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Abstract

When considering treatment options, a physician ideally has access to prognoses for various
spans of prospective time, meaning known risks specific for these and also for both treatment
and the profile of the patient. Accordingly, investigators ideally would report estimates of such
risks from clinical trials and their non-experimental counterparts. To the extent that such risk
estimates have been reported at all, they have mainly been based on the semi-parametric regression
model of Cox. We focus on a family of fully-parametric hazard models of an attractive, versatile
form that readily allows for non-proportionality, yet models that have not been easy to fit with
standard statistical software. We elaborate an approach, recently proposed, to fitting such hazard
functions via logistic regression. From the fitted hazard function, cumulative incidence and, thus,
risk functions of time, treatment and profile can be derived. This approach accommodates any
log-linear hazard function of prognostic time, treatment, and the prognostic indicators defining the
patient’s prognostic profile.
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1 Introduction

The oldest and best known function for estimating profile-specific risks of
illness is the one derived from the Framingham Heart Study data and ad-
dressing 10-year risk of coronary heart disease (NHLBI, 2008). The “Gail
model” (NCI, 2008) provides estimates of a woman’s 5-year risk for (an overt
case of) breast cancer. Several recent authors (e.g., Cassidy, 2007; Spitz,
2007; Memorial Sloan-Kettering, 2008) have developed functions for estimat-
ing a smoker’s risk of lung cancer, depending on whether (s)he discontinues
smoking. Probability functions are also increasingly being developed for both
diagnosis (e.g., Steyerberg et al., 2001, Bevilacqua et al., 2007; Partin, 2007)
and illness-conditional prognosis (e.g., Califf et al., 1997; Kannel et al., 1999;
Royston, 2002; Machin and Campbell, 2005; Tisman, 2007). The early – and
still more common – functions for profile-specific risk have been for situations
in which the risk period is so short that the timing of the outcome within
it is irrelevant and the outcome is known for all study subjects, so that the
risk function can be derived by logistic regression.

When the time of outcome within the risk period is of intrinsic inter-
est, the object of study is a function that expresses the cumulative incidence
(CI), or risk (R), as a function of time, treatment, and the indicators forming
the prognostic profile. As for survival analyses in general, published in the
major general medical journals, Julien and Hanley (2008) found that they
rarely produce such prognostic functions, even though the requisite software
is available in all of the Cox regression packages. They speculated that one
of the reasons for this is that the resulting profile-specific CI curves – or
their complements, the survival curves – are estimated as steps-in-time func-
tions rather than as smooth-in-time functions. Breslow (1972) did suggest a
smoothed estimation of the baseline hazard function, which would lead to a
smooth CI function of time. However, the various step function estimators
of the complement of CI, with as many steps as there are distinct failure
times in the dataset, are more easily derived, and so they are the only ones
that are available in most statistical packages.

In his review, Hjort (1992) surmised that “the success of Cox regression
has perhaps had the unintended side-effect that practitioners too seldomly
invest efforts in studying the baseline hazard” and suggested that “a para-
metric version, ... if found to be adequate, would lead to more precise esti-
mation of survival probabilities.” Royston and Parmar (2002), noting that
this statement had been “apparently little heeded,” were concerned that “in
the Cox model, the baseline hazard function is treated as a high-dimensional
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nuisance parameter and is highly erratic.” Thus, they proposed to estimate
it “informatively (that is, smoothly),” by natural cubic splines.

Particularly notable are Cox’s own reflections (Reid, 1994) on the uses of
his model:

Reid: How do you feel about the cottage industry that’s grown
up around it [the Cox model]?
Cox: Don’t know, really. In the light of some of the further
results one knows since, I think I would normally want to tackle
problems parametrically, so I would take the underlying hazard
to be a Weibull or something. I’m not keen on nonparametric
formulations usually.
Reid: So if you had a set of censored survival data today, you
might rather fit a parametric model, even though there was a
feeling among the medical statisticians that that wasn’t quite
right.
Cox: That’s right, but since then various people have shown that
the answers are very insensitive to the parametric formulation of
the underlying distribution [see, e.g., Cox and Oakes, Analysis
of Survival Data, Chapter 8.5]. And if you want to do things
like predict the outcome for a particular patient, it’s much more
convenient to do that parametrically.

We here address smooth-in-time hazard functions that allow estimation
of risks specific to patient profiles, interventions, and various points in prog-
nostic time, and of corresponding risk differences between the interventions.
We focus on a family of parametric hazard models of an attractive, versatile
form that have not been easy to fit with standard statistical software. Upon
preview of the two datasets we use for illustration, we describe the family of
parametric hazard models being considered, and how previous authors have
managed to fit some of the simpler members of it. We then describe how,
using a recently proposed approach (Miettinen, 2004; Miettinen, 2008), all of
its members can easily be fitted with standard software. The approach is an
adaptation of one that already is familiar to epidemiologists from the study
of disease etiology. We illustrate the method, and proceed to show how to
use the fitted hazard – incidence density – function to produce a table or
nomogram from which estimates of profile- and intervention-specific risks for
various spans of prognostic time can be read.
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Table 1: For each of the two intervention groups (I = 1 for verum, I = 0 for
placebo) in the Systolic Hypertension in the Elderly Program (SHEP, 1991),
distributions of prognostic indicators; also shown are the respective numbers
of subjects and strokes.

Age: Gender: Race: SBP: No. of PT of No. of
I Q10 Q50 Q90 % male % Black Q10 Q50 Q90 subjects f-up strokes

0 64 72 81 43 14 161 168 183 2351 10,392 py 158

1 64 72 81 44 14 161 168 185 2350 10,502 py 105

Q10, Q50 and Q90 are 10th, 50th and 90th centiles, respectively. SBP: systolic blood pressure.

2 Data used for illustrations

To illustrate the approach, we first use data from the Systolic Hypertension in
the Elderly Program (SHEP, 1991). We obtained the data, without subject
identifications, under the program NHLBI Datasets Available for Research
Use (NHLBI, 2007). That study – a randomized trial – addressed the effec-
tiveness of antihypertensive treatment in reducing the risk of stroke in persons
with systolic hypertension. From what we received, we identified 4,701 sub-
jects with complete data on age, gender, race, systolic blood pressure, and
intervention (verum/placebo). In the study base of 20,894 person-years of
follow-up, 263 first cases of stroke were identified. The data are summarized
in Table 1. As the subjects in this study were otherwise healthy, the age-
specific stroke hazard (incidence density) was virtually unaffected by time
since entry into the study.

In studies with entry as of an acute event such as stroke, the hazard
function usually is quite complicated a function of the earliest time since
entry into the study. To illustrate the estimation of such a hazard function,
we use data, previously analyzed by Efron(1988), from a study contrasting
treatment with radiotherapy plus chemotherapy with radiotherapy alone for
cancer of the head or neck.

3 Parametric models, as fitted

Some fully-parametric functions addressing the specific risks at issue here
are possible to fit using packages for survival analysis. However, since the
fitting routines are not accessible, the user cannot easily modify the time-
component of the hazard function, notably in terms of involving products of
the time variate(s) and others.
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We focus on the family of hazard functions of the form

h(x, t) = exp[g(x, t)], (1)

where t denotes the numerical value (number of units) of a point in prognos-
tic/prospective time and x the realization of the vector X of variates based
on the patient’s profile and intervention (if any). The only constraint on the
function g(x, t) is that it be ‘linear’ in the parameters, in the ‘linear model’
sense. This family is quite inclusive in respect to the functional forms.

The simplest member of this family is the parametric hazard model with
the longest history, the widest use in demography, and least common pres-
ence in statistical software packages: the Gompertz hazard model (Gompertz,
1825). It formulates the age-specific ‘force of mortality,’ instantaneous inci-
dence density (Miettinen, 1976), or hazard as h(t) = exp(β0 + β1t), where
t is measured from a given initial value of age. The ‘proportional hazards’
extension of this to X = x can be written as the h(x, t) in equation (1) above.
More complex functions of t in the linear compound g(x, t) can be used to
allow more versatile but still smooth-in-time hazard functions. Use of log(t)
yields the Weibull model. The inclusion of product terms involving t and
some element of x allows for non-proportional hazards.

If it be possible to fit the hazard (incidence density) function in equa-
tion (1), the cumulative incidence function, CI(x, t), could then be derived
– by numerical methods if necessary – from the fundamental relationship
(Miettinen, 1976)

CI(x, t) = 1− exp

[
−
∫ t

0

h(x, u)du

]
. (2)

It is, however, generally impractical to do the fitting by means of the common
statistical packages, for the likelihood is quite involved even in the absence
of censoring. Whereas it is possible, with some ingenuity, to fit several of
the other parametric survival functions iteratively using a generalized linear
models package (Aitkin and Clayton, 1980), the programming required to
fit log-linear hazard models by such a package is more complex (Clayton,
1983). Despite the claim that the survreg routine in S can fit Gompertz
and Rayleigh functions, even the developer himself has had difficulty doing
so (Therneau, 1996a, 1996b).

A number of authors have circumvented these technical problems of fitting
by dividing the observed ‘survival time’ of each subject into a number of time-
slices. One of us (Albertsen, Hanley et al., 1998) used this approach to fit
hazard functions.

Efron (1977) pointed out that regardless of the form of h(x, t), the likeli-
hood contribution of the jth subject, followed for tj units of time, is equiv-
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alent to the likelihood for a sequence of a large number, nj = tj/∆, of
Bernoulli trials, with time-dependent probabilities of failure. For a trial that
corresponds to the small interval (t, t+∆), the failure probability can be well
approximated by pi = h(xj, t)∆. The sequence ends with the nth

j trial, at the
time of the event of interest or when follow-up was otherwise terminated.

In a subsequent article Efron (1988) focused on discretizations of the t-
axis and on using logistic regression to fit various smooth-in-t hazard and sur-
vival functions in the one-sample situation, where the usual non-parametric
alternative is the Kaplan-Meier estimator of survival rate. He modeled the
probability, pi, that a patient suffers a first event in the interval (ti, ti + ∆i),
as

logit(pi) = β x(t) + log(∆i),

where x(t) is a vector of time-variate realizations, and log(∆i) is an offset.
In that paper he discussed the possible models (including the basic Gom-

pertz model) obtained as limits of his logistic regressions when the time
intervals become extremely small. Extensions to the regression situation, in-
cluding to the model analogous to the basic h(x, t) model above, he mentioned
(Remark H, p 423) but did not pursue. His earlier investigation (Efron, 1977)
had found that the smooth-in-t form of his extended regression model was
not a big improvement on the semi-parametric version of Cox, “at least not
for the estimation of β.” However, he considered this form to be attractive
when the interest is in “estimating the hazards, rather than just comparing
them.”

Efron (2002) used discretization (‘time-slicing’) to fit a fully-parametric
hazard function of both follow-up (prognostic) and calendar time, using data
on 110 cases in a study base of 2,673.4 patient-years, or 976,447 patient-days
(∆ = 0.00274, n = 620). In this analysis, even though he visualized the
elementary distributions as being of Bernoulli type, Efron took it that “the
Poisson model is more tractable.” Also, because the size of his dataset –
almost one million observations – was impractical for the available statistical
software, he aggregated observations from different patients and treated the
numbers of events in these aggregates as realizations of Poisson variates. In
his 1988 example, 42 of the 51 patients in Arm A, and 31 of the 45 in Arm B,
had had a recurrence of their disease. He addressed the events in the 600 and
945 patient-months of follow-up using separate-sample datasets with N = 47
and N = 61 binomial observations, respectively.

In the next section we show how one can use the case series together with
a suitable sample of the base and logistic regression, as an alternative way
to fit a fully-parametric log-linear model for h(x, t). The fitted function can
then be used to derive estimates of period-specific risks also specific to both
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treatment and profile. Although we focus on a particular log-linear hazard
formulation, an extension of the Gompertz form, the Weibull model as well
as other more versatile ones within the log-linear family can also fitted by
this simple technique.

4 The proposed approach to fitting

The proposed alternative way to fit parametric hazard models to survival-
type data can can be viewed as an extension of the method deployed by
Mantel (1973). When describing his motivating example, Mantel made a
passing reference1 to a time dimension but he did not address time in his
statistical model. He was faced with 165 instances of Y = 1 and a much
larger number (about 4,000) of instances of Y = 0, an associated regressor
vector x for each, a logistic model for Pr(Y = 1 | X = x), and limited
capacity of computing. His solution was to form a reduced dataset consisting
of all instances of Y = 1 and a random sample of the much more numerous
instances of Y = 0, and to fit the same logistic model to this reduced dataset.
He noted, as Anderson (1972) had done, that “such sampling will tend to
leave the dependence of the log odds on the variables unaffected except for
an additive constant.”

Figure 1 addresses our first example here. The follow-up of these patients
in the aggregate, represented by the shaded area, constitutes a study base
of 20,894 person-years – or just over 1010 person-minutes, consisting of an
infinite number of person-moments, where a ‘moment’ is a point in time. Any
given person-moment in the study base is characterized by the point in time,
t, and the person’s value, x, for the variates based on prognostic indicators
(at prognostic T0) and intervention. The value of the hazard function at this
person-moment is h(x, t).

We take our dataset to consist of the (y, x, t) information for the c =
263 person-moments at which stroke occurred – the case series – and for a
representative sample – the base series – of size b, of the infinite number of
person-moments that constitute the B = 20, 894 person-years in the study
base. For such a dataset for (c + b) person-moments, c with Y = 1 and b
with Y = 0,

Pr(Y = 1|x, t)
Pr(Y = 0|x, t)

=
h(x, t)×B(x, t)

b× [B(x, t)/B]
= h(x, t)× (B/b), (3)

1 “The actual number of individuals was substantially less than 4,000. An initial cohort
of about 1,350 men was studied to evaluate the short-term prognostic value of various
factors in coronary heart disease. Men remaining free of disease for two years could be
re-entered into the analysis for the next two years using their new X values.”
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1    69  1  0  166  1  0.57

1    69  0  1  161  0  1.79

1    85  0  1  184  0  3.39

0    69  0  0  182  0  1.70
0    73  0  1  167  1  2.02

0    73  1  0  199  0  0.62

0    81  1  0  161  0  1.16

0    70  0  1  185  0  1.11

0    72  0  0  172  1  3.56

Y   Age  B  M  SBP  I   t  

1000

2000

3000

4000

5000

0 1 2 3 4 5 6
Prognostic time (years)

Persons

Figure 1: Formation of the dataset for the logistic regression approach
(schematic). Shown at the left is the study base: 20,894 person-years in the
SHEP (1991). It can be thought of as 4,701 rows of infinitely small rectangles
(person-moments). Also shown in the figure are select person-moments from
the base and case series: the person-moments of 3 case events (darker dots)
and a random sample of 6 person-moments (lighter dots). Shown on the
right are the corresponding data for these selected person-moments. Logistic
regression, with the appropriate offset, fitted to data like these produces the
parameter estimates for the empirical log-incidence-density function.

where B(x, t) is the population-time element in the study base with (X,T ) =
(x, t). Thus the fitted hazard function iŝh(x, t) = (b/B) exp(L̂), (4)

where L̂ is the linear compound from the fitting of the logistic regression

model. In practice, one can obtain log[ ̂h(x, t)] directly by fitting a logistic re-
gression model to the (c+b) vectors [y, x, t, log(B/b)] and specifying log(B/b)
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as an ‘offset,’ that is, a term whose regression coefficient is forced to be 1
(McCullagh and Nelder, 1989, p 206). The empirical log incidence-density

function, ̂h(x, t), in equation (4) translates to the corresponding cumulative
incidence or risk function on the basis of equation (2). An interval estimate
for the risk, or risk difference, can be derived by making use also of the
variance-covariance matrix of the fitted regression coefficients.

The formation of the dataset for such logistic regression is illustrated
schematically in Figure 1, as in the actual dataset used to estimate the pa-
rameters in Table 2, there were c = 263 black dots, and b = 26, 300 grey
ones – an average of 5.6 moments per patient – too many to show in the
graph. Drawing a representative sample of b person-moments from the total
population-time B of follow-up of n individuals can be done in a number
of ways. In completely random selection one first generates a realization
(b1, . . . , bn) from a multinomial distribution with b trials and probabilities
(π1, . . . , πn), where πj = tj/B, and tj is the duration of follow-up2 for sub-
ject j. The bj moments are then selected independently from the U(0, tj)
distribution. A systematic sample of size b of B can be formed upon con-
catenating the n subject-specific intervals into a single interval from 0 to B. A
third way, one that yields fully-reproducible estimates, is used in section 5.2.
However, given the large sample size we worked with (see next paragraph),
the way the representative sample is chosen made little difference.

How large should b be on relation to c? We quote Mantel (1973), only
using our notation: “By the reasoning that cb/(c + b) [= (1/c + 1/b)−1]
measures the relative information in a comparison of two averages based on
sample sizes of c and b respectively, we might expect by analogy, which would
of course not be exact in the present case, that this approach would result in
only a moderate loss of information. (The practicing statistician is generally
aware of this kind of thing. There is little to be gained by letting the size of
one series, b, become arbitrarily large if the size of the other series, c, must
remain fixed).” With computer capacity no longer a concern, we can easily
use a b/c ratio as high as 100. Such a ratio assures variances and covariances
for the estimated regression coefficients that are only 1 percent larger than
those obtained using all of the information in the study base, as they are
proportional to 1/c + 1/100c rather than 1/c + 1/∞. Thus, virtually all of
the information about the parameters in the hazard model is retained in a
dataset involving a base-series of size b = 100c, given a case-series of size c.

2 Ideally, separate letters should be used to distinguish a (generic) point on the time
axis from the observed duration of follow-up for subject j. We, as textbooks do, use t
(without a subscript) for the former, and tj for the latter. Which meaning is intended will
also be obvious from the context.
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Figure 2: Stability of point and (95% confidence) interval estimates of 8
parameters of the hazard function, and of 5-year risk for a specific (untreated)
high-risk profile (bottom right panel). Fits are based on 25 different random
samples of 26,300 from the infinite number of person-moments in the study
base. Estimates were derived by fitting a logistic regression model to a case-
series of c = 263 and a base-series of b = 26, 300. Data and model are those
described in the illustration in section 5.1.

Figure 2 illustrates the virtually 100% efficiency, and negligible Monte Carlo
error, achievable by such sampling of the study base. Whereas the point

9

Hanley and Miettinen: Smooth-in-Time Prognostic Risk Functions

Published by The Berkeley Electronic Press, 2009



estimate is subject to the additional variability induced by the sampling, the
overall statistical uncertainty, reflected in the width of the confidence interval,
is determined almost entirely by the amount of information in the study base,
and only trivially by the fact that only a finite sample of the infinite number
of person-moments is used. This phenomenon has some parallels with the
two-part variance used following multiple imputation for missing data. No
matter how many ‘copies’ are used, and their fitted coefficients averaged,
the main component of variance is determined by the size of the study and
remains irreducible. In our approach, the additional contribution to variance
that arises from the sampling can be made arbitrarily small.

5 Illustrations

5.1 The SHEP

For the study base of B = 20, 894 person-years of follow-up, in which c = 263
events of stroke were observed, we adopted for the hazard the model

h(x, t) = exp(Σβkxk),

where xk is based on

X0 ≡ 1
X1 = Age (in yrs) - 60
X2 = Indicator of male gender
X3 = Indicator of Black race
X4 = Systolic BP (in mmHg) - 140
X5 = Indicator of verum treatment
X6 = Prognostic time (in yrs)
X7 = X5 ×X6.

To estimate the eight parameters, we formed a person-moments dataset per-
taining to the case series of size c = 263 (with Y = 1) and a randomly-selected
base series of size b = 26, 300 (with Y = 0). Each of the 26,563 rows was
constituted by the realizations of X0, . . . , X7 and Y at the person-moment
and the offset, log(B/b) = log(20, 894/26, 300).

The logistic model involving these variates was fitted to the data in the
union of the two series. The resulting fitted values for the parameters in
this fully-parametric non-proportional hazards model, together with their
SEs, are given in column (1a) of Table 2. The fully-parametric proportional
hazards model – the one without the X7 term – was also fitted to the data,
with the corresponding statistics shown in the second column (1b) of Table
2, and the corresponding results under the Gompertz model are shown in
column (2), those under the semi-parametric proportional hazards model in
column (3).
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Figure 3: Estimated cumulative incidence (risk) of stroke for patients with
higher-risk (a.0 if untreated, a.1 if treated) and lower-risk (b.0 and b.1) pro-
files, fitted by the proposed fully-parametric approach, and by the semi-
parametric Cox regression. Data are from the SHEP (1991).
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Table 2: Fitted values β̂ (with SE in parentheses) for the regression coeffi-
cients of log-linear hazard model from the proposed logistic regression ap-
proach – with its representative sampling of the study population-time and
the corresponding offset – and those of Gompertz and Cox regression models.
Data are from the SHEP (1991). I denotes “indicator of.” The logistic func-
tion from the proposed approach provides estimates of the parameters in a
smooth-in-time hazard function. This function in turn yields smooth-in-time
estimates of cumulative hazard and, thus, profile- and treatment-specific risk.

Proposed Gompertz Cox
logistic regression regression regression

Term (1a) (1b) (2) (3)

Age− 60 0.041 (0.009) 0.041 (0.009) 0.041 (0.009) 0.041 (0.009)

I(male) 0.257 (0.126) 0.258 (0.126) 0.259 (0.125) 0.259 (0.125)

I(black) 0.302 (0.164) 0.301 (0.164) 0.304 (0.163) 0.303 (0.163)

SBP − 140 0.017 (0.006) 0.017 (0.006) 0.017 (0.006) 0.017 (0.006)

I(verum) -0.200 (0.234) -0.435 (0.127) -0.435 (0.126) -0.435 (0.126)

Intercept (β0) -5.390 (0.274) -5.295 (0.261) -5.295 (0.260)

t -0.014 (0.056) -0.057 (0.044) -0.055 (0.044)

t× I(verum) -0.107 (0.090)

(1a) Although the coefficient for the product term is not statistically significant, the results

are shown to illustrate the ease with which non-proportional hazards models can be fitted.

(1b) a smooth-in-t proportional hazards model, for comparison with its fully-parametric

and semi-parametric counterparts in (2) and (3).

(2) Fitted using streg in Stata, where the coefficient for t is called gamma.

Based on the full (8-term) logistic model, one might address the estimated
5-year risk of stroke for a 65 year old white female with a SBP of 160 mmHg.
The estimated hazard is h(t) = exp(−4.86t) if I(verum) = 0, and exp(−5.06−
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Table 3: Risk estimate (%) for stroke in the next 1, . . . , 5 years, if the SBP
will not be treated (I = 0) and if it will be treated (I = 1), as a function of
the four prognostic indicators incorporated in the Total Score, Cox model,
column (3) of Table 2. Data are from the SHEP (1991).

Total Year
Score I 1 2 3 4 5

200 0 3.4 7.0 9.3 12.3 15.4
1 2.2 4.6 6.1 8.2 10.3

(No. Years beyond 60) × 4
150 0 2.1 4.3 5.7 7.7 9.7

1 1.4 2.8 3.8 5.0 6.4
Black ... 30

100 0 1.3 2.6 3.5 4.7 6.0
1 0.8 1.7 2.3 3.1 3.9

Male ... 26
50 0 0.8 1.6 2.2 2.9 3.7

1 0.5 1.0 1.4 1.9 2.4
(Every 10 mm SBP above 140) × 17

0 0 0.5 1.0 1.3 1.8 2.2
1 0.3 0.6 0.8 1.1 1.5

Total Score

0.124t) if I(verum) = 1. The 5-year integrals of these are 0.037 and 0.024,
respectively, so that the CI estimates are 1 − exp(−0.037) = 0.036 and
1 − exp(−0.024) = 0.024 respectively. While these imply the risk reduction
estimate of 1.2 percent, the corresponding estimate for an 80 year old black
male with a SBP of 180 mmHg is (0.16−0.10 =) 6 percent, both appreciably
different from the overall estimate of (0.076 - 0.049 =) 2.7 percent. The fitted
cumulative incidence functions for these two profiles, along with those from
the model of Cox, are shown in Figure 3. The fully-parametric fit is very
good.

Even though they involve integrals, the risk estimates corresponding to
a given profile can be obtained from the corresponding risk scores together
with either a table (e.g. Table 3 or Table 4) or a nomogram (Figure 4) that
converts these into risk estimates. Figure 4 was formed using the nomogram
function in the “Design” package (Harrell, 2001, Harrell 2007) in R (details
are available on request). As described more fully in our earlier article advo-
cating greater use of profile-specific risk estimates (Julien and Hanley, 2008),
points – proportional to fitted regression coefficients – for the four factors
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Table 4: Risk estimate (%) for stroke in next 1, . . . , 5 years, if the SBP
will not be treated (I = 0) and if it will be treated (I = 1), as a function
of the four prognostic indicators incorporated in the Total Score, proposed
approach, model in column (1a) of Table 2. Data are from the SHEP (1991).

Total Year
Score I 1 2 3 4 5

200 0 3.3 6.4 9.4 12.3 15.0
1 2.6 4.8 6.7 8.4 9.8

(No. Years beyond 60) × 4
150 0 2.0 4.0 5.8 7.6 9.4

1 1.6 2.9 4.1 5.2 6.1
Black ... 30

100 0 1.2 2.4 3.6 4.7 5.8
1 1.0 1.8 2.5 3.2 3.7

Male ... 26
50 0 0.7 1.5 2.2 2.9 3.6

1 0.6 1.1 1.5 1.9 2.3
(Every 10 mm SBP above 140) × 17

0 0 0.5 0.9 1.3 1.8 2.2
1 0.4 0.7 0.9 1.2 1.4

Total Score

are summed and transferred to “Total Points” scale. The corresponding risk
estimates are read from the bottom two scales. In that article, we created
a modification of Harrel’s nomogram to address risk differences. Although
the content of the nomogram in that article was based on results from Cox
regression, the format of that nomogram could also be used to display the
results of the regression models described here.

To calculate the point estimate of the 5-year risk for the (untreated) high-
risk profile shown in the bottom right panel of Figure 2, we substituted the
value of the integral (obtained via the integrate function in R) into equation
(2). To obtain a confidence interval to accompany this integral, we calculated
the variance of a 10-point sum, using the variance-covariance matrix of the
estimated coefficients, and the delta method (as in Efron, 1988).
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Points
 0  1  2  3  4  5  6  7  8  9 10

Age
60 65 70 75 80 85 90 95 100

Male
0

1

Black
0

1

SBP
155 165 175 185 195 205 215

I
1

0

t
6 0

I.t
6 5 4 3 2 1 0

Total Points
 0  2  4  6  8 10 12 14 16 18 20 22

Linear Predictor
−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5

5−year Risk (%)  if not treated
3 4 5 6 7 8 9 12 15 18

5−year Risk (%) if treated
2 3 4 5 6 7 8 9 12 15 18

Figure 4: Nomogram to calculate estimated 5-year risk of stroke if untreated,
or if treated. Points – proportional to fitted logistic regression coefficients –
for the 4 indicators (Age to SBP) are summed and transferred to the “Total
Points” scale. The corresponding estimates of risk are read from the bottom
two scales. The scores for “I”, “t” and “I.t”, already included in these bottom
two scales, are shown merely for completeness. Data are from the SHEP.

5.2 Head-and-neck cancer study

Efron (1988) found that a hazard function modelled as a cubic-linear spline,
with the join point at t = 11 months, fitted the time-to-recurrence data better
than a linear-in-time or cubic-in-time function. Figure 5 shows this hazard
function, fitted by his method to the discretized data for arm A of the study,
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Figure 5: Cubic-linear incidence density (i.e., hazard) function, with join at
11 months, and cumulative incidence function derived from it, fitted to data
from arm A of head-and-neck cancer study (Efron, 1988). Thicker, blue,
lines: curves fitted by proposed method, based on person-moments; thinner,
red, lines: curves fitted by Efron’s ‘parametric analysis’ method, based on
discretized data; step function, black: Kaplan Meier estimated cumulative
incidence curve.

together with a hazard function of the same form fitted by the proposed
method, based on person-moments (i.e., a non-discretized version of the same
data). The slight difference between them probably reflects the discretization
versus non-discretization. For this example, the representative sample of
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A: Radiation Alone

B: Radiation + Chemotherapy

A

B

Figure 6: Cubic-linear incidence density (i.e., hazard) functions, with join
at 11 months, and cumulative incidence functions derived from them, fit-
ted – separately – to data from arms A and B of head-and-neck cancer
study (Efron, 1988). Smooth curves: fitted by proposed method, based on
person-moments; step functions: Kaplan Meier estimated cumulative inci-
dence curves.

b = 100 × c = 100 × 42 = 4, 200 person-moments from the 599.58 patient-
months in the base was determined by allocating the number of moments for
each of the n = 51 patients in proportion to the lengths of their follow-up
times, 4,200/599.58 = 7.00 per month. Thus, for example, for a patient with
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follow-up time of 1.38 months, allocated were 1.38× 7.00 = 10 moments, at
t = 1.38× [1/11, 2/11, . . . , 10/11] months.

Figure 6 shows the separately fitted hazard functions for the two treat-
ment arms, along with the cumulative incidence functions derived from them,
and their Kaplan-Meier counterparts. Just as in Efron’s analysis, the two
separately fitted hazard functions for A and B (4 parameters each) appear
to be non-proportional: the ratio of the fitted IDs is 1.2 at 6 months but 2.3
at 12 months. In the 5-parameter proportional cubic-in-time hazard model
the constant-in-time ID ratio is 1.69 (95% CI 1.05 to 2.71). However, an 8-
parameter hazard function that uses a cubic function, a treatment indicator,
and 3 products – which duplicated the 2 separate cubic fits – did not fit ap-
preciably better than the 5-parameter proportional hazards model. Some of
this “complicated early structure” (Efron, 1988, p. 416) that required the cu-
bic form undoubtedly stems from our ignorance of important disease-extent
descriptors for each patient.

6 Discussion

Our focus has been on ‘individualized’ – specific for prospective time, profile
and treatment – risk functions derived from smooth-in-time hazard functions.
Despite their wide availability, the profile-specific estimates of risk available
from Cox’s semi-parametric approach are seldom used, and we suspect that
end-users are averse to the fitted risk function’s ‘steps-in-time’ – and thus
‘raw’ and ‘unsophisticated-looking’ – form.

The parametric, smooth-in-time, log-linear form we adopted for the haz-
ard function—as the basis for the risk function derived from it— is not new.
It is a natural extension of the form proposed by Gompertz (1825). There
are closed-form expressions for the ML estimates of the parameters of the
Gompertz model fitted to a homogeneous sample (Carriere, 1994); and a
proportional-hazards form of this model can be fitted using streg in Stata.
However, with more complicated terms in t, such as a treatment and t prod-
uct term or any other time-varying covariate, computing difficulties appear
to have prevented this very natural form from being used in a broader re-
gression framework. To avoid maximizing a log-likelihood that involves logs
of integrals of this hazard function, one can use a time-slicing approach to
fit the smooth model; but this too involves some compromises.

The method described here is a very different way of fitting this hazard
function. It is based on bringing to the context of survival analysis the gen-
eral structure of an etiologic study in epidemiology (Mantel 1973; Miettinen
1976; Miettinen, 2004; Miettinen, 2008): a case series (of the event at issue)
coupled with a base series (sample of the study population-time), together
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with logistic regression analysis of the data on these. While this approach
generally allows estimation of only functions for ratios of the hazard – inci-
dence density – the proposed approach provides for estimation of the hazard
function per se, and thereby estimation of cumulative incidence and risk.
Essential to this end is representative sampling of the study population-time
for the base series, so very different from the risk set sampling that is in the
essence of Cox regression.

The log-linear modelling for incidence density, which underlies this logistic-
regression approach, opens up the possibility of fitting – and using standard
methods to assess the fit of – a wide range of functional forms for the time-
dimension of the hazard function, and of effortlessly handling censored data.
It handles not just the one-sample situations that were the main focus of
Efron (1988), but also the regression analog he proposed in that article. In
addition, the proposed model allows flexibility in explicitly modeling non-
proportionality over t. Statistical research in this area has heretofore fo-
cused on using splines to model a hazard ratio that changes over time. The
proposed approach allows splines to be used within a standard logistic re-
gression framework to smooth the hazard function itself, as an alternative to
smoothing the cumulative hazard function (Royston and Parmar, 2002).

By replacing t by log(t) in the linear predictor, and using case and base
series, one can also use standard logistic regression to fit Weibull models.
For example, this approach reproduces the parameter estimates for the (ex-
ponential and) Weibull models reported in Table 1 of Aitkin and Clayton
(1980).

Since the choice of model form will depend on the context, there can
not be general principles for this choice. The purely Gompertzian hazard
model, with log rates having a straight-line relation to age and/or follow-up
time, is suited to studies, such as the SHEP (1991), involving persons who
have not yet developed the illness of interest, whereas more complex time
functions tend to be needed for the prognosis in the context of a newly-
diagnosed condition. Efron (1988) used a cubic-linear spline to model the
“more complicated early structure” of the hazard functions in each of the
two arms of a head-and-neck cancer study. Some of the complexity of those
hazard functions might be removable by including patient-level covariates.
However, features such as early surgical mortality and the (partially latent)
mixture of curable and incurable patients can still be expected to complicate
the early structure and to create non-proportionality of the hazard function.
Quite complex hazard models can, however, be fitted by standard logistic
regression in the approach addressed here, and this means that the checking
of the model fit can be carried out using standard and familiar regression
techniques. As with Efron’s approach, no additional complexities are created
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by the presence of censored observations. Thus, other than pointing to the
assessments of fit he used, no additional specifics of model fit and selection
are discussed here.

Depending on the currently available software used, the fitting of semi-
and fully-parametric hazard models with time-varying covariates, and prod-
uct terms involving t, requires different levels of sophistication on the part of
the end-user. In the time-slicing approach used by Stata and the survival

package in R, the user must split each record into several, or use the built-in
facilities for doing so. The phreg procedure in SAS allows the user to accom-
modate time-varying covariates ‘on-the-fly’ but is subject to being misused
by less sophisticated users. The approach described here, with the oppor-
tunity to incorporate the covariate history as of each person-moment in the
two series makes the modelling more transparent.

The information about the hazard function, descriptive of the study base,
is constrained by the size (c) of the case series; and this information is cap-
tured practically in its entirety when the base series, though only a finite
sample of b of the infinite number of person-moments constituting the study
base, is suitably large in proportion to the case series. It is quite feasible
to use, as we have done, a b/c ratio that is sufficiently large so that the im-
precision of the estimates results, in all essence, from the paucity of cases,
that is, so that the information, proportional to (1/c + 1/b)−1, is effectively
proportional to c.

Some readers may wonder why, since our first illustrative example deals
with the experience of patients 65 and older, we did not deal with compet-
ing risks of death. One reason was to not detract from the central topic:
parametric modeling of hazard functions, leading to smooth-in-time profile-
specific cumulative incidence functions. Another was to accommodate the
outlook that even in the face of competing risks, prognosis should be con-
ditional on otherwise surviving. Others, such as Albertsen et al. (1998),
take the opposite view: to produce a display of cumulative proportions of
prostate cancer and all-other-cause mortality graphs, they used time-slicing
and Poisson regression to fit separate parametric log-linear hazard functions
for these two rates of mortality. The approach proposed here, based on
Bernoulli rather than Poisson variates, is a simpler and more natural way to
fit such functions.

7 Software

The website http://www.biostat.mcgill.ca/hanley/software contains
an R function that accepts as input a dataset containing the prognostic indi-
cators, the duration until follow-up was terminated, and whether termination
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was by the event of interest, or by censoring. The function returns a person-
moment file suitable for the proposed logistic regression approach.
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