C�/ , P.Si D sj j T0i D t; E0i D 1; Si � sj /

D P.Si D sj C� j T0i D t C�;E0i D 1; Si � sj C�/:

Thus, modelling assumption (3.1) can be interpreted as a stationarity property for the func-
tions Qj .t/. This is plausible because the length T0i � Si of the interval from time of screen
detection to the potential time of death without screening is kept constant. Furthermore, the
preceding probabilities are conditional on not being detected in the previous screening exami-
nations, and if the sensitivity of the screening test and participation rates are high, the cancers
to be detected at any sj are mainly ‘new’ ones, having progressed to the detectable state in the
interval Œsj�1; sj /. While this applies to the repeat screenings, the first or ‘prevalence’ screen-
ing might involve a different stage distribution of cancers; we address this question briefly in
Section 5.
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3.1.2 Examples of possible parametrisations

The effect of one round of screening could be characterised in terms of maximal reduction
(� ), the time lag between the time of screening and the maximal reduction (location parameter
�) and the spread of the reductions over time (scale parameter � ). Using these three parameters,
a possible formulation for the time-specific reduction due to one screen is

Qj .t I �; �; �/ � � exp

8<
:�

 
t � .�C

Pj

lD1�l/

�

!2
9=
; ; (3.2)

where 0 � t < 1, 0 � � � 1, � > 0 and � > 0. Function (3.2) characterises how deep, how
far into the future and how wide the mortality reductions produced by a single screen are.

A possible limitation of formulation (3.2) is that it does not enforce the restriction
lim

t!s
C

j

Qj .t/ D 0 (if the death in the absence of screening would have resulted immedi-

ately after the detection, any therapy would be unlikely to help the patient). An alternative
formulation that satisfies this restriction could be

Qj .t I �; ˛; ˇ/ � �
f .t �

Pj

lD1�l I˛; ˇ/

f ..˛ � 1/ˇI˛; ˇ/

D �

´
t �

Pj

lD1�l

.˛ � 1/ˇ

μ˛�1

exp

´
.˛ � 1/ �

t �
Pj

lD1�l

ˇ

μ
; (3.3)

where 0 � t < 1, 0 � � � 1, ˛ > 1 and ˇ > 0. Here, f .t I˛; ˇ/ is the probability
density function of a gamma distribution with the mode t D .˛ � 1/ˇ. By scaling down the
density function by its maximum value, we restrict the time-specific mortality reductions to be
between 0 and 1. Possible shapes with various parameter inputs for the two formulations can
be found in Figure 2. This also demonstrates that when the delay in the mortality reduction is
long, shape (3.3) approximates shape (3.2). Because the former ensures a continuous overall
reduction curve, in the examples of Section 4, we use only the gamma kernel parametrisation.

Taking � to be the collection of the three parameters, appropriately transformed, the com-
pound reduction H.t I �/ resulting from m.t/ screens before time t can now be obtained by
substituting Qj .t I �/’s into Equation (2.4).

3.2 Likelihood Formulation

3.2.1 Individual-level data

We adopt a conditional approach, where the conditional likelihood contribution of individual
i is the probability of the screening assignment Zi given that there was a cancer death at t ,
that is, Zi j .Ti D t; Ei D 1/ � Bernoulli¹	.t/º, resulting in likelihood contributions of the
form 	.t/Zi .1 � 	.t//1�Zi for each cancer death. Here, with equal allocation P.Zi D 1/ D

International Statistical Review (2015), 0, 0, 1–18
© 2015 The Authors. International Statistical Review © 2015 International Statistical Institute



Measuring Mortality Reductions Due to Screening 9

0 5 10 15 20

M
or

ta
lit

y 
re

du
ct

io
n

γ = 20%,
μ = 6 yrs,
σ = 2 yrs
α = 9.0
β = .67

40 %

20 %

0 %

A 0 5 10 15 20

γ = 30%,
μ = 6 yrs,
σ = 2 yrs
α = 9.0
β = .67

40 %

20 %

0 %

B

0 5 10 15 20

M
or

ta
lit

y 
re

du
ct

io
n

γ = 20%,
μ = 11 yrs,
σ = 2 yrs
α = 30
β = .36

40 %

20 %

0 %

C 0 5 10 15 20

γ = 20%,
μ = 6 yrs,
σ = 4 yrs
α = 2.3
β = 2.7

40 %

20 %

0 %

D

0 5 10 15 20

Follow−up years

M
or

ta
lit

y 
re

du
ct

io
n

γ = 8%
α = 1.7
β = 2

40 %

20 %

0 %

E 0 5 10 15 20

Follow−up years

γ = 14%
α = 6.1
β = 1.5

40 %

20 %

0 %

F

Figure 2. Impact of a single round of screening at time s1 D 0, with different patterns determined by different parameter
inputs. Solid and dashed lines correspond to Equations (3.2) and (3.3), respectively. Panels E and F correspond to the fitted
reduction patterns in the examples of Sections 4.1 and 4.2, respectively.

P.Zi D 0/ D 0:5 between the two arms,

	.t/ � P.Zi D 1 j Ti D t; Ei D 1/

D
P.Ti 2 dt; Ei D 1 j Zi D 1/P.Zi D 1/

P.Ti 2 dt; Ei D 1 j Zi D 0/P.Zi D 0/C P.Ti 2 dt; Ei D 1 j Zi D 1/P.Zi D 1/

D
f .t j Zi D 1/=f .t j Zi D 0/

1C f .t j Zi D 1/=f .t j Zi D 0/

D
1 �H.t I �/

1C 1 �H.t I �/
: (3.4)

3.2.2 Aggregated data

If the individual-level mortality data are not reported or accessible, our model can be
fitted to aggregated (e.g. yearly) numbers of deaths in each arm, extractable from the
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cumulative mortality curves in the published trial reports (Liu et al., 2014). Let D0j DP
i 1¹EiD1;tj�1<Ti<tj ;ZiD0º and D1j D

P
i 1¹EiD1;tj�1<Ti<tj ;ZiD1º denote the numbers of

cancer-specific deaths during the interval Œtj�1; tj /, j D 1; 2; : : : ; J , in the non-screening and
screening arms, respectively. Thus, the distribution ofD1j conditional on the total deaths during
interval j is D1j j .D0j CD1j D dj / � Binomial.dj ; 	j /; where

	j D
N1ŒF .tj j Zi D 1/ � F.tj�1 j Zi D 1/�

N0ŒF .tj j Zi D 0/ � F.tj�1 j Zi D 0/�CN1ŒF .tj j Zi D 1/ � F.tj�1 j Zi D 1/�

D
ŒF .tj j Zi D 1/ � F.tj�1 j Zi D 1/�=ŒF.tj j Zi D 0/ � F.tj�1 j Zi D 0/�

1C ŒF .tj j Zi D 1/ � F.tj�1 j Zi D 1/�=ŒF.tj j Zi D 0/ � F.tj�1 j Zi D 0/�

�
1 �

R tj
tj�1

H.t I �/ 1
tj�tj�1

dt

1C 1 �
R tj
tj�1

H.t I �/ 1
tj�tj�1

dt
; (3.5)

where N1 D N0 are the numbers of individuals randomised to screening and control arms,
respectively, and F.t j Zi / �

R t
0 f .v j Zi / dv. Notably, limtj!tj�1 	j D 	.tj�1/,

reducing to the individual-level formulation in (3.4). The resulting log-likelihood function is
the sum of contributions from the entire duration of the follow-up time, given by l.�/ �PJ
jD1¹D1j log.	j /CD0j log.1 � 	j /º:

3.3 Estimation

The likelihood functions for individual-level or aggregated data in Sections 3.2.1 and 3.2.2
can be maximised with respect to parameters specifying the mortality reduction function
H.t I �/ using standard numerical optimisation methods, such as those implemented by the
optim function of the R statistical environment. Standard errors for the parameter estimates
may be obtained by inverting the numerically differentiated observed information matrix at
the maximum likelihood point. Because all the parameters in (3.2) or (3.3) are positive, re-
parametrisations should be used when applying a normal approximation to the likelihood in
order to obtain standard errors for the parameter estimates. However, rather than the individ-
ual parameters, our main interest is in obtaining measures of uncertainty for the mortality
projections. Because the projections are based on a probability model fitted using maximum
likelihood, time-specific confidence bands may be constructed straightforwardly by randomly
drawing parameter estimate values from the approximate large-sample sampling distribution
N. O�; i. O�/�1/, where i. O�/ is the observed information matrix at the maximum likelihood point,
and calculating the projection curve at each value. The 2.5% and 97.5% limits at each time
point can then be obtained as sample quantiles.

3.4 Generalisations

In this subsection, we extend our model to accommodate an unequal allocation of person-
time between the screening and non-screening arms, less than full compliance and multiple
screening arms within a trial.

If the randomisation ratio between the screening arm and the non-screening arm isN1=N0 �

 W 1 instead of 1:1, such as in the Swedish two-county trial (Tabár et al., 1985), as well as
two other mammographic screening trials in Stockholm (Frisell et al., 1997) and Gothenburg
(Bjurstam et al., 2003), then Equation (3.5) becomes
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	j D

¹1 �

R tj
tj�1

H.t I �/ 1
tj�tj�1

dtº

1C 

°

1 �
R tj
tj�1

H.t I �/ 1
tj�tj�1

dt
± :

Sometimes, multiple screening arms are employed within the same trial, such as the Min-
nesota colorectal cancer study (Shaukat et al., 2013) in which participants were randomly
assigned to be screened annually, biennially or not at all. To accommodate this, let Dkj denote
the number of cancer-specific deaths in arm k, where k D 0; : : : ; K, during the j -th inter-
val. Given the total number of deaths dj D

PK
kD0Dkj , the split into the K study arms is

distributed as

D0j ; : : : ;DKj j

 
KX
kD0

Dkj D dj

!
� Multinomial.dj ; 	0j ; : : : ; 	Kj /;

resulting in a log-likelihood function l.�/ �
PJ
jD1

PK
kD0Dkj log.	kj /, where 	0j D 1 �PK

kD1 	kj .
While our estimand (2.1) should be interpreted as an intention-to-treat type of effect, with

the potential outcome .T1i ; E1i / corresponding to being assigned to the screening arm of the
trial, as opposed to actually undergoing screening as scheduled, in the projection task, it might
be appropriate to upscale or downscale the mortality impact of the screening programme by the
expected participation rate. In addition, a relevant quantity for decision-making at the individual
level would be the mortality impact conditional on participation in the screening. Assuming
that the participation in the screening arm in round j , denoted as Cij D 1, is completely at
random in the sense that P.Cij D 1 j T0i D t; E0i D 1; Si � sj / D P.Cij D 1/ � cTj and
that no one is screened in the control arm, the participant probability of being helped by this
round is simply

P.Si D sj j T0i D t; E0i D 1; Si � sj ; Cij D 1/ � Q�j .t/ D
1

cTj
Qj .t/: (3.6)

This follows from P.Si D sj ; Cij D 0 j T0i D t; E0i D 1; Si � sj / D 0. Differential
participation between the successive rounds of screening may now be accounted for by using
the relationship (3.6) in fitting the likelihood (3.4) or (3.5), by replacing Qj .t/ in Equation
(2.4) with cTjQ�j .t/, with the parameter estimates then representing the effects of screening
under completely random non-participation. Now, if the expected participation in the screening
programme round j is cPj , the mortality impact of this round can be projected simply as
cPjQ

�
j .t/, with the compound impact given by formula (2.4). We demonstrate this approach in

the example of Section 4.2. A full treatment of possibly non-random non-participation in our
modelling framework is a topic for further work.

3.5 Checking the Model Fit

The appropriateness of the modelling assumptions of Section 3.1 can be checked through
comparing the predictions from the fitted model with the observed aggregated death counts.
Because the aggregated counts D1j in the screening arm are binomially distributed given the
total count dj in the j -th interval, we can construct a goodness-of-fit test statistic of the form

JX
jD1

.D1j � dj O	j /
2

dj O	j .1 � O	j /
� �2

J�p;
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where p is the number of estimated parameters in the model and O	j is the estimated split derived
from substituting the parameter estimates O� into formula (3.5). We carried out a simulation
study to verify that the test produces the correct type I error rate; the results are reported in
Appendix B.

4 Examples

4.1 The US National Lung Screening Trial

We illustrate our methods using data from the US National Lung Screening Trial (Aberle et
al., 2011), which compared lung cancer mortality among 53 454 heavy smokers randomised to
either low-dose computed tomography (CT) scans or chest X-rays. The screening regimen in the
trial comprised three annual rounds, the first one soon after randomisation. A 20% cumulative
mortality reduction was reported in the CT arm after 7 years of follow-up, compared with the
X-ray arm. On the other hand, we are interested in the mortality reductions that would be
produced by a sustained screening programme targeted to such high-risk individuals.

Because lung cancer is rapidly progressing, the mortality reductions might manifest with
a short delay, and consequently, a separate parameter to characterise this delay might not be
needed. Initial model fits with the three-parameter formulation (3.3) also suggested this, with
the parameter ˛ estimating to the boundary value 1, motivating reduction of the number of
parameters to two. A very parsimonious model still producing a reasonable reduction pattern
for a single round of screening can be obtained by fixing ˇ D 2 in (3.3), giving a two-parameter
model based on the �2-kernel. The fitted reduction curve due to one round of screening is
shown in Figure 2E. Because the individual-level data from the trial were provided to us by the
National Cancer Institute, we could fit this model to both the exact times of death (Equation
(3.4)) and the yearly and half-yearly aggregated numbers (Equation (3.5)). The yearly numbers
of deaths and fitted reduction curves due to three screenings are presented in Figure 3A, which
suggests that the aggregated numbers are near-sufficient statistics for the mortality reduction:
the curves fitted to aggregated data are almost identical to the individual-level fit. Applying
the goodness-of-fit test statistic of Section 3.5 to the yearly observed and expected counts gave
a p-value of 0.55, indicating no evidence against the fitted model. The maximum mortality
reduction produced by the three rounds of screening is around 20%, which fades after the
screening was discontinued. However, the projected reduction pattern in Figure 3B based on
10 rounds of annual screening and 90% compliance demonstrates that the mortality reductions
would plateau at a nadir of around 30%, should the screening be continued long enough.

4.2 The Minnesota Colorectal Cancer Screening Study

Shaukat et al. (2013) reported that the mortality from colorectal cancer in the screening arm
with 11 annual and 6 biennial faecal occult blood (FOB) tests is 32% and 22% lower than that in
the non-screening arm, respectively. The study involved 46 551 participants equally allocated to
the three arms and followed up for 30 years. These mortality reductions were achieved despite
a 4-year funding-related hiatus in screening and averaging over the entire 30-year follow-up.
Presumably, the reductions would have been larger without such an interruption.

To study this, we extracted the yearly numbers of deaths from the published figure of cumu-
lative colorectal cancer mortality and present the observed and fitted mortality reductions in
Figure 4A. The fitted model was specified using the parametrization (3.3), and the pattern of
reduction due to one round of screening is shown in Figure 2F. The goodness-of-fit test of
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Figure 3. Panel A: Empirical .100% � .1�D1j =D0j // and fitted mortality reductions based on individual-level, as well
as aggregated yearly and half-yearly, data from the National Lung Screening Trial. The size of each dot is proportional to
the information contribution of the empirical year-specific mortality ratio. Panel B: Projection of time-specific lung cancer
mortality reductions that would be generated by 10 years of annual computed tomography (versus chest X-ray) screening.

Section 3.5, applied to 2-year aggregated death counts due to the small yearly numbers, gave
p-values of 0.87 and 0.57 in the annual and biennial screening arms, respectively, indicating
no evidence against the fitted model. While the impact of the hiatus in the screening is not
obvious in the cumulative mortality curves (Figure 1 of Shaukat et al., 2013), our time-specific
ones indeed exhibit a W shape, showing the lagged responses to the two phases of screening:
after a delay of some years, a nadir of around 40% reduction for annual and 30% for biennial
schedules were reached before beginning to revert back to zero; this pattern is repeated when
screening was resumed.

Figure 4B shows the projected reductions due to 16 years of continuous (annual and biennial)
screening. The time patterns generated by these two regimens are similar in that benefits start
to emerge some 5 years after the initiation of screening, continue to manifest until reaching
the nadir in year 15 and continue onwards. However, the projected sustained reduction is close
to 60% for annual screening and 40% for biennial in the time window affected, assuming the
same compliance rates, 75% and 78% (annual and biennial, respectively; Mandel et al., 2000),
as in the trial. The 95% time-specific confidence bands in Figure 4B are obtained, as outlined
in Section 3.3, for the biennial regimen based on 10 000 random draws.
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Figure 4. Panel A: Empirical .100% � .1 � D1j =D0j / and 100% � .1 � D2j =D0j // and fitted mortality reductions
based on the yearly numbers of colorectal cancer deaths in the two screening arms of the Minnesota Colorectal Cancer
Screening Study, with the 4-year hiatus. The size of each dot is proportional to the information contribution of the empirical
year-specific mortality ratio. Because the hiatus was in calendar time rather than follow-up time and entries were staggered,
the timing of the screens, each denoted by an S, is only approximate. Panel B: Projection of yearly mortality reductions in
colorectal cancer that would be generated by 15 years of uninterrupted annual and biennial faecal occult blood screening.
The grey area represents time-specific 95% confidence bands under the biennial screening regimen.

5 Discussion

Although we did not make distinctions between the impact pattern of the first round of
screening and that of the subsequent ones, more parameters could easily be added for modelling
the effect of the first, or prevalence, screen, provided that there are sufficient data to enable
estimation of the added parameters. For instance, one option would be to model the maximal
reduction � as a function of the time of the screening examination. Another option, motivated
by the FOB testing for colorectal cancer, would be to employ six parameters to characterise two
modes for each round, corresponding to immediate and remote mortality impacts of remov-
ing colorectal cancers and polyps, respectively. However, our experience is that the parametric
models should be fairly simple to ensure identifiability of the estimation problem, at least if the
trial involved only one screening regimen. For identifiability of further parameters, it might be
helpful to have data available on different individual-level screening histories along with their
exact timings.

Instead of explicitly modelling sensitivity of the screening examinations or the effectiveness
of the subsequent treatment, we concentrate on modelling the probability of being helped by
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screening; the former two are components of the latter. For instance, a probability of being
helped resulting from a high sensitivity of detecting the cancer combined with ineffective
treatment is not distinguishable from one resulting from a low sensitivity combined with an
effective treatment. In particular, estimating sensitivity of the screening would be problematic;
the true disease status is inherently unobservable, as the true positives are those screen-detected
cancers that would eventually have proven to be fatal in the absence of screening. Our condi-
tional approach circumvents the overdiagnosis problem by focusing on cancer deaths instead of
cancer diagnoses.

To summarise, our conditional approach addresses the mortality impact directly by
parametrising the time-specific conditional probability of being helped by screening, given that
the cancer would have proven fatal otherwise. This, under the assumptions stated in Section 2.3,
is equivalent to the time-specific mortality reduction, a quantity estimable from trial data. By
fitting our model to data from lung and colorectal cancer screening trials, we illustrated how the
parameter estimates can be used to project and compare reduction curves that could be produced
by long-term screening programmes. Our methods can provide policy makers and funders more
relevant evidence on how effective cancer screening programmes are and could be.

Acknowledgements

This research was funded by the Canadian Institutes of Health Research (grant number
115204). The authors thank the National Cancer Institute (NCI) for access to NCI’s data col-
lected by the National Lung Screening Trial. The statements contained herein are solely those
of the authors and do not represent or imply concurrence or endorsement by the NCI.

References

Aalen, O., Borgan, Ø., Gjessing, H.K. & Gjessing, S. (2008). Survival and Event History Analysis: A Process Point
of View. New York: Springer.

Aberle, D.R., Adams, A.M., Berg, C.D., Black, W.C., Clapp, J.D., Fagerstrom, R.M., Gareen, I.F., Gatsonis, C.,
Marcus, P.M. & Sicks, J.D. (2011). Reduced lung-cancer mortality with low-dose computed tomographic screening.
New Engl. J. Med., 365, 395–409.

Angrist, J.D., Imbens, G.W. & Rubin, D.B. (1996). Identification of causal effects using instrumental variables.
J. Amer. Statist. Assoc., 91, 444–455.

Berry, D.A., Cronin, K.A., Plevritis, S.K., Fryback, D.G., Clarke, L., Zelen, M., Mandelblatt, J.S., Yakovlev, A.Y.,
Habbema, J.D. & Feuer, E.J. (2005). Effect of screening and adjuvant therapy on mortality from breast cancer. New
Engl. J. Med., 353, 1784–1792.

Bjurstam, N., Bjorneld, L., Warwick, J., Sala, E., Duffy, S.W., Nystrom, L., Walker, N., Cahlin, E., Eriksson, O.,
Hafstrom, L.O., Lingaas, H., Mattsson, J., Persson, S., Rudenstam, C.M., Salander, H., Save-Soderbergh, J. &
Wahlin, T. (2003). The Gothenburg Breast Screening Trial. Cancer, 97, 2387–2396.

Cole, S.R. & Frangakis, C.E. (2009). The consistency statement in causal inference: a definition or an assumption?
Epidemiology, 20, 3–5.

CTFPHC. (2011). The Canadian Task Force on Preventive Health Care: recommendations on screening for breast
cancer in average-risk women aged 40–74 years. Can. Med. Assoc. J., 183, 1991–2001.

Day, N.E. & Walter, S.D. (1984). Simplified models of screening for chronic disease: estimation procedures from
mass screening programmes. Biometrics, 40, 1–13.

Djulbegovic, M., Beyth, R.J., Neuberger, M.M., Stoffs, T.L., Vieweg, J., Djulbegovic, B. & Dahm, P. (2010). Screening
for prostate cancer: systematic review and meta-analysis of randomised controlled trials. BMJ, 341, c4543.

Frisell, J., Lidbrink, E., Hellstrom, L. & Rutqvist, L.E. (1997). Followup after 11 years—update of mortality results
in the Stockholm mammographic screening trial. Breast Cancer Res. Tr., 45, 263–270.

International Statistical Review (2015), 0, 0, 1–18
© 2015 The Authors. International Statistical Review © 2015 International Statistical Institute



16 Z. (A.) LIU ET AL.

Hanley, J.A. (2005). Analysis of mortality data from cancer screening studies: looking in the right window.
Epidemiology, 16, 786–790.

Hanley, J.A. (2010). Mortality reductions produced by sustained prostate cancer screening have been underestimated.
J. Med. Screen., 17, 147–151.

Hanley, J.A. (2011). Measuring mortality reductions in cancer screening trials. Epidemiologic Reviews, 33, 36–45.

Hanley, J.A., McGregor, M., Liu, Z., Strumpf, E.C. & Dendukuri, N. (2013). Measuring the mortality impact of breast
cancer screening. C. J. Public Health, 104, e437–e442.

Hernán, M.A., Cole, S.R., Margolick, J., Cohen, M. & Robins, J.M. (2005). Structural accelerated failure time models
for survival analysis in studies with time-varying treatments. Pharmacoepidem. Dr. S., 14, 477–491.

Hu, P & Zelen, M. (1997). Planning clinical trials to evaluate early detection programmes. Biometrika, 84, 817–830.

Kalbfleisch, J.D. & Prentice, R.L. (2002). The Statistical Analysis of Failure Time Data, Second Edition. New
Jersey: Wiley.

Lee, S.J. & Zelen, M. (2008). Mortality modeling of early detection programs. Biometrics, 64, 386–395.

Liu, Z., Hanley, J.A. & Strumpf, E.C. (2013). Projecting the yearly mortality reductions due to a cancer screening
program. J. Med. Screen., 20, 156–164.

Liu, Z., Rich, B. & Hanley, J.A. (2014). Recovering the raw data behind a non-parametric survival curve. Systematic
Reviews, 3(151), 1–10.

Mandel, J.S., Church, T.R., Bond, J.H., Ederer, F., Geisser, M.S., Mongin, S.J., Snover, D.C. & Schuman, L.M.
(2000). The effect of fecal occult-blood screening on the incidence of colorectal cancer. New Engl. J. Med., 343,
1603–1607.

Mandelblatt, J.S., Cronin, K.A., Bailey, S., Berry, D.A., de Koning, H.J., Draisma, G., Huang, H., Lee, S.J., Munsell,
M., Plevritis, S.K., Ravdin, P., Schechter, C.B., Sigal, B., Stoto, M.A., Stout, N.K., van Ravesteyn, N.T., Venier,
J., Zelen, M. & Feuer, E.J. (2009). Effects of mammography screening under different screening schedules: model
estimates of potential benefits and harms. Ann. Intern. Med., 151, 738–747.

Miettinen, O.S. (2011). Epidemiological Research: Terms and Concepts. Dordrecht: Springer.

Miettinen, O.S. (2013). Screening for breast cancer: what truly is the benefit. Can. J. Public Health, 104, e435–e436.

Miettinen, O.S., Henschke, C.I., Pasmantier, M.W., Smith, J.P., Libby, D.M. & Yankelevitz, D.F. (2002). Mammo-
graphic screening: no reliable supporting evidence? Lancet, 359, 404–405.

Miettinen, O.S. & Karp, I. (2012). Epidemiological Research: An Introduction. Dordrecht: Springer.

Morrison, A.S. (1992). Screening in Chronic Disease, second edition. New York: Oxford University Press.

Rosenbaum, P.R. & Rubin, D.B. (1983). The central role of the propensity score in observational studies for causal
effects. Biometrika, 6, 41–55.

Shaukat, A., Mongin, S.J., Geisser, M.S., Lederle, F.A., Bond, J.H., Mandel, J.S. & Church, T.R. (2013). Long-term
mortality after screening for colorectal cancer. New Engl. J. Med., 369, 1106–1114.

Shen, Y. & Zelen, M. (1999). Parametric estimation procedures for screening programmes: stable and nonstable
disease models for multimodality case finding. Biometrika, 86, 503–515.

Shen, Y. & Zelen, M. (2005). Robust modeling in screening studies: estimation of sensitivity and pre-clinical sojourn
time distribution. Biostatistics, 6, 604–614.

Tabár, L., Fagerberg, C.J., Gad, A., Baldetorp, L., Holmberg, L.H., Grontoft, O., Ljungquist, U., Lundstrom, B.,
Manson, J.C. & Eklund, G. (1985). Reduction in mortality from breast cancer after mass screening with mammog-
raphy. Randomised trial from the Breast Cancer Screening Working Group of the Swedish National Board of Health
and Welfare. Lancet, 325, 829–832.

Walter, S.D. & Day, N.E. (1983). Estimation of the duration of a pre-clinical disease state using screening data. Am.
J. Epidemiol., 118, 865–886.

Zauber, A.G., Lansdorp-Vogelaar, I., Knudsen, A.B., Wilschut, J., van Ballegooijen, M. & Kuntz, K.M. (2008).
Evaluating test strategies for colorectal cancer screening: a decision analysis for the US preventive services task
force. Ann. Intern. Med., 149, 659–669.

Zelen, M. (1993). Optimal scheduling of examinations for the early detection of disease. Biometrika, 80, 279–293.

Zelen, M. & Feinleib, M. (1969). On the theory of screening for chronic diseases. Biometrika, 56, 601–614.

[Received April 2014, accepted December 2014]

International Statistical Review (2015), 0, 0, 1–18
© 2015 The Authors. International Statistical Review © 2015 International Statistical Institute



Measuring Mortality Reductions Due to Screening 17

Appendix A: Relationship to Cumulative Mortality Reduction

Our estimand, the probability of being helped, which equals the time-specific mortality reduc-
tion, has a natural connection to the cumulative mortality reduction, a measure commonly used
as a descriptive or test statistic in randomised trials (Section 4). With the same assumptions as
stated in Section 2.3, we can express the probability of surviving beyond the potential time of
death in the absence of screening, had the cancer proven fatal without screening before time t , as

P.T1i > T0i j T0i � t; E0i D 1/

D 1 � P.T1i � T0i j T0i � t; E0i D 1/

D 1 �

R
v2Œ0;t� P.T1i � v; T0i 2 dv;E0i D 1/R

v2Œ0;t� P.T0i 2 dv;E0i D 1/

D 1 �

R
v2Œ0;t� P.T1i � v j T0i D v;E0i D 1/P.T0i 2 dv;E0i D 1/R

v2Œ0;t� P.T0i 2 dv;E0i D 1/

D 1 �

R
v2Œ0;t� P.T0i 2 dv;E0i D 1 j T1i D v;E1i D 1/P.T1i 2 dv;E1i D 1/R

v2Œ0;t� P.T0i 2 dv;E0i D 1/

D 1 �

R t
0 f1.v/ dvR t
0 f0.v/ dv

� 1 �
F1.t/

F0.t/
;

where Fk.t/, k D 0; 1, are the cause-specific cumulative incidence functions for cancer mor-
tality under no screening and screening, respectively. In the context of planning a trial, Hu &
Zelen (1997, p. 823) use the risk difference F0.�/�F1.�/ at the end of the follow-up period as
the measure of the impact of the planned screening regimen used in the trial. As demonstrated
here, under the assumptions of Section 2.3, the mortality reduction, 1�F1.�/=F0.�/, is equiv-
alent to the probability of being helped by screening given a cancer death during the follow-up
window Œ0; � � in the absence of screening.

Appendix B: Simulation Study

To validate the under-the-null behaviour of the testing procedure described in Section 3.5, we
considered a 15-year follow-up with expected control arm death counts given by D0j D 100,
j D 1; : : : ; 15, and expected total counts dj D D0j C Œ1�H..tj � tj�1/=2I �/�D1j , rounded
to the nearest integer, where the function H.t I �/ was specified through formula (2.4), with
three screening rounds in total, located at the start of the first, second and third years, and the
per-round mortality impact specified through formula (3.3), choosing the parameter values as
logit.�/ D �1, log.˛ � 1/ D 2 and log.ˇ/ D 0. The yearly deaths D1j in the screening arm
were simulated from the binomial distribution, where 	j is given by (3.5). The conditional
likelihood was maximised numerically with respect to � D .logit.�/; log.˛ � 1/; log.ˇ// using
the optim function of R to obtain O� and O	j D Œ1 �H..tj � tj�1/=2I O�/�=Œ1C 1 �H..tj �
tj�1/=2I O�/�, and the expected event counts dj O	j . This procedure was repeated 10 000 times,
with the sampling distributions of the maximum likelihood estimators and the goodness-of-
fit test p-values displayed in Figure B1. The estimators do behave like maximum likelihood
estimators, with approximately normal sampling distribution centred at the true values. Further,
the goodness-of-fit test p-values are uniformly distributed under the null, with the Monte Carlo
type I error rate at a 5% significance level of 0.0514.
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Figure B1. Panel A: Sampling distribution of logit.�/. Panel B: Sampling distribution of log.˛ � 1/. Panel C: Sampling
distribution of log.ˇ/. Panel D: Sampling distribution of the goodness-of-fit test p-values over 10 000 replications.
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