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SUMMARY

This paper presents examples of situations in which one wishes to estimate a multivariate distribution
from data that may be right-censored. A distinction is made between what we term ‘homogeneous’ and
‘heterogeneous’ censoring. It is shown how a multivariate empirical survivor function must be con-
structed in order to be considered a (nonparametric) maximum likelihood estimate of the underlying
survivor function. A closed-form solution, similar to the product-limit estimate of Kaplan and Meier,
is possible with homogeneous censoring, but an iterative method, such as the EM algorithm, is required
with heterogeneous censoring. An example is given in which an anomaly is produced if censored
multivariate data are analyzed as a series of univariate variables; this anomaly is shown to disappear if
the methods of this paper are used.

1. Introduction

The time until the occurrence of an event is a commonly studied variable. Frequently, for
example in clinical trials, data must be analyzed before all of the subjects have experienced
the event. Methods of estimating an underlying distribution from such ‘censored’ data are
well established (Kalbfleisch and Prentice, 1980). However, one is often interested in several
endpoints—for example, when various teeth erupt, various sexual features develop, various
behaviours (e.g. smoking and drinking) are adopted, or certain disease symptoms are first
experienced. Unfortunately, very few multivariate distributions other than the multivariate
normal (Bhattacharya, 1954; Cohen, 1955; Nath, 1974) have been suggested to help model
such phenomena. The univariate negative exponential is the only other distribution for which
a multivariate analogue has received serious study; even then, there are several versions
(Gumbel, 1960; Freund, 1961; Marshall and Olkin, 1967). The difficulty in extending
univariate time-to-onset distributions to many dimensions is compounded by the increased
opportunity for complex censoring; subjects may have reached some, but not all, of the
endpoints by the time of the analysis, and different endpoints may be checked at different
intervals or measured from different origins.

As a result of these difficulties, the various endpoints are often analyzed separately by
means of well-understood univariate actuarial techniques. However, analysis of each marginal
distribution ignores valuable information about the inter-relationships among endpoints, and
indeed can even lead to paradoxical results as will be illustrated later. Rather than remedy

! Present address: Department of Epidemiology and Health, McGill University, 3775 University Street,
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this by attempting to build complex parametric multivariate models, it would seem more
logical to begin by constructing an empirical multivariate distribution. In this way, the data
can be summarized in a multivariate way and parametric representations can be suggested.
Barlow and Proschan have suggested this approach in two papers, although they have limited
the discussion to uncensored data. Their ‘multivariate life-table analysis’ (Technical Report
ORC 76-9, Operations Research Center, University of California, Berkeley, 1976) assumes
complete observations and deals only with asymptotic properties of the resulting empirical
distribution function, while their second article (Barlow and Proschan, 1977) shows how to
estimate a ‘multivariate hazard gradient’ using a piecewise exponential model. Again the
treatment assumes complete observations although it could be extended to include censored
data.

In the present paper we show how to construct a multivariate empirical survivor function
(mesf) from censored data. We distinguish between types of censoring where the mesf can be
constructed explicitly and where an iterative procedure, such as the EM algorithm, is
necessary. To simplify the presentation, but without loss of generality, we consider bivariate
data. Higher dimensions pose no additional difficulties other than notational ones. The
problem is formulated in §2, closed-form mesfs for a frequently encountered type of right
censoring are presented in §3, and a more general form of right censoring, requiring iterative
estimates, is discussed in §4. Section 5 concludes with a discussion.

2. Formulation

Let T = (71, T:) represent a bivariate random variable denoting the durations before two
events occur. The components could refer either to some event in each of two paired organs,
e.g. blindness in an individual, to an event in each of two related individuals, e.g. menarche
in twin girls, or to two different events in the same individual, e.g. smoking and drinking. Let
t1, t2, . . ., t, represent n independent reahzatlons of T. Then by direct enumeration one can
form the empmcal survivor function’ S(t) as an estimate of the underlying ‘survivor’ function
S(t) = S(t1, t2) = pr(T1 > t1; T2 > ¢t2). See Barlow and Proschan (1977) for a full discussion.

However, constraints of time and experimental design often force one to analyze the data
before all 2z events have occurred. Suppose that one can only spend a maximum of L;; time
units waiting for the jth (j = 1, 2) of the two events to occur in Subjecti (i =1, ..., n) and
that the L;; are independent of the #;; (L need not be independent of Ly, but the L; are
assumed independent of each other). Then the observable data for Subject i are contained in
the two vectors t; and z;, where, for j = 1,2, = ¢}, = min(t;;, Li;) and z;; = 1 if £}, = t;; and O
otherwise. Each ¢}, for which z;; = 0 is called a censored observation, since the limit of
observation, L;;, ¢ censors’ the actual t;. Equivalently, one can represent the data on Subject i
by noting that t; belongs to a region or subset %; of the space of T. The region #; will be an
elemental rectangle, a horizontal or vertical strip, or an open quadrant, depending on whether

= (1, 1), (0, 1), (1, 0) or (0, 0) (see Fig. 1 for examples).

Con51der choosing, from among a// admissible survivor functions S(t), one, denoted by
S(t), which maximizes the likelihood .# of the observed data. [We remark in passing that the
concept of nonparametric maximum likelihood estimation poses certain measure-theoretic
difficulties, which are mentioned by Kalbfleisch and Prentice (1980, pp. 12-13) and discussed
more fully by Scholz (1980), who extends the classical definition of maximum likelihood so
that it provides a consistent approach to nonparametric maximum likelihood problems.] For
any specified probability distribution p(t) = dS(t) on T,

Lol | pO=I] P M

integrals and differentials being used for both discrete and continuous-type random variables.
Although the L;; are stochastic, they provide no information about S(t) and so are considered
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Figure 1. Data-defined regions corresponding to complete (Regions 7 and 8), half-censored (Regions
1, 2, 5 and. 6) and doubly-censored (Regions 3 and 4) observations. Regions 4, 5 and 6 arose from
heterogeneous censoring.

‘constants’ in % In order to maximize %, S or equivalently p(t) must be constructed as
follows:

(i) the entire probability mass must be distributed within U;%;; mass placed outside the
data-defined regions %; will not contribute to any of the terms of .%, and will not help to
maximize it;

(i) each #; must receive some probability mass, otherwise £ will vanish; -

(iii)  if either component of t; is censored, its contribution P; = [4 p(t) to Zis not affected
by how p(-) is distributed within %;; thus, P; should be arranged so that it is maximally
shared by other regions, %, that are contained in, or intersect with, %;. In this way, the
contributions P; of these other regions will be increased without changing P;.

Stated in set-theoretic terms, this implies that the total probability mass should be
distributed over the maximal intersections &, . . ., %/, of the #; (by a maximal intersection
2o/ we mean a nonempty finite intersection of the %, such that for each i, &/ N %; = ¢ or ).
Some of the maximal intersections will each contain just one point, which is either an
observed (uncensored) t or possibly an intersection of two ‘half-censored’ observations. The
single points in these sets form unambiguous support points for p(-). In the case where a
maximal intersection .o consists of more than a single point, there is no unique choice of
specific support points from .+, and we can without any loss of generality refer either to .o/
itself or choose a point a from ./ to represent it. However, because we find it easier to focus
on a probability distribution over specific points rather than over sets, we will write p(a)
rather than p ().
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Figure 2. Augmentation and relabeling of original support points a;, gz, a3 and a, (solid circles) as a

rectangular grid (open and solid circles). Grid formed from (i) intersections of vertical and horizontal

lines through original points and (ii) intersections of vertical and horizontal lines through points where

diagonal line crosses the lines through these original points. The augmented set of points is then
relabeled a1 to aes, with the first subscript referring to 77 and the second to T».

Although these guidelines cannot be formalized into any obvious algorithm, we think they
are readily illustrated by the example in Fig. 1. From the n = 8 regions %, shown there, we
can construct a support consisting of m = 5 sets .1, . .., .. From the previous discussion,
it is clear that the observations which generated %, and %#s must form two of the support
points, which we arbitrarily label a; and a,, and that the probability mass p(a:) will contribute
to both P; and P; and thus to £, A third, as = %5 N %, will contribute to Py, Ps and P, while
a fourth, a, = %5 N %, will contribute to both Ps and P;. For the fifth component of the
support for p(-), one can take either the entire %, region or any arbitrary point as € %»; in
any event, p(as) will contribute to both P; and P;.

Once a support set 4 = {ai, ..., an} has been chosen for p(-), the likelihood £ can be
written as :

el 3 0], @
i apeR;
or, in the example in Fig. 1 [with the m = 5 support points ai, . .., as receiving probability

masses of p(a1) = p1, ..., p(as) = ps], as

Lo psps(ps + ps + ps)ps(ps + pa)psprpe.

The remaining task, then, is to determine the magnitudes of p(a:), .. ., p(an). To do this
it is helpful to distinguish two censoring patterns which we will call ‘homogeneous’ and
‘heterogeneous’; we deal with these in §3 and §4, respectively.
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3. Estimating S(t) from Homogeneously Censored Data

We label the censoring ‘homogeneous’ if every two data-defined regions #; and #; are either
disjoint or nested one within the other. This pattern occurs for example when one follows
a subject for equal lengths of time towards each endpoint, i.e. if Ly = L;;. With this type
of follow-up, incomplete observations can be represented by regions which are either
(i) horizontal strips lying entirely to the right of the diagonal 71 = T, (ii) vertical strips lying
entirely above this diagonal, or (iii) squares which are open to the right and have their lower
left corner on the diagonal (Regions 1, 2 and 3, respectively, in Fig. 1). In describing how the
probability mass p(-) is to be assigned over the support set 4, it will simplify the presentation
if we introduce additional support points, which will receive zero mass in the ML estimation,
but which allow us to speak of a grid of K* support points a1 to axx (see Fig. 2).

With an augmented and relabeled 4, and abbreviating p(a,s) to prs, P; can be written as a
sum over a rectangular grid

P = J’ p= ZZ Prs> 3)

where the summation index r(or s) runs from the leftmost to rightmost (lowest to highest) a,s
in #;. The K* — 1 probabilities can be reparameterized into K* — 1 equivalent conditional
ones, 3(K — 1) corresponding to K — 1 sets of quadrinomial probabilities and (K — 1)(K — 2)
to binomial probabilities. Shown schematically in Fig. 3, they correspond respectively to the
K — 1 step-by-step conditional probabilities of advancing along the diagonal until one (or
possibly both) of the events has occurred, then (if necessary) proceeding parallel to the
vertical or horizontal axis, in (K — 1)(K — 2) possible steps, until the second event is reached.
Letting X(a) and Y(a) refer to the first and second coordinate values of a, the probabilities
can be written as:

orr = pr{T1 > X(akk); T.> Y(aw) | Ti = X(are); T2 = Y(aw)}
=2 Xps/L X ps

r>k s>k r=k s=k

D) pks/ X X prs

s>k r=k s=k

rl<sksK-1, ©)

¢-k= 2 prk/z 2 Prss
r>k

r=k s=k J
and
Y = pr{Te > Y(ar) | Tr = X(an); To = Y(aw))
=Zpks/2pks, I<k<I<K-1, ®))

s>1 s=1

=3 pu/ 3 prs I<i<k<K-1l | ©)
r>k r=k

Each P; can be written as a product of ¢ and  terms. By doing this and rearranging terms
and collecting exponents, #is simplified to the mathematical equivalent of a chain of quadri-
nomial and binomial expressions, namely

£= 1;[ [¢2’k’”¢2?’¢7‘1&”(1 = Pre — Gr. — P.x)"™

{IIJk Y1 — %z)”“}{klll ¥t (1 — %z)"“}] s (D
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Figure 3. Illustration of quadrinomial and binomial reparameterization. R, N, n and m refer to observed
counts; ¢ and y refer to expected proportions or probabilities. For full description, see text.

where, as is depicted in Fig. 3, the exponents refer to the following counts of sample members:

nr, those where the two events occurred at X(ax) and Y(aw);

N, those proceeding through ;. without either event taking place;

ny., those where the ‘X’ event occurs at X(ax:) but the other occurs after Y (ax);

n.x, the converse of n.;;

my (I > k), those where, the ‘X’ event already having taken place at X(axz), the ‘Y’
component proceeds through Y(ax);

my (I < k), the converse.

The ML estimates of the ¢rx, ¢r. and ¢., are then simply the proportions Nex/Re, ne./Re
and n../Rp, respectively, where R, = Nu. + ni. + n., + npe denotes the number in the ‘risk
set’ at arx. Similarly, t,lA/kz = M/ Rri, where Ry = myp; + ny;. The ML estimates of the original
Prs are obtained from (4), (5) and (6),

(

r—1 N R R )
(H $kk>(1 — G — Or. — 1) ifs=r,

k=1
r—1 s—1
ﬁrs=< <H ¢kk>¢r-< H ‘l:rl)(l_‘l/rs) ifS>r,
k=1 I=r+1
s—1 " " r—1 " "
<H ¢kk>¢.s< I1 szs)(l — )  ifr>s (®)
L \k=1 k=s+1

’

The ML estimate of S(f1, #;) can be obtained by summing the p,s in the open rectangle
(t1, ) X (2, 00).

If T1 and T are continuous-type variables, then sz, + n.; + ni. < 1; thus at least two of the
corresponding ¢ terms will be estimated as zero. If n.. = 1, then the mp, (| =k + 1, ...) will
each be unity until the other event takes place somewhere beyond Y(ax:), after which they
will equal zero. If the observation time runs out before this second event occurs, the y
parameters beyond the last ¥ observation on this subject cannot be uniquely estimated. This
nonuniqueness is similar to the problem that occurs in the univariate Kaplan-Meier survival
curve when the largest observation is censored. In the multivariate case it occurs each time a
pair of values, recorded on a continuous scale, is ‘half-censored’, and means that one cannot
supply a unique estimate for S(t,, #;) when the region (71 > #; T> > 1) contains such
observations. This shortcoming can be lessened by discretizing or grouping the data into
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intervals, as is commonly done in univariate life-tables, so that there are fewer ¢ and ¢
parameters to be estimated, and from larger, more stable, denominators. In fact, in many
studies subjects are followed up on a fixed schedule so that 7 actually takes discrete values.

The variance of S(tl, ;) can be calculated from a heuristic extension of Greenwood’s
formula (Kaplan and Meier, 1958). It involves computing and summing the variances and
covariances of each p,, in (t1, ©) X (2, ®), i.e.

var{S(t)} = Y3 Y cov( frs, prs’). &)

rs r's’

If r <'s, the variance terms in (9) can be approximated by

r—1 s—1
var(j) = var {(Jl m)q». (H 1 w)a - ¢,s)} (10)
r! 1 - ¢kk 1 - ¢r. st 1 - ‘Prl Hbrs
= Zs + + + s 1 1
4 {k§=:1 Ridur R, ¢, 1=§+1 Rryri  Ris(1 — ) (b

with the obvious converse if r > 5. This approximation is obtained by appealing to the
approximate independence of the multinomial and binomial terms in (10) and by using the
fact that if X, X, ... are independent positive random variables,

var([] Xi) = {I] E(X)}* Xlvar(X;)/{E(X:)}"].

Similarly, if Y1, Y, . . . are independent positive random variables which are also independent
of the X;, and if Z, and Z; are correlated but independent of both the X; and the Y;, then the

covariance between
p q p r
()2 11, ) ana (1) (11 %)
i=1 i=p+1 =1

is approximately given by the expression

[var(ﬁ Xi>E(Z122) + {E(ﬁ Xi)} cov(Zy, Z, :|{ II E(X)}{l:[ E(Y,)} . (12)

Thus the covariance terms in (9) can be obtained by first expressing each p,. and p, s as pairs
of products, as in (8), and then applying (12).

Space does not permit us to present data and results of an analysis of a real data set
containing homogeneous censoring, but examples are available on request. However, the
following, somewhat extreme, hypothetical example will illustrate how much more efficient
a multivariate analysis can be, even if one is only interested in each variable separately.
Suppose one takes a sample of » from the following bivariate distribution:

T:

S - N W

S O v

N e OO
w Sw- O

01
T

and that one half of the sub_]ects can only be followed for one time unit. If the quantity
pr(T, > 2) is estimated by using S(t) to derive the marginal distribution S, (¢), its sampling
variance' will average 4/(18n), which incidentally equals the precision one would expect

! In this example pre. (71 > 2) involves three terms psi, psz and paz. Only pa» has nonzero variance,
obtained from (1) withr =3, s=2,pn=§,¢ou=% Ri=n¢2=L, Re=}n =0 Ry =1n
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using the $1(¢) computed from n complete univariate observations on T,. By comparison, if
the quantity pr(7: > 2) is estimated by the usual method of Kaplan and Meier (1958), its
sampling variance will, according to Greenwood’s formula, average 7/(18r). This use of T
as auxiliary information is similar in spirit to the more parametric approach described by
Lagakos (1976).

4. Estimating S(t) from Heterogeneously Censored Data

We say that the bivariate data are heterogeneously censored if some of the data-defined
regions cannot be classified into one of the three types (i), (ii) and (iii) described at the
beginning of §3. Examples are Regions 4, 5 and 6 in Fig. 1, which arise when the potential
follow-up times for the two events are different, such as (a) when one monitors an individual
for the occurrence of two medical conditions, which are detected by two tests performed at
different intervals, and (b) when one follows a pair of individuals for different durations
towards a single endpoint.

In this situation, every pair of regions is not necessarily nested or disjoint. As a result, a
closed-form solution can no longer be found; instead one must simultaneously estimate all p,
by an iterative technique. Available methods are the Newton-Raphson method, its modifi-
cation known as Fisher’s method of scoring (see Kendall and Stuart, 1967, p. 49) and the
derivative-free EM algorithm described by Dempster, Laird and Rubin (1977). For a number
of reasons, we suggest the latter: (i) it is very easily programmed for a computer; (ii) it avoids
having to constrain the p,, to [0, 1]; (iii) it avoids inversion of large matrices; (iv) it corresponds
to the ‘selfconsistency’ construction suggested for univariate life-tables by Efron (1967); and
(v) it has intuitive appeal in that one can observe how the successive approximations to the
Prs are formed by repeating the two ‘E’ and ‘M’ steps,

E-step:Estimate how the incomplete observations would, using the current estimates of the
Prs, be expected to distribute among the support points {a,;} and add these to the
observed counts for the complete observations;

M-step:Form revised ML multinomial estimates of the p,, based on these new ‘counts’,
until the revisions no longer change the p,,. The approximate variance-covariance matrix of
the prs can be obtained in the usual way from the matrix of second derivatives (3° log &/
dprsdprs ), or by a modification to the EM algorithm suggested by Louis (1982).

In the example which follows, the variables of interest are a patient’s tolerance to two
cancer chemotherapy regimens, AV and CMF, studied using the Eastern Cooperative
Oncology Group Protocol 2173 (1973). Patients with breast cancer were to first receive AV
for a total of eight cycles, or until tolerance was reached or the disease progressed, whichever
occurred first. They were then to receive as many as six cycles of CMF, again unless
prohibited by toxicity or disease progression. If drugs were discontinued because of disease
progression or reasons unrelated to treatment, the data on how many cycles of drug could be
tolerated became censored. The data on 109 patients are shown in Table 1. Using the EM
algorithm with a convergence criterion of Y { prs(new) — p,s(old)}* < .001, convergence to
a maximum likelihood solution was reached in 50 iterations (the large number of iterations,
compared with the Newton-Raphson method, reflects the linear rather than quadratic
convergence). The estimated joint distribution is presented in Table 2. From these one can
examine the dependence between the tolerance to the two regimens. Models which attempt
to summarize this dependency can be tested for goodness of fit using the method of Turnbull
and Weiss (1978).

5. Discussion

There are obvious benefits of analyzing censored multivariate ‘failure-time’ data using
multivariate techniques. First, one uses a// available data in the calculation of summaries
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Table 1
Tolerance of full doses of AV (i) and CMF (), including data censored by disease progression or
protocol design

) J J
1
1 2 3 4 5 =6 1 2 3 4 5 =6
nij a;;
1 10 2 2 1 0 1 3 2 0 0 0 0
2 9 2 1 2 0 2 2 1 0 0 0 0
3 3 0 0 2 1 1 1 0 0 1 0 0
4 1 0 1 1 0 1 2 1 0 0 1 1
5 1 0 0 0 0 0 1 0 0 0 0 0
=6 2 2 1 0 0 0 0 0 0 0 0 0
b,’j Cij
1 0 1 0 0 0 0 1 1 1 0 0 0
2 3 2 0 0 0 1 0 0 0 0 0 0
3 2 0 0 0 0 0 1 0 1 0 0 0
4 0 1 1 0 0 0 0 1 0 1 0 0
5 0 0 0 0 0 0 0 1 1 1 0
=6 9 2 1 2 1 3 0 1 2 0 0 2

Key: n;; = number tolerating exactly i and exactly j doses, a;; = number tolerating exactly i and at least j doses,
b;; = number tolerating at least / and exactly j doses, ¢;; = number tolerating at least / and at least j doses.

Table 2
Estimated probability distribution (from the data in Table 1)
J . .
! pi. pi
1 2 3 4 5 =6
bis
1 .091 025 .038 019 .000 .019 19 19
2 .082 025 .014 .029 .000 .030 18 18
3 .032 .000 .000 .023 .017 .017 .09 .10
4 012 .000 .015 .017 .000 .050 .09 .10
5 012 015 .000 .000 .000 .000 .03 .02
=6 135 .068 .032 .003 019 132 42 41
p.j 36 .14 .10 11 .04 25
b .36 .14 .09 12 .04 25

such as correlation coefficients, times to first failure, patterns of failure etc.. Moreover, the
methods we describe are distribution-free so that the data are free to suggest parametric
models. Second, as a by-product of the greater precision, interrelationships between variables
are preserved and gross inconsistencies produced by univariate analyses can be avoided. As
a somewhat startling example, consider drawing a sample from a bivariate distribution in
which one variable is stochastically larger than the other. Suppose the n = 5 data pairs are:
(1.8,5.2), (4.7, 11.8), (6.2+, 6.2+), (13.6+, 13.6+) and (17.0, 21.7) and that they represent 71,
the months to recurrence, and T5, the months to cancer death, of five cancer patients (where
i+ denotes an observation censored at 7). By analyzing each variable separately by the method
of Kaplan and Meier (1958), one obtains the two curves depicted in Fig. 4A, pointing up the
logical inconsistency, namely that S»(¢) < S,(z) for some ¢, described by Thaler (Technical
Report, Biostatistics Laboratory, Memorial Sloan-Kettering Cancer Center, New York, 1977).
By using the bivariate methods of the present paper, one avoids the anomaly and, as is
illustrated in Fig. 4B, the mesf produces marginal esfs which preserve the stochastic ordering.

In summary, this area of multivariate life-tables, and of arbitrarily censored multivariate
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Figure 4. A, Survival curves estimated from the two separate univariate samples of 71 and T:. B,
Survival curves estimated from the bivariate sample of (71, T3).

data in general, is only just beginning to be explored. Although the estimation methods may
appear to be straightforward generalizations of univariate methods, the infinitely larger range
of even a bivariate random variable, compared to a univariate variable, quickly leads to
problems of insufficient data and unstable estimates. To overcome them, and to make the
nonparametric life tables more useful, one may need to combine the empirical distribution
with a parametric prior distribution (see Susarla and Van Ryzin, 1976) or use parametric
representations of the piecewise hazards. Tests of fit of such models can presumably be
carried out using extensions of the test given by Turnbull and Weiss (1978) for univariate
data. Presumably, the EM algorithm will easily accommodate more complex left, right and
interval censoring (Turnbull, 1976), but the development of techniques which allow for
systematic differences between subjects through the use of covariates poses a real challenge.
With regard to the latter, the model put forward by Clayton (1976), though very specialized,
is a step in this direction. Finally, we call attention to two papers on this subject by Campbell
(1981) and Campbell and Foldes (Mimeoseries 80-10, Department of Statistics, Purdue
University, 1980) which came to our attention while the present paper was being revised.
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RESUME

Cet article présente des exemples de situations ou I'on souhaite estimer une distribution multivariée
pour des données qui peuvent étre censurées a droite. Une distinction est faite entre des censures
‘homogenes’ et ‘hétérogenes’. L’article montre comment construire une fonction de survie multivariée
empirique, afin de construire un estimateur (non parameétrique) du maximum de vraisemblance pour la
fonction de survie sous-jacente. Une solution, similaire & I'estimateur du produit limite de Kaplan et
Meier, est possible avec une censure homogene, mais une méthode itérative, tel que ’algorithme EM,
est nécessaire pour une censure hétérogene. Un exemple est donné, ou se produit une anomalie si les
données censurées multivariées sont analysées comme des séries de variables univariées; on montre que
cette anomalie disparait a 'aide de la méthode présentée dans cet article.
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