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Abstract
The mortality impact in cancer screening trials and population programs is usually expressed as a single hazard ratio or

percentage reduction. This measure ignores the number/spacing of rounds of screening, and the location in follow-up time

of the averted deaths vis-a-vis the first and last screens. If screening works as intended, hazard ratios are a strong function

of the two Lexis time-dimensions. We show how the number and timing of the rounds of screening can be included in a

model that specifies what each round of screening accomplishes. We show how this model can be used to disaggregate the

observed reductions (i.e., make them time-and screening-history specific), and to project the impact of other regimens. We

use data on breast cancer screening to illustrate this model, which we had already described in technical terms in a

statistical journal. Using the numbers of invitations different cohorts received, we fitted the model to the age- and follow-

up-year-specific numbers of breast cancer deaths in Funen, Denmark. From November 1993 onwards, women aged 50–69

in Funen were invited to mammography screening every two years, while those in comparison regions were not. Under the

proportional hazards model, the overall fitted hazard ratio was 0.82 (average reduction 18%). Using a (non-proportional-

hazards) model that included the timing information, the fitted reductions ranged from 0 to 30%, being largest in those

Lexis cells that had received the greatest number of invitations and where sufficient time had elapsed for the impacts to

manifest. The reductions produced by cancer screening have been underestimated by inattention to their timing. By

including the determinants of the hazard ratios in a regression-type model, the proposed approach provides a way to

disaggregate the mortality reductions and project the reductions produced by other regimes/durations.

Keywords Screening, mortality, non-proportional hazards � Birth-cohorts � Lexis diagram � Disaggregation �
Design matrix

Introduction

A single hazard ratio is appropriate if the reduction in

hazard rates is immediate and sustained. Examples include

the near-immediate and continued protection against HIV

acquisition following adult circumcision, the decades of

protection afforded by a vaccine, and the near immediate

and sustained mortality reduction from one-time-screening

for abdominal aortic aneurysms [1]. A single ratio is also

appropriate if—as with blood thinners/beta-blockers—one

limits the time-window to when the agent is active.

Cancer screening comparisons generate non-propor-

tional hazards: mortality reductions appear after some

delay following the first screen, and eventually disappear

following the last one. In prostate cancer screening, the

delay is considerable. After an average of 9 years [2] the

reported hazard ratio (HR) was 0.8, i.e., the average

reduction was 20%. However, hazard rates only began to

diverge after 7 years; a re-analysis [3] using time-specific

data made this delay even clearer. As one commentator [4]

wrote, ‘‘Perhaps a better summary… is not the 20% overall

reduction… but the combination of no reduction in the first
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seven or so years and a reduction of about 50% after

10 years.’’ Despite the reported substantial inter-country

differences in the screening intervals (2 or 4 years), in the

upper screening ages, and in the length of follow-up

(3–19 years), the meta-analysis [5] ignored these critical

HR determinants and averaged the 20% with ones from

other studies with even more varied determinants [6]. The

sparse data beyond 10 years made it impossible to judge if

any HR had reached its nadir, let alone when after the last

screen it reverted towards unity.

One recent report that did use non-proportional haz-

ards—but not as the primary method of analysis—is the

one on the ovarian cancer screening trial [7].

The 30-year follow-up of a colon cancer screening trial

[8] was long enough to ‘see’ the HR curve revert, provided

cumulative mortality is disaggregated [9]. The re-analysis

[9], as in 2005 [10], showed the importance of the number

and timing of screens, and the unplanned hiatus in

screening—a peculiarity some commentators [11] ignore.

Single HRs from overly-long follow-up (e.g. [12]) can

contain substantial ‘‘post screening noise’’ [13], unless, as

others have done [14], the analysis focuses only on those

deaths that might have being averted by screening. Ones

calculated when the single HR first becomes statistically

significant from 1 are also problematic.

Policy regarding breast cancer screening continues to

lean heavily on the data from older trials, many of which

involved only a few rounds of screening. Moreover, as we

documented [15], few of the primary analyses linked the

numbers of fatal cancers back to the screening history in

the relevant years before these deaths. The ‘delay’ princi-

ple [16] was first employed [17, 18] to re-analyse the one

trial with extensive screening, but subsequent meta-analy-

ses continue to ignore the variations in the numbers of

screens, and the time windows in which mortality reduc-

tions would and would not be expected.

The purpose of this paper is to introduce epidemiologists

to a statistical model which we have recently developed to

describe the not-constant-over-time hazard ratios generated

by cancer screening. The technical details, along with

applications to colon and lung cancer screening trials, have

already been published in a statistical journal [9], and in a

doctoral thesis [19]. Our purpose here is to introduce it, and

the basic principles behind it, to a broader audience; we

illustrate it by applying it to the screening of a cancer for

where there are no recent trials, but considerable popula-

tion-level data, much of them from the 21st century.

Indeed, the best contemporary evidence concerning the

benefit of mammography comes from populations that

introduced programs in phases. For example, two Danish

areas, Funen and Copenhagen introduced screening well

before the rest of Denmark; this allowed [20] comparisons

of mortality rates over the next 10–14 years while using

data from the preceding 10–14 years to adjust for inherent

regional differences, and temporal improvements in treat-

ment. Because of its larger numbers of deaths, and the

similarity of the pre-screening mortality rates in the

screened and non-screened areas, we illustrate the impor-

tance of the HR determinants using data from Funen [21].

From November 1993 onwards, women aged 50–69 in this

region were invited to biennial mammography while those

in most other regions of Denmark were not until the end of

2007. This article illustrates how the mortality reductions

over the relevant {attained-age, calendar year} or ‘Lexis’

cells can be fitted as a function of 2 parameters and the

invitation histories for these cells, and how the disaggre-

gated (i.e. time-specific) effects of one round can be

quantified and used for projections.

The model, the data, and the parameter-
fitting

The model

The model has been described elsewhere [9, 19, 22, 23] and

applied to data from colon and lung trials [9], so we give

only a brief description. We do so by considering as an

example women aged 50 in 1994, who, in the absence of a

screening program, would subsequently be diagnosed with

breast cancers that turned out to be fatal. For the as-yet-

undiagnosed breast cancers that were to prove fatal at age

a = 52 say, a single round of screening at age 50—some

x = 2 years before it was fatal—would have a high prob-

ability of detecting and treating them earlier, but a low

probability of effecting a cure. For those that would prove

fatal at a = 82, the opposite would be the case. This

detectability-curability trade-off means that the probability

(P) that a woman whose cancer proved fatal at age ‘a’

would have been helped by a single round of screening at

age a - x is a strong function of x, the number of years

since that screen. To begin with, we adopt a simple func-

tional form, shown in blue in Fig. 1a. The probability

attains its maximum, say d, at some time s, and falls

monotonically on both sides of this. These two parameters,

to be estimated from the observed data, are the essence of

the model.

What if women—who in the absence of screening were

to die of breast cancer—had (been invited to) several

screens, say every 2 years from age 50 until 69? The

reduction in the number of cancer deaths at age a is now an

aggregate of the (staggered) contributions of all of the

rounds up to then; the resulting bathtub shaped hazard ratio

function is shown in black in Fig. 1a, and its value at a

particular age represents the proportion of otherwise-fatal
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cancers at that age that would still be fatal despite the

screening.

Like other trials/programs, Funen did not limit the

invitations to one age (50) in one year (1994). It invited all

birth cohorts every 2 years while they are between age 50

and 69. The invitations can be visualized in what is known

as a ‘Lexis Diagram’ [24], which shows how different

cohorts progress simultaneously along the two time scales

of age—on the vertical axis—and calendar time—on the

horizontal axis. In the data-analysis, we will divide the ages

and years into 1-year bins that taken together form small

1 9 1 Lexis ‘squares’ or ‘cells,’ and use the number of

breast cancer deaths in each small square in each region as

a separate Poisson random variable. Thus, as is seen in the

Lexis Diagram in Fig. 2, those oldest when the program

was begun, and youngest at the last invitation before the

follow-up ended, did not receive as many invitations as

those who are 50 when the program started. As a result of

these variations, and of the ‘delay’ principle’, the HR

‘surface’ over this Lexis space must be a strong function of

the age and calendar-year (or age and follow-up year) time

scales.

The data

We retrieved data from the Danish cause of deaths register

on all breast cancer deaths until 31 December 2015. Data

on invitation to mammography screening in Funen were

retrieved from the Funen mammography screening register.

For each of the relevant ages (a) in each of the 22 years

(y) after the Funen program began, the data consisted of the

numbers of breast cancer deaths (D1 and D0), and corre-

sponding women years (WY1 and WY0), in Funen (1) and

the parts of Denmark where mammography screening did

not start until late 2007 (RestDK) (0). The values for 3

selected cells are shown in the rows in panel (b) of Fig. 1,

along with when—counting back from (a,y)—the Funen

birth cohort received screening invitations. These screening

histories can be thought of as the ‘Design Matrix’ in this

regression-type model. Since the breast cancer mortality

rates in the years before 1994 were very similar in Funen

and the comparison region, we ignore these pre-screening

data. The original Njor article also documented the degree

of opportunistic screening, breast cancer treatment proto-

cols, and multidisciplinary breast cancer management

teams in Funen before and during screening, and in the rest

of Denmark in the same calendar periods. As was done in

Data for, and fitting of, HR model

No.
Deaths

Person
Years

Invitation History
('Design' Matrix)

Year[y] Age[a] D0 D1 PY0 PY1 How many years earlier

2014 87 11 1 16,827 2,101 20 18

2013 81 24 3 17,034 2,227 19 17 15 13

2012 75 18 1 19,788 2,491 17 15 13 11 9 7 5

etc. .. .. . ..,... .,... etc.

D1 + D0 = D fixed D1 ~ Binomial(D, π)

with

π = HRay × PY1 (HRay × PY1 + 1 × PY0)

HRay = ∏
AgeAtS<a

Prob.not.helped.by.screen.at.age.AgeAtS

 Model for impact of 1,2, .. ,7 rounds of screening

noitcudeRRH

P

τ
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0x:

2

2

4

4

6

6

8

8
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12

12

14

14

16

16

18

18

20

20

22

22

Years after 1st screen

Probability (P) of being helped if the 1st and
only screen were x = 0, 1, ..., 22 years before
cancer would(otherwise) have proved fatal

Further descriptions of 2 model parameters and 
model fitting, and examples are available in Liu,
Hanley, Saarela, Dendukuri. Int. Stat. Rev, 2015.

(b) (a)

Fig. 1 Schematic showing the model for the reductions produced by

one or more rounds of screening, the required data to fit the 2

parameters d and s, and the fitting of these two parameters. Shown in

blue in panel a is the probability (P) that cancers that (in the absence

of screening) proved fatal at age a would have been averted by the

possibly earlier treatment prompted by a single round of screening

x years earlier. x is shown in blue along the horizontal axis at the top.

As shown by the blue arrow, it is approximately 6% when

x = 10 years. The probability is greatest, at d percent, when the

screen was s years previously. Shown as black, again as a function of

x, are the probabilities (P) that these otherwise fatal cancers would

have been averted as a result of 2, 3, … 7 rounds of screening offered

every two years from age a - x onwards, where x denotes the length

of time between the first screen and attaining age a. The complement

of P[x] can be interpreted as the probability that, despite screening,

the cancer will still prove fatal. It can also be interpreted as a Hazard

Ratio (HR) at age a that is B 1. The proportion (probability) itself can

be interpreted as the reduction in the mortality rate at age a in persons

for whom it has been x years since their first screen (horizontal axis at

bottom). Compared with the single-round HR in blue, the HR

generated by multiple screens extends deeper, over a longer time-

window, and exhibits a bathtub shape with a delay, a nadir or

sustained asymptote, and an eventual return to 1 after all the effects of

the last screen have been expressed. Shown in panel b are the data for,

and fitting of the 2 parameters (d and s) of the model. (Color

figure online)
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both the Copenhagen and Funen studies, a background

difference could also be accommodated by including the

pre-1994 data, and by including in our model a parameter

representing this difference.

The fitting

Figure 1b shows data for three selected (a,y) Lexis cells,

with PY1 and PY0 person years in the invited and unin-

vited, and numbers of deaths D1 and D0. If the latter are

assumed to follow two Poisson distributions, and if one

conditions on D = D1 ? D0, then D1 | D follows a bino-

mial distribution with ‘denominator’ D and a ‘proportion’

parameter p that is a function not just of PY1 and PY0, but

also of how ‘non-null’ the hazard ratio is at that point in

time [24]. For example, in the third row of Fig. 1b, if the

HR were 0.8, then the expected split of the 19 deaths

should be proportional to (2491 9 0.8): (19,788 9 1), or

1.7:17.3, yielding a Binomial distribution with ‘n’ = 19

and p = 0.09. The hazard ratio HR[a,y] [9, 19, 24] in cell

(a,y) is a function of the two model parameters (d,s) and
the number and timing of the preceding screening invita-

tions. Since the HR in a cell also represents the proportion

of otherwise-fatal cancers that would still be fatal despite

the screening, it was calculated as the probability that each

of the preceding rounds of screening failed to avert the

death, i.e. as the product of the complements of the P

function described above, evaluated at the time-lags cor-

responding to these preceding rounds. See the last equation

in Fig. 1b and the convolutions pictured in Fig. 1a. As

explained elsewhere [9, 19], the probability function was

taken to have a gamma function shape, but with the scale

parameter constrained (larger amounts of data would have

allowed this constraint to be removed). The two model

parameters d and s were fitted by summing the cell-specific

log-likelihood contributions, and numerically maximizing

the sum.

Results

Over all ages and follow-up years in the Lexis diagram, the

‘average’ Funen-RestDK difference, i.e., the ‘reduction’ or

‘deficit’ in breast cancer mortality in Funen that is ‘at-

tributable’ to the screening, was 18%. This is a smaller

reduction that the 22% seen in the follow-up that ended on

December 31, 2009 [21]. Part of this difference may be the

play of chance, and part may be because we now include

deaths from cancers that are only diagnosed after the

women stopped being screened (at age 70).

To motivate the model-based measures, we first present

year-specific comparisons in Fig. 3. Once segregated into 3

birth cohorts, each 5 years wide, the yearly numbers of

deaths in Funen are in the single digits, and so the year-

specific mortality rate differences are noisy. With the help

of some smoothing, however, it seems that the reductions

in those who—because they were already in their late 60s

in 1994—received the fewest invitations (red) do not per-

sist for as long as those in the cohorts—in their late 50s in

1994—who received the most (blue). Moreover, the

reductions in the intermediate (green) cohorts—in their

early 60s in 1994—also began to disappear earlier.

The model-based estimates were that the maximum

probability of being helped by a single round of screening

1994 2000 2005 2010 2015

Age

Age
No. of
Invitations

52

65 7

57

78 7

62

83 4

67

88 2

60 6

55 3

50 1

Invitations [FUNEN only]
None in FUNEN,
or in 'Rest' of Denmark

7 (of 41) 
birth-cohorts

are shown

Fig. 2 Schematic of the

screening invitations extended

to, and follow-up of, women in

Funen birth cohorts (7 shown).

None were extended to the

corresponding cohorts of

women in the ‘‘rest’ of Denmark

until late 2007
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was 8% (d = 0.08), at s = 8 years [values close to these

were used to draw Fig. 1a]. Thus, for women who, in the

absence of screening, died at age a, the optimum timing of

a single screen would have been at age a - 8. The fitted

reductions obtained by coupling these two parameter val-

ues with the ‘invitation histories’ for each of the Lexis cells

are shown in Fig. 4. The smallest yearly ‘dividends’,

ranging from 0 to 8% to 0%, were in those aged 68–69 in

1993–1994 received just 1 invitation. Among Funen

women invited for their first mammography screening at

age 62–63 and invited four times before turning 70,

mammography screening averted 2% of the deaths that

would otherwise have occurred in year 1996; 23% of

deaths in year 2005 and 3% of deaths in year 2015. The

largest reduction of 30% was seen among the (youngest)

cohort who received the most invitations, and could be

followed until 2015. This cohort was aged 54–55 when

mammography screening began.

The 0% fitted reductions in year 1 should not be taken

literally, since there is rounding involved, and there may

also have been some delay in implementing the first round

of screening. In incidence based studies, there are fewer

cancer deaths in the first follow-up years than in the latter

ones, a feature that several cancer screening trials did not

include in their precision/power planning. [Because of the

very long accrual period and relatively short follow-up of

the ERSPC, the distribution of cancer deaths did not reflect

this: those in the early follow-up years outweighed those in

the later years, and unduly weighted the average mortality

reduction towards the minimal reductions seen in the ear-

lier ones [3].]

Discussion

Recently, the long-recognized [25] but typically-ignored

‘delay’ principle was forcefully stated: ‘‘the proportional

reduction in mortality from the cancer is nothing like a

constant over time from the beginning of the screening to

the end of the follow-up (for an arbitrary duration of it)’’

[16]. Until now, reports on breast cancer mortality reduc-

tions lacked models to address this non-constant reduction,

and had to rely on a single HR [6]. Thus, they implicitly

20%

10%

0%

-10%

-20%

-30%

-40%

Overall

0 0 0 4 2 5 6 5 7 7 6 5 6 3 4 5 9 7 9 11 4 1 2

0 0 1 2 2 9 2 8 5 7 8 6 6 8 4 14 11 16 9 11 10 6 4

0 1 4 2 5 5 7 7 5 10 8 9 12 8 10 8 10 8 6 13 10 11 1
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58

69

81
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71

83
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84
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85
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74

86

64

75

87

65

76

88

66

77

89

67

78

90

68

79

91

69

80

92

Percentage difference in 
mortality rate [from RoD]

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Attained
Age

Year

Fig. 3 Average, and followup-year-specific, differences in breast

cancer mortality, in 3 birth cohorts, each 5 years wide (color-coded),

together with yearly numbers of breast cancer deaths in the Funen

cohorts [The rest of Denmark has approximately 8 times more

women-years than Funen]. In the modified Lexis diagram in

the bottom panel, grey circles indicate invitations to those Funen

women who attained the indicated ages in the years indicated.

Numbers are numbers of deaths from breast cancer in the 3 age-bands.

Percentage differences in upper panel: Dotted line: age-year-matched

Mantel–Haenszel ‘average’, 3 lines: age-matched Mantel–Haenszel

year-specific, 3 smooth patterns: cohort-specific natural cubic splines,

each with 2 degrees of freedom. (Color figure online)
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assumed a proportional hazards model where reductions

are constant over follow-up time.

The proposed model is a first step towards describing the

time-specific reductions a sustained screening program

might produce. Whereas earlier efforts used moving aver-

ages [18], or directly fitted a smooth HR curve [3] without

regard to the screening schedule, the present approach uses

fundamental (rather than design-dependent) parameters

that, coupled with the schedule (the design matrix), pro-

duce a HR function.

The average 18% reduction one obtains either by fitting

a proportional hazards model over the Lexis cells, or using

them as strata in a Mantel–Haenszel summary ratio, does

not mean that 10 biennial screenings from 50 to 69 would

avert 18% of the breast cancer deaths that would otherwise

have occurred. This single estimate is arbitrary, and par-

ticular to the age-mix at intake, the numbers of invitations

received, and duration of follow-up. The model-based cell-

specific reductions are much more realistic, and show what

was accomplished by the various amounts of screening up

to the ages and years in question. As expected, the reduc-

tions vary considerably in age and time: cohorts first

screened in their 50s—and thus more often—had much

larger mortality deficits that those first screened at later

ages—and less often.

Our proposed model separates the fundamental

‘screening ability’ parameters (d,s) from the design matrix

(each row of which is the invitation history for a Lexis

cell); thus, as in a regression context, it allows one to

estimate the HR curve for a new ‘row,’ i.e. a specific

screening frequency and duration. The overall 18%

reduction, and the single-percentage reductions reported

from all screening trials do not correspond to any specific

estimand, but rather to an average over some mix of fre-

quencies and durations, and follow-up years.

Traditionally, cost–benefit models of a sustained

screening program have been quite complex. The disag-

gregated reductions derived from our approach, coupled

with the desired screening schedule, provide a transparent

yet flexible way to project the benefits with screening

regimes that have not been tested. As an unusual but telling

example, the average reduction of 22% in the biennial

screening arm of the colon cancer screening trial [8] was

computed over 30 years without considering the number of
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Fig. 4 For each birth cohort, the age-and year-specific fitted percent-

age reductions in breast cancer mortality. They were derived from the

Maximum Likelihood estimates of the two model parameters

(maximum probability of being helped by a single round of screening

8 years previously: 9%) and the number and timing of the preceding

screening invitations
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screens or the substantial but unplanned screening hiatus.

The model allowed us to ‘fill in’ the missing screens and

compute the (larger) reduction that would have been real-

ized with the intended regime [9]. We used the same

compliance rate (78%) as was observed in the trial, but, as

explained in the thesis, the HR function is readily modified

to estimate what the percentage reduction curves would

have been with a different rate, or with rates that vary from

round to round. If compliance factors are not included in

the HR function, the fitted parameter values produce an

‘effectiveness’ estimate; if they are, they can produce an

‘efficacy’ estimate.

In Funen, invitations to mammography were every

2 years until age 69, but the parameter estimates could be

coupled with other scenarios, such as if invitations were

discontinued at 65, or continued to age 75.

The use of a design matrix also means that we can

accommodate data from different screening programs,

where the invitation histories for the same {age, year} cell

might differ.

The most common objection thus far to the model has

been that the first and the subsequent rounds of screening

are assumed to have the same impact. But, if there are

sufficient data, the model is easily extended to allow sep-

arate parameter values for the first round, or to have them

change smoothly with each additional round; with suffi-

cient data it is also easy to substitute more complex forms

of the probability function [9].

Another objection is that we used the same 2 parameters

no matter the age at first invitation. Again, the issue is more

with sparse data than with the model per se: with enough

data, we could use separate parameter values for screens

that begin at different ages. It was only our lack of data (see

bottom of Fig. 3) that forced us to use common parameter

values. Screening programs usually begin ‘mid-stream’

with a mix of 50-year olds who will eventually receive the

full program, and older ones who have not yet had (but in

steady state would have had) any screening. The parame-

ters of ultimate concern are those that determine the steady

state, but our estimates are weighted by a fatality mix that

excludes early deaths in women for whom screening was

not available when they were 50.

Another indication of the limits of our data is the limited

resolution of goodness-of-fit statistics. We computed fitted

numbers of breast cancer deaths in Funen, using six ‘bins’

that grouped adjacent birth cohorts. Against observed

numbers of O = 165, 151, 123, 82, 37, and 10, the sum of

the six {(O-Fitted)2/Fitted} deviations was 3.3 for our

2-parameter model derived from screening principles, and

5.0 for the biologically unjustifiable proportional hazards

model. This limited ability to distinguish between a bio-

logically-based and a purely mathematical model was also

evident in our numerical investigations [26].

Because of these data limitations, we are appealing to

those in other countries who hold similar data to fit the

proposed model to their data. Since the log-likelihood

contributions are at the Lexis cell level, it is easy to

aggregate data generated with different schedules or

lengths of follow up etc. Thus we also invite data-holders

to collaborate and contribute to a combined dataset that

would have more ‘reach’ and that would allow us to test the

model more extensively: for example, could the model

fitted to data from an every-2-years regimen correctly

predict the HR curve for say an every-3-years regimen?

The most important feature of the model is the accompa-

nying design matrix, which used uses the numbers of

deaths and the screening history in each Lexis cell as the

unit of analysis, rather than—by ignoring the history—

treating the observations from these cells as exchangeable.

Of particular value are Lexis cells where the effects have

begun to disappear: it is not possible to reliably fit a bath-

tub shaped model without having data at the distal end.

Because of the nature of cancer screening, there will be

very few deaths at the beginning of the curve, so the HR

values at that end are less critical.

Just as with any ‘intention to’ analyses, the HRs from

our model do not distinguish between inherent limitations

of the screening technique/biological model and lack of

participation. However, different participation rates for

different rounds (or countries) can be included in the

binomial probabilities, thereby providing estimates of what

the results would be with greater or lesser participation [9].

The model provides a natural way to handle the varia-

tions in studies that up to now have been considered

exchangeable in meta-analysis. The critical requirements,

we re-iterate, are the availability of both mortality data and

invitation data at the Lexis cell level. By using these his-

tories (instead of ignoring them or merely calculating a

heterogeneity index) we can disaggregate the overall

mortality reduction and help provide answers to questions

such as: what is the optimal starting and stopping age?

what is the optimal number of screenings?

Observational data, such as we have analyzed, can only

be used if two comparable groups, where one group was

invited to screening and the other was not, are available. In

some countries it is not possible to find such groups, as the

entire female population in a specific age group is invited.

It is possible in countries where mammography screening

was implemented in a staggered way. The time span

between invitation of the two groups determines for how

long the bathtub shape can be observed. From a statistical

viewpoint, the optimal is to be able to observe the reduc-

tion until is returns to zero.
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Randomized controlled trials are the primary source of

evidence for assessing the effectiveness of cancer screen-

ing. Thus far, trial data have mainly been analyzed using

relative risk estimates or proportional hazard models [1].

Proportional hazard models assume that screening results

in a time-independent reduction in cancer mortality. Han-

ley, Liu and coworkers have developed a model with a

time-dependent mortality reduction, see elsewhere in this

issue of the journal [2, 3]. The model assumes that the

reduction in mortality from the target cancer appears after a

delay following a screen, and eventually disappears. Mor-

tality reductions from subsequent screening rounds are

superimposed. The resulting function has a bathtub form,

and is determined by two parameters: the time between a

screen and maximum relative mortality reduction, and the

value of the maximum relative mortality reduction [2]. The

authors have applied their method to data from prostate

cancer [1], lung cancer [3], colorectal cancer [3] and breast

cancer [2], using excellent graphical illustrations (Fig-

ures 3 and 4 in [3]).

The Hanley–Liu model is more realistic than the pro-

portional hazard model. In practice, discriminating

between the two models can be difficult. Designers of

screening trials are aware of the bathtub dynamics of

mortality reduction. They mitigate the influence of the

initial phase of (near) absence of reduction by excluding

persons with an already established diagnosis of the target

cancer. A good compromise follow-up duration is the crux

for dealing with the tapering off phase at the end. Follow-

up should neither be too short when mortality reduction is

still increasing nor too long with much noise from deaths

which could not have been prevented by screening anyhow.

With these choices, most cancer deaths in screening trials

will occur in the bottom part of the bathtub, where the

constant mortality reduction of the proportional hazard

model is a good approximation to the Hanley–Liu model.

And indeed, it proved not to be possible to discriminate

between the two models in the analysis of the Danish breast

cancer data [2]. The scatter of the time-dependent relative

mortality dots in Figures 3 and 4 in [3] suggests that this

might also be the case for the lung cancer and colorectal

cancer analyses. This lack of discrimination with more

complex models might be a reason why the simple pro-

portional hazard model has persisted as the model of choice

for statistical analysis of trial data.

The time-dependent mortality reduction curve of the

Hanley–Liu model allows us to reflect on trial design issues

like screening interval, follow-up time and power analysis.

In order to provide maximal information, the interval

between subsequent screenings should be sufficiently long

to provide information about the whole trajectory of the

bathtub mortality reduction curve. A trial with 3-year

intervals will be more informative than a trial with 1-year

intervals.

Contrary to the proportional hazard model, duration of

follow-up is not crucial for the Hanley–Liu model. While

mortality after long follow-up is a source of random noise

in the proportional hazard model, it is informative in the

Hanley–Liu model for estimating the dynamics of the

mortality reduction.

The high costs of screening trials strongly depend on

their size. Because of the use of the time-dimension of the

mortality data, power calculations will undoubtedly lead to

a smaller sample size for the Hanley–Liu model than for

the proportional hazard model.

Hanley and Liu note that use of their model is hindered

by sparse data. This problem would even become worse

when important determinants like age at first invitation and

rank of the screening round would be included in the model

[2]. The appeal of Hanley and Liu to screening data owners

to collaborate is therefore timely and should be endorsed.

In addition, it could be recommended that Lexis diagrams

as used by Hanley and Liu, with number of deaths and

person years at risk in each cell [2] should routinely be

included in reports of screening trial results. The Lexis

diagram has an age- and a calendar-time axis, describes
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how cohorts progress along these axes and constitutes a

database for further epidemiologic analysis [4].

Mortality analysis of screening trials usually takes place

between 15 and 30 years after start of the trial. During this

period, some of the biological and behavioral processes

which underlie the mortality effects of cancer screening

will have changed. Underlying processes which can change

over time include incidence of cancer, the stage distribu-

tion of diagnosed cancers in the absence of screening, the

stage-specific survival of cancer with current treatment, the

sensitivity and specificity of screening tests in different

disease stages, compliance to the screening, the charac-

teristics of further diagnostics in case of an abnormal

screening test result, and the stage specific survival in

screen detected cancers, including precursor lesions. For

example participants in the Minnesota trial for colorectal

cancer screening were (healthy) volunteers, and since the

trial the FOBT has largely been replaced by quantitative

immunochemical blood tests and new cancer treatments

have become available. The proportional hazards and

Hanley–Liu models can both be characterized as modeling

the mortality response to a screening stimulus which is

delivered in the context of underlying processes. The

models have no mechanism for correcting the response for

secular changes in the underlying processes. This is a major

problem for using the results of a statistical analysis

beyond the trial context, for example for guideline

development.

Many beneficial and harmful outcomes have to be taken

into account when comparing screening policies, including

overtreatment, anxiety after positive screening tests and

complications from screening, follow-up tests and treat-

ment. See [5] for a table of outcomes for colorectal cancer

screening. Only one of the outcomes, mortality, is

addressed by the proportional hazards and Hanley–Liu

models. Mortality is arguable the most important outcome,

as cancer screening without mortality reduction is useless.

The mortality output of the Hanley–Liu model which

consists of the curve of relative mortality between

screening and control group has to be processed before it

can be used in decision making. A switch has to be made

from relative to absolute mortality, in order to avoid that

high and low cancer incidence situations would be treated

the same. Age of death should be taken into account by

calculating the expected number of life-years gained when

preventing a death. Otherwise, prevented deaths at age 50

and age 90 would be valued the same. Two further possible

actions are adjustment for time-preference by putting more

weight on nearby compared to far away life-years, and

adjustment for quality of life by calculating quality-ad-

justed life years [6].

The suggestion that the Hanley–Liu model can be used

for deriving optimal ages and frequency of screening [2] is

rather optimistic in view of the need to correct for secular

changes and to weigh many harms and benefits. It might be

better to turn to mathematical models which are developed

with their use for decision making in mind. These so-called

decision analytic models consider demography, epidemi-

ology, natural history, screening tests, treatment and other

processes, and aim to integrate available data to estimate

the health consequences of alternative screening strategies

[7]. By now, decision analytic models have been developed

in many fields of medicine. For cancer screening, a large

number of model groups collaborate in the Cancer Inter-

vention and Surveillance Modeling Network (CISNET).

The models have been described in a standardized way, see

https://cisnet.cancer.gov/resources/profiles.html. Decision

analytic models are increasingly used for informing

screening guidelines development, for example by the

United States Preventive Services Task Force [8, 9].

The scientific status of decision analytic models is

unclear. While statistical models are developed within the

firm context of probability theory and theoretical statistics

[3], relevance is the primary concern in the development of

decision analytic models. In order to increase their trust-

worthiness, general recommendations for good research

practice in decision analytic modeling have been formu-

lated [7]. For cancer screening, model quality and rele-

vance have been discussed in [10]. The quality and

credibility of decision models strongly depends on their

performance in reproducing results of screening studies.

They are considered most useful in situations where strong

primary data are available [10]. For example, parameters of

a decision analytic model for colorectal cancer screening

could be fitted to the results of three randomized trials [11].

In view of the complexity of decision analytic models,

much can be gained from collaboration between modeling

groups [12] and from multi-model studies [13].

In conclusion, statistical models and decision analytic

models are both important in cancer screening. Statistical

models are essential for analysis of trial data. Decision

analytic models are used in screening guidelines develop-

ment. Decision modelers can learn from statistical models

for improving the fitting and validation of primary data.

Statistical modelers can learn from decision analytic

models for improving the usefulness of their models for

decision making. Hanley and Liu have improved on

existing statistical models. By modeling the time dimen-

sion of the mortality reduction they improved the relevance

for decision making, especially with regard to the question

of optimal screening intervals. Decision analytic modelers

should in turn try to learn from the Hanley–Liu model for

improving the ways in which they fit their model to pri-

mary data.
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