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Introduction

I began my career as a biostatistician in 1973 “BC” (before 
computers). The BC is not entirely accurate, since we did 
have mainframe computers, but they were slow and not 
user-friendly, and statistical packages were few, special-
ized, and not very transportable. Data-generating instru-
ments were also crude: there were no ultrasound, CT, or MR 
images, or genetic or genomic analyses—and only a few 
tumor markers. Staging, treatment planning (particularly in 
radiotherapy), and treatment delivery were very crude, and 
treatments were often of the shotgun variety. And the data 
concerning the pretreatment profiles and treatment out-
comes of patients could only be conveyed by mail via paper 
and stored on punch cards or tape.

Yet the statisticians in the various cooperative groups 
and large cancer research centers who joined the “war on 
cancer” in the 1970s felt like pioneers. We were bringing 
scientific rigor to oncology investigations by insisting on 
detailed study protocols for randomized clinical trials, 
which included criteria for inclusion and exclusion, mea-
surement quality, and assessing response to therapy and 
grading toxicity. They included prespecified analyses and 
sample size considerations. Individual data were submitted 
regularly by designated “data managers” in institutions and 
carefully checked by statistical office data managers. At 
each of the twice- or thrice-yearly group meetings, the data 
generated up until the 2-month cutoff for the meeting were 
reported on.

By the time I came to McGill in 1980, the SAS software 
had already reached there, but the walk to the mainframe 
was longer. PCs came in the early 1980s, followed in the 

late 1980s and early 1990s by the fax and Internet. I col-
laborated widely, on topics such as pediatrics, geriatrics, 
and heart disease prevention. I lost touch with the cancer 
trials, which were becoming much more sophisticated, and 
focused more on nonexperimental data, where we had to be 
more cautious and think more. I came back into the cancer 
field in 1994, when I was asked to join a team advising  
the Quebec Health Ministry on whether it should pay for 
prostate-specific antigen (PSA) tests to screen for prostate 
cancer. I have spent the last decade on the statistical task of 
measuring the mortality reductions produced by cancer 
screening and arguing against unprincipled one-number 
measures that ignore the way screening achieves its intended 
goals.1

In the remainder of this article, I recount some personal 
experiences. Some are from the Eastern Co-operative 
Oncology Group (ECOG) and Radiation Oncology Therapy 
Group (RTOG) trials my fellow biostatisticians and I 
worked on; one is from a statistical consultation: it came 
from a neurologist who was involved in a multicenter trial 
of a possible drug treatment for multiple sclerosis. The last 
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Abstract
My early years as a statistician were with the Eastern Co-operative Oncology Group and the Radiation Oncology 
Therapy Group; three of these years were spent at the Sidney Farber Cancer Institute. Later, I collaborated widely with 
investigators in many clinical research areas. I reflect on the “statistical interrogations of nature” I saw (and helped some 
of these) investigators plan and carry out. I look back on their (and my own) statistical behaviors when interpreting the 
information these interrogations produced and—using a few vignettes and some computer-generated observations—draw 
some lessons from them. These mainly have to do with making too much of one’s data.
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one links back to an issue that we tended to ignore in the 
early oncology trials but is now much bigger in scope. My 
hope in recounting these personal experiences and in using 
modern computing to generate illustrative data is to show 
that the statistical interrogation of nature is more compli-
cated than we first thought, and that we should not always 
trust our tools and our intuition. We do not like to admit that 
we do not know, or that we cannot truly distinguish between 
two important alternatives, or that we just do not have 
enough data to be sure. Instead, we tend to focus on the data 
that support our theories or those of our clients. Fortunately, 
some statistical errors are self-correcting, even if post hoc; 
for the remainder, the best we can do is to appreciate how 
common they will be.

Before I address these personal observations, I begin 
with two Big Data discoveries from much earlier times. 
One took 600 years for the explanation to be overturned; the 
other, although correct, took almost 50 years to be accepted.

Big Data from 14th and 19th Centuries

On the Nature and Mode of Transmission of the 
Black Death/Plague

In late 1348, in response to a request from the king of 
France, the college of the Faculty of Medicine at the 
University of Paris consulted “very many knowledgeable 
men in modern astrology and medicine concerning the 
causes of” the epidemic now known as the Black Death, 
which began to ravage Europe in late 1347. As to the “dis-
tant” cause “which is up above and in the heavens,” they 
ascribed it to a certain configuration in the heavens: “in the 
year of our Lord 1345, at precisely one hour past noon on 
the twentieth day of the month of March, there was a major 
conjunction [lining up] of three higher planets [Saturn, 
Jupiter, and Mars] in Aquarius.”

They cited a considerable amount of literature and math-
ematical models, dating back to Aristotle and the ancient 
philosophers, to back this up.

Mortalities of men and depopulation of kingdoms happen 
whenever there is a conjunction of Saturn and Jupiter: on 
account of their interaction disasters are magnified threefold to 
the third power. Moreover, the conjunction of Mars and Jupiter 
brings about a great pestilence in the air. So in 1345, Jupiter, 
being hot and wet, drew up evil vapors from the earth, but 
Mars, since it is immoderately hot and dry, then ignited the 
risen vapors, and therefore there were many lightning flashes, 
sparks, and pestiferous vapors and fires throughout the 
atmosphere.

I call this an example of Big Data because the investiga-
tors had the entire heavens and an unspecified and virtually 
unlimited time window within which to search for and dis-
cover a cause. They were not limited to planets, or to these 

three planets: any two objects of the same genre would do, 
and any three would be better, and in any of the 12 signs of 
the zodiac. Nor were they limited to a specific latency 
between their alignment and the onset of the epidemic.

Whenever a skeptical colleague of mine is asked after 
the fact to calculate the p value for a coincidence, he replies 
that it must be 1. By that he means that if one first gets to 
pick the extreme data and then asks someone else to calcu-
late a p value, it is not the same as “calling the shot” first, 
calculating the probabilities of all the possible extreme 
results, and then seeing if one can make the shot. Imagine 
all elementary schools in a large country, for simplicity all 
the same size, with an average 1.5 sets of twins per school. 
Some school somewhere will, just by chance alone, that is, 
even in the absence of any real cause, have seven sets. In an 
attempt to discover/investigate a possible cause, the proba-
bility of observing such an extreme school is very high if 
one first sought out such a school; it is very different if one 
first targeted one or more schools where the potential causal 
agent was present and then determined how many sets they 
had.

This reluctance to carry out after-the-fact probability cal-
culations may be extreme, but it illustrates the difficulty of 
enumerating all the data possibilities one would have con-
sidered had one been asked to do the calculation before the 
fact (the polymath Sir John Herschel was one of the 19th-
century philosophers of science who argued similarly). As I 
have illustrated using after-the-fact calculations concerning 
lotteries and birthdays,2 we tend to overlook the ones that 
did not happen (but would have also made for a good head-
line or publication) and focus only on the ones that fit our 
theory. Those who come upon the results of the “Texas 
sharpshooter” (who first fires shots randomly at the side of 
the barn and then draws a bull’s-eye around each of the bul-
let holes)3,4 do likewise and are then surprised when the 
results fail to replicate. Big Data tend to be unplanned or 
collected without a prespecified plan as to their exact pur-
pose; just as with scanning the entire heavens for a cause, 
they allow us to be more precisely and spectacularly wrong.

The observations from other epidemics in subsequent 
centuries, such as in London in 1665, did not change the 
thinking as to the origins of vapor/miasma. It was only in 
1894 that Yersin described and cultured the causative bacte-
rium and in 1898 that Simond discovered the transmission 
of the bacteria from rodents by flea bites.

On the Mode of Transmission of Cholera

John Snow is remembered and revered by epidemiology 
students and textbooks for the data map showing the spatial 
distribution of more than 600 cholera deaths in a few weeks 
in 1854 in a small neighborhood of central London, and 
their connection with a particular water pump. But these 
data by themselves did not establish that the cholera was 
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spread by water or by that pump; indeed, as one critic put it, 
there were so many pumps in the district that the outbreak 
would have to occur near one of them. It was only after his 
book was published that a local curate discovered the 
“smoking gun” and established the index case. However, 
the book does contain data collected by Snow for the much 
larger area of South London over several months, where 
two rival water companies were in competition. Many con-
sider that these (planned) data provide much stronger evi-
dence for the “waterborne” hypothesis. Sadly, Snow died in 
1858, having convinced no one. One, William Farr, did con-
vert in 1866 and made a critical intervention that saved 
many lives in East London. But it was only when Koch (re)
discovered the cholera Vibrio bacterium under the micro-
scope in 1884 that the theory began to be accepted, and 
even in Hamburg in 1892, the opposition to Koch’s theory 
led to more than 8000 deaths.

By contrast, a much smaller and little-known epidemio-
logic and laboratory investigation by English physician sci-
entist George Baker, published 250 years ago,5,6 was a 
“drug discovery” that led to rapid success in eradicating the 
“Devonshire colic.” Today’s investigators, who wish to 
contribute to knowledge rather than information, might 
wonder why Baker’s discovery succeeded and Snow’s 
failed. To be fair, Baker had an easier task, since there had 
already been other instances involving, and prohibitions 
against, adulterating wine, using an agent the consumer 
could “see.” By contrast, the competing agents for the 
explanation of the mode of transmission of cholera were 
both invisible. The “germ” had been visualized7 the very 
year that Snow completed his book, but this discovery was 
overlooked and dismissed until the rediscovery 30 years 
later by the more authoritative Robert Koch, in an era when 
it was easier to replace the long-prevailing miasma theory.

Lessons from My Work in Oncology

As part of my doctoral work, I had used a crude breathalyzer 
to measure carbon monoxide levels in cigarette smokers. But I 
did not appreciate the important role of measurement error in 
statistical work until, in ECOG, I worked with Mayo Clinic 
oncologist Charles Moertel. His demonstration8 of the large 
measurement errors in measuring the sizes of tumors—even in 
ideal simulated conditions—was directly responsible for 
ECOG adopting a much more stringent criterion for a “par-
tial response” to therapy. Until then, the cutoff had been a 
25% reduction from baseline; as a result of his study, it was 
changed to 50%.

Another statistical practice of the ECOG investigators 
took longer to change, and it was only years later that I 
became sensitized to the issue. Many of the ECOG trials 
addressed new agents as last-resort treatment for advanced 
cancer (where survival was maybe 2–4 months). At that 
time, it was common to assess the validity and genuineness 

of the tumor responses by comparing the survival (since 
randomization) of the responders and nonresponders. 
Invariably, the responders lived longer. Our boss, Marvin 
Zelen, kept preaching that this was an unfair comparison, as 
one had to live 3 or 6 weeks (one or two cycles) just to show 
a response, whereas nonresponders might die at any time 
before or after that. A similar selection force was operating 
in the comparisons of the first heart transplant recipients, 
where time was measured from the day one was placed on 
the waiting list. Those who received a transplant had to wait 
(i.e., still be alive) for a donor to become available, but 
those who did not had no such constraint. This meant that 
any intervention that required a wait (even if it were com-
pletely ineffectual) had an inbuilt survival advantage. In an 
oncology journal in 1983, three statisticians from Zelen’s 
group9 described this error and called for the practice of 
comparing the survival of responders and nonresponders to 
stop.

For many years, this bias went by a number of names, 
including survivor bias, but it did not get much attention. 
Once the term immortal time (a term that I have since traced 
back to the 1970s) was used as the title of a 2003 article; the 
bias is now widely referred to as immortal time bias. We 
review its long history—going back to the mid-1800s—and 
its still-increasing and disturbing prevalence in a 2014 arti-
cle.10 One of the drug classes whose reputation has benefit-
ted considerably from several Big Data “discoveries” is the 
statin medications.11 Sadly, these benefit discoveries are 
mostly false. This is not just because the (nonexperimental) 
data in the large administrative and clinical databases are 
imperfect, but also because the investigators used flawed 
comparisons and were then reluctant to relinquish the rec-
ognition their findings had brought them and their institu-
tions. Not all discoveries are for the good of patients: some 
are merely for the good of academics, and even when these 
are refuted, the original publications continue to be cited.

During my 7 years in oncology, I was associated with 
maybe a dozen trials (when I moved to McGill, other statis-
ticians took over the ones still ongoing). Most of them were 
eventually published, but I suspect a few (the negative ones) 
were not. At the time, advances in cancer therapy were few, 
and so I was happy to have been involved in one ECOG 
study that reported a statistically significant difference 
(“The response rate to 5-FU + methyl CCNU without cyclo-
phosphamide induction was 40% and this was significantly 
superior to all other regimens”). The article made it into the 
journal Cancer.12 Two years later, a larger study conducted 
by another cooperative group13 was unable to demonstrate 
any superiority. Thus, I now suspect that our “positive” 
study was in fact a false positive.

All along, Zelen had reminded us that this can happen, 
especially as many of the agents tested against advanced 
cancer are ineffectual. But he did not publicize his reason-
ing widely. During the 1980s and 1990s, in the course notes 
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I gave to our McGill graduate students in epidemiology, I 
included this paragraph:

The influence of “background” is easily understood if one 
considers an example such as a testing program for potential 
chemotherapeutic agents. Assume a certain proportion P are 
truly active and that statistical testing of them uses type I and 
type II error rates of α and β respectively. A certain proportion 
of all the agents will test positive, but what fraction of these 
“positives” are truly positive? It obviously depends on α and β, 
but it also depends in a big way on P, as is shown below for the 
case of α = 0.05, β = 0.2.

P --> 0.001     0.01     0.1     0.5
TP = P(1- β) --> 0.00080 0.0080 0.080 0.400
FP = (1 - P)(α) --> 0.04995 0.0495 0.045 0.025
Ratio TP : FP --> ≈ 1:62 ≈ 1:6 ≈ 2:1 ≈ 16:1

Zelen was well ahead of his time. These are the same 
calculations that form the basis for the 2005 article “Why 
Most Published Research Findings Are False”14; see also 
the Economist15 for a very effective figure that simplifies 
the mathematics. The main difference is that Zelen (and cli-
nicians who refer to the positive predictive value of a medi-
cal test) emphasized the true ones, whereas the tendency 
nowadays is to highlight how common are the false ones 
and to use the term false discovery rate, introduced in 1995 
by Benjamini and Hochberg.16

But Zelen could not have anticipated just how many 
compounds get screened today, and so we should focus on 
the proportions closer to the left-hand side (0.0001) of the 
above table—the Economist used the 0.1 in the column sec-
ond from the right.

Neurology

In the 1990s, a neurologist who had taken my statistics class 
later consulted me on a clinical trial of an agent to slow the 
progression of multiple sclerosis. At the time, there were no 
effective treatments for this condition, so everyone was hoping 
for a breakthrough. The just-concluded trial had enrolled and 
followed for 2 years a large number of patients at several North 
American sites. But again, the results based on the primary 
endpoint (clinical exacerbations) were negative: the curves for 
the experimental and placebo arms were “virtually twins of 
each other.” The company had already informed the Securities 
and Exchange Commission that the study had been negative.

However, there was a glimmer of hope: the study 
included, as a secondary endpoint, the changes in lesion 
volumes, as measured by MRI scans at baseline and at 2 
years. In one disease subgroup, there was one patient in the 
experimental arm whose lesion volume had dramatically 
regressed—something seldom seen. I was skeptical and 
wondered if it might be a data error, but the investigator 
insisted that could not be, telling me that “everything is 

done by computer.” The Montreal Neurological Institute 
and Hospital acted as the reference center and repository for 
all of the images and used a computer algorithm to auto-
matically compute the lesion volumes. I also wondered if 
the pre- and postimages were of the same brain.

That evening, the neurologist called me to say that he 
had gone back to the hospital and checked the images. Even 
though there can be small discrepancies in aligning two 
images from the same patient, it was immediately obvious 
that the problem was much bigger: the pre- and postimages 
were indeed from two different patients! But in the mean-
time, on the basis of this miracle regression, the executive 
of the small (one-product) drug company was in Europe try-
ing to sell the company to a larger one.

Errors of this type are still easily made and can be large 
consequences, but nowadays the data that contain them are 
also more easily disseminated online, and it can take con-
siderable time to undo them.17

Even sadder was the longer time the trial had taken. 
Typically, all eligible multiple sclerosis patients at the trial cen-
ters were enrolled in a single trial, and when it ended without 
any evidence of benefit, they were all enrolled in a trial of the 
next promising agent. But in this particular trial, the accrual 
had taken considerably longer. Before mounting it, the com-
pany had carried out a pilot study and found especially promis-
ing preliminary results in one (relatively infrequent) disease 
subtype. Based on this, it insisted that the trial should accrue a 
sufficient number of patients into this particular stratum. 
Because of this desire to replicate the preliminary findings and 
gather convincing evidence for the drug approval process, the 
accrual to the trial enrolled a very large number of patients in 
the other more common subtypes while waiting to fill the 
quota for the one with promise.

The statistical lesson I took from this is that one should 
not bet the bank on an extreme result in a small subgroup. 
By definition, results in smaller samples are more volatile, 
and thus the most likely to be the most extreme. Regression 
to the mean is not just a theoretical concept. It happens to 
real investigators.

Evidence That Accrues in Time

In our oncology trials in the early 1970s, evidence was 
accrued over time but traveled from individual university 
medical centers to our statistical office in small paper pack-
ets at the speed of the U.S. Postal Service. Since the motto 
of the cooperative oncology groups was to speed up time, 
we statisticians introduced interim analyses with blinded 
reporting of treatment arm comparisons. But we did not 
allow for the statistical side effects of these multiple looks 
at the accumulating data.

In keeping with today’s faster timescales and ease of 
computing, I end this piece with a computer simulation of 
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the accruing evidence from investigations of compounds: in 
this simulation, most of these are inert; a small percentage 
have (different levels of) activity. A sample size of n = 155 
in each panel would have been sufficient to be 80% sure, if 
using a one-sided test with an alpha level of 0.05, of obtain-
ing a statistically significant departure from the null if in 
fact the true signal-to-noise ratio was 0.2 (considered a 
small effect size).18 However, I have simulated the more 
common situation where the investigators run out of 
resources, patience, or time at n = 50 (an actual sample size 
that provides 80% power against an effect size of 0.35).

Analyze Once

What happens when the traditional “analyze once” plan is 
actually followed? The results at the end of 96 of these stud-
ies (i.e., when n = 50) are shown as diamonds/circles at the 

right-hand side of each of the 96 panels in Figure 1. The 
reader can count how many of them showed a statistically 
significant effect and wonder how many of these positive 
results are genuine and how many are false leads. One can-
not get a reliable estimate from a mere 96, but one can from 
the table in the bottom right corner, which is based on a 
much larger number. Of any 100 compounds tested, on 
average 11 would show a statistically significant result at 
the end of n = 50. If a slight majority (say 60%) of all com-
pounds are inert, then this majority will still generate an 
expected 60% × 5% = 3 false positives per 100 compounds 
tested, so (again on average) 8 of the 11 may be genuine.

The percentages positive at the end in each row of that 
table bear out the prestudy sample size calculations. Some 
5% of inert compounds yield statistically significant results, 
whereas 68% of those with a strength of 0.2 and 88% of 
those with a strength of 0.3 do so (we had calculated that 

Figure 1.  Final (indicated by red diamonds [p < 0.05] or black circles) and accumulating (shown as lines) evidence in the investigation 
of many compounds (96 shown). The final sample size in each case is 50. The upper boundaries of the colored bands correspond to 
p values of 0.75, 0.5, 0.25, and 0.05. Shown as red dots are the observed effect sizes when the calculated p values are less than 0.05. 
Shown in blue on the vertical axis at the boundary is the scale for the effect sizes. The table in the bottom right corner shows the 
percentage of compounds that resulted in a positive statistical test, both at the end—when the final sample size was reached—and at 
some point as the evidence was being accumulated.
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80% of those with a strength of 0.35 would do so). If we 
trace the results back to the categories they come from, the 
overall (or average) positivity rate of 11% suggests that in 
the mix of compounds, somewhat more than 60% are inert.

Figure 2 shows what would be observed if each of the 
96 compounds (and each of the many more in the table) 
were retested with a much larger sample size (of just over  
n = 600), designed to detect signals as small as 0.1; it also 
shows, for each of the 10 truly active compounds among the 
96, the true effect size, that is, what one would measure 
using an infinite sample size. I leave it as an instructive 
exercise for readers to determine how many of the com-
pounds identified in the initial screen were again identified 
in the second, how many of the 10 truly active ones were 
identified initially or in the second round, and how many 
additional false leads arose from the second round.

Again, what one observes in the 96 compounds shown is 
not as reliable as the rates shown in the table. Overall, of any 
100 compounds tested, an average of 14 would show a 

statistically significant result at the end of n = 600. This makes 
sense, as the average of 14 will continue to contain 3 (if 60% 
are inert), 4 (if 80% are inert), or 4.5 (if 90% are inert) false 
positives, but now the remaining 9 or so will be genuine. I can 
now reveal that the “mix” of strengths in the very large simu-
lated series is exactly as it appears in the panels shown; 90% 
are inert, while 2% each have one of the five strengths shown. 
So, 14 is a weighted average (90%, 2%, 2%, 2%, 2%, and 2%) 
of the test positivity rates in the last column. All but the com-
pounds with the lowest strength (0.1) are reliably identified by 
the large sample size employed.

In summary, if the traditional analyze once plan is actu-
ally followed, then the operating characteristics are as the 
statistical laws predict.

Analyze Often

Naturally, many investigators do not wait until all the data 
are in, but instead monitor the accumulating evidence, 

Figure 2.  What might be observed if each of the compounds in Figure 1 were retested with sample sizes of n = 618. As in Figure 1, 
final results are indicated by red diamonds (p < 0.05) or black circles; accumulating evidence is shown as a line. The true magnitude of 
the effect is shown for each of the 10 active compounds among the 96 shown. Overall, of the many compounds that are the subject of 
the table in the bottom right corner, some 10% were active (2% at each of the five effect sizes shown).
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shown as a p value tracing in each panel of Figure 1. In the 
96 panels shown, a large number of panels demonstrate a 
statistically significant effect at some time point during the 
study. The much larger number used to compute the table 
shows that the positivity rate is 30 per 100 compounds 
tested. In light of what we saw in the definitive table (Fig. 1 
bottom right), this large number carries an important warn-
ing: if we repeatedly test the accumulating data, we can no 
longer count on an average of fewer than five false positives 
per 100 compounds tested. Indeed, just using the samples of 
size 50 in Figure 1, on average, some 90% of 25, or 22.5 of 
the 30 positive tests, will be false positives. Only the 7.5 
strongest (or luckiest) of the 10 active compounds will reli-
ably test positive.

As expected, when (re)tested with a much larger sample 
size (n = 618), now virtually all (almost 9.9 of every 10) 
active compounds can be expected to test positive under the 
“analyze often” strategy. But so will 90% of 35, or 31.5 of 
the 90 inert ones, making a total of 41 or so positive tests 
per 100 compounds tested. The gain of 9.9 – 7.5 = 2.4 active 
compounds that test positive comes at a cost of 9 additional 
compounds that yielded false-positive tests.

Concluding Remarks

Even when datasets were smaller and looked at less often, 
those of us who were statisticians at ECOG and RTOG 
should have known that we were not immune from false-
positive tests, no matter how noble we considered our call-
ing or neutral we were. But, as in the case of the neurologists 
who chased a promising subgroup, our actual experience 
was a more convincing teacher than the statistical caveats 
we had been taught in classrooms.

Over these 45 years that I have been a statistical observer, 
much in medical statistics has changed for the better. But 
with bigger and more rapid data, more accessible statistical 
tools available to nonstatisticians, more ways to subset our 
data, and more journals to publish in, there is also a much 
higher risk not just of being wrong, but also of being more 
precisely wrong. We can now cause more harm or waste 
more resources. And unless more journals like PLoS One 
readily publish well-designed studies that turn out to be 
negative, we will see an even more distorted view of 
reality.

The formulas I used to decide the fixed n that I would 
use for Figure 1 were worked out in the late 1930s and 
early 1940s in the context of setting up quality control pro-
cedures and appeared in one place in publications such as 
that by Ferris et al.19 In that context, the aim was to detect 
an undesirable departure from the null so as to immediately 
remedy it and get back to “normal.” In today’s use of statis-
tical testing in drug discovery, the aim is different, namely, 
to detect a desirable departure from the null and to take it 
further.

Over the last 40 years, statisticians have been able to 
derive strict rules for “spending alpha” over a small number 
of interim analyses. Phase III trials intended to support a 
drug approval are required by the FDA to document these 
up front, to enforce them, and to prespecify the primary 
hypothesis and any subgroup analyses. Outside of this pub-
lic milieu, however, what happens is much less structured. 
Nor is this lack of discipline limited to drug development. 
Recent statistics graduates who work in large e-commerce 
organizations tell us that one of their biggest frustrations in 
the experimental (A/B) testing of online tools and advertis-
ing methods is that trial plans seldom prespecify a primary 
metric, a fixed sample size, or a stopping rule. Test results 
accumulate very quickly (sometimes overnight) and can be 
quite high-dimensional. But often, it is the most forceful 
advocate for a particular new feature or option who carries 
the day and whose idea is adopted.

Given the much larger dimensions of today’s data, and 
the many more opportunities for examining accumulating 
data, it is virtually impossible to devise formal statistical 
rules with specified operating characteristics. Instead, 
investigators will have to rely on retesting to be sure that a 
positive statistical result did in fact arise from an active 
compound and was not a false positive. Simulations such as 
those I have presented are a way to get some sense of what 
the probabilities might be, and a more concrete way to 
understand how we can be easily fooled in our interroga-
tions of nature.
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