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COMMENTA RY

The statistical joys—and added complications—of twin studies
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Just like twins themselves, studies—experimental and non- 
experimental—involving twins are special. They allow sharper in-
sights than we could achieve in other, noisier settings. Examples, 
involving just a pair of twins, are Einstein’s thought experiment on 
the effect of space travel on ageing, and—a century later—NASA’s 
real one on its effects on DNA, and the body more generally. 
Another, involving 1162 monozygous and heterozygous twins, is 
a trial that measured the frequency of short- term adverse events 
caused by childhood vaccines.1 Yet another, with a substantial im-
pact, is an “experiment” designed by Nature that involved 115 twin 
pairs born to HIV- infected mothers.2,3

In his critique of a “milk- feeding” experiment on 20 000 school-
children that went awry,4 William Gosset (“Student”) made a case for 
the statistical efficiency of the “split- plot” design used in agricultural 
experimentation. For the milk vs no milk comparison, he suggested 
“pairs of the same age group and sex, and as similar in height, weight 
and especially physical condition (ie well or ill nourished) as possible, 
and divided into ‘controls’ and ‘feeders’ by tossing a coin for each 
pair.” For the “raw vs pasteurised” milk comparison, “the error of the 
comparison may be relied upon to be so small that 50 pairs of [iden-
tical twins] would give more reliable results than the 20 000 with 
which we have been dealing. [Thus,] it would be possible to obtain 
much greater certainty at an expenditure of perhaps 1- 2 percent of 
the 7500 pounds [500 000 today] and less than 5 percent of the 
trouble.”

Gains in efficiency can also be achieved when (as in the perina-
tal trial5 re- analysed by David Cox in Biometrika) the comparison is 
within day/season of the year rather than family. Greater precision 
can also be achieved with “within- the- same- subject” or “crossover” 
trials. However, as Barr and colleagues6 note, not all crossover trials 
are as easy, or as elegant, as we imagined.

Likewise, not all trials involving twins/related individuals (or a mix 
of related and unrelated individuals) are as statistically efficient (joy-
ful) as those involving only unrelated individuals. In some settings, 
all the related individuals in the same unit (eg not yet born twins of 
the same woman) have to be allocated to the same “arm.” In these 
situations, as with cluster randomised trials in general, the (usually) 

positive correlation in the responses of those in the same unit/ 
cluster, and the fact that these related individuals are “on the same 
side” of the comparison, make for a larger standard error. Indeed, in 
such settings, were it not for the cost saving from recruiting “m for 
the price of fewer”, it would be (statistically) more efficient to enrol 
one individual from each of m units, rather than m related individuals 
from the same unit. The planning inputs and software tools Yelland 
and colleagues describe in this issue of Paediatric and Perinatal 
Epidemiology7 will make it easier for researchers in such situations to 
count these mixed blessings, and plan accordingly.

Before commenting on these, a word about the prevailing prac-
tice of “determining” or “estimating” the “required” sample size. A 
colleague once asked me: when you attend religious worship, are 
you required to put a specified amount in the collection box, or is it 
rather that every donation contributes- like in a meta- analysis- to the 
overall amount collected? Instead, how about the term sample- size 
“considerations”?

Yelland and colleagues7 are to be thanked for putting (most of) the 
sample- size considerations for studies involving related individuals, 
or a mix of related and unrelated individuals, in one place. By switch-
ing between designs by toggling between “Cluster,” “Individual”, and 
“Opposite,” the online tool can also be used to plan different types 
of observation- only (non- experimental) studies involving singletons 
and pairs. Their earlier Statistics in Medicine article addressing the 
general case can be used for any mix of clusters of different sizes.

Their “use all available data” approach will help investigators 
move away from one statistically cruel way to avoid non- independent 
responses. Our 2003 “GEE” article described a non- experimental 
study (examining the benefits of families eating meals together) 
where 1 in 4 subjects had a sibling in the study. But the authors split 
up these siblings (using randomisation) and removed the data from 
one of them!

Another welcome aspect is Yelland et al’s use of a traditional 
correlation,	with	range	−1	to	+1,	rather	than	the	intraclass	correla-
tion	 (“fraction”)	with	 range	0	 to	+1.	The	 latter	 is	 still	used	 in	most	
sample- size considerations for studies/trials involving clusters. In 
most applications, the two correlations will coincide. But in special 
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situations, the within- cluster sum may be constrained or shared, pos-
sibly because of space or other structural factors. Such limitations 
can lead to a genuinely negative intracluster correlation.8 A random 
effects (“hierarchical”) model, with its two additive variance compo-
nents, cannot describe such situations, whereas the minimalist, and 
thus more flexible, GEE approach, with its broader range of possible 
intrarelationships, can. Even in the usual (positive correlation) con-
texts, the GEE approach is also an alternative for correlated binary 
responses: these are sometimes difficult to fit via hierarchical mod-
els, and variance components on a logit scale are difficult to visualise.

But how to come up with an ICC for planning purposes? All I can 
recommend is “carefully”: if it will be working against us, then better 
to overestimate its magnitude; if with us, then better to underesti-
mate the help it brings. In any case, since it is rare that a single study 
is definitive, we should accept that one study merely contributes 
to a meta- analysis, even if it may not have been as precise as we 
planned.

The authors are to be thanked for their work in providing ICC 
estimates for several relevant paediatric and perinatal outcomes, 
and contexts. Like all correlations, they are “range dependent.” I was 
struck by how much smaller the ICCs were for standardised birth-
weight scores than birthweight itself. If we condition on a sufficient 
number of important determinants, such as gestational age, might 
the ICC even become negative,8 as it can for birthweights of animals 
in the same litter?

Although their article, and the tool it offers, is limited to twins, 
the formulae in their earlier Statistics in Medicine paper accommodate 
a generic “cluster size” m, and can be applied to cluster randomised 
trials. When m is very large, even a tiny ICC leads to a large vari-
ance inflation, and a considerable loss in statistical power/precision. 
Having underestimated the ICCs for triceps skinfold thickness and 
verbal IQ in the PROBIT trial, my colleagues now warn others to en-
sure that assessors are spread over multiple units.9 (The Lanarkshire 
trial also employed a cluster randomisation of the 67 schools, and 
the measuring of the initial and final height and weight required “the 
whole time of 5 doctors and 17 nurses” for 2 weeks at each end.)

Initially, the formula in their earlier statistical article seemed 
too simple to require a “black box” calculator,10 but I came to ap-
preciate the heuristics the online tool offers. Start, say, with a 
sample size of 100 unrelated subjects and then consider a cluster 
randomisation setting. Begin with say 1 pair of twins and an ICC 
of 0.01, then move to an ICC of 0.5 or 0.99 and each time see 
what happens. One can infer what would happen if say, the ICC 
is 0.4, and if instead of a pair of twins, we had one set of triplets. 
The first of the three contributes the same statistical information 
as a singleton, and each of the others contributes as much as 0.6 
of a singleton. So, their total contribution	 is	1	+	2	×	(1−ICC),	 or	 in	
general,	1	+	(m−1)	×	(1−ICC).	 I	wonder	 if,	 rather	 than	approaching	
sample- size considerations using the variance for an estimator, we 
should work with its reciprocal, information [which is additive] in-
stead. Thus, in the cluster randomisation context, think of (1- ICC) 

as the (reduced) contribution, after the first, from each additional 
individual in the cluster. Every 100 individuals comprising 89 sin-
gletons, 4 pairs of twins, and 1 set of triplets, are the “singleton- 
equivalent”	 of	 89	+	4	+	1	+	(4	+	2)	×	(1−ICC),	 or	 94	+	6	×	(1−ICC)	
independent units of statistical information.

As for the “opposite” randomisation design, where a pair of 
twins	 contribute	 1/(1−ICC)	 times	 more statistical information 
than two unrelated individuals, readers are encouraged to read 
Gosset’s classic piece, still relevant today. The online tool should 
allow them to back- calculate how large an ICC and how much 
“greater certainty” he had in mind when he reduced the number 
of children in the “raw vs pasteurised” comparison from 20 000 
to 100.
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