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  Abstract   Sample size estimation is a fundamental step when designing clinical trials and 

epidemiological studies for which the primary objective is the estimation or the comparison of 

parameters. One may be interested in the prevalence of overweight children in a given popula-

tion; however, the true prevalence will remain unknown and cannot be observed unless the 

whole population is studied. Statistical inference is the use of statistics and random sampling 

to make inferences concerning the true parameters of a population. By choosing a representa-

tive sample, inference based on the observed prevalence leads to an estimation of the true 

parameter. But how many subjects should be sampled to obtain an accurate estimate of the 

prevalence? Similarly, how many subjects should we sample to show that this parameter is dif-

ferent from some fixed value? 

 We first review basic statistical concepts including random variables, population and sample 

statistics, as well as probability distributions such as the binomial and normal distributions. 

Principles of point and interval estimation, as well as hypothesis testing, are presented. We consider 

several commonly used statistics: single proportions, differences between two proportions, single 

means, differences between two means, and reference limits. For each parameter, point estimators 

are presented as well as methods for constructing confidence intervals. We then review general 

methods for calculating sample sizes. We first consider precision-based estimation procedures, 

where the sample size is estimated as a function of the desired degree of precision. Next, although 

there is greater emphasis on precision-driven estimation procedures, we also briefly describe power-

based estimation methods. This approach requires defining a priori the difference one wishes to 

detect, the desired significance level, and the desired power of the test. Sample size estimation proce-

dures are presented for each parameter, and examples are systematically provided.  

  Abbreviations and Notations  

  N    Population size   

  n    Sample size   

  ME    Margin of error   

  e    Precision   
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  m    Population mean   

  m    Sample mean   

  s 2    Population variance   

  s2    Sample variance   

  p    Population proportion   

  p    Sample proportion   

  H
0
    Null hypothesis   

  H
A
    Alternative hypothesis   

  a    Type I error rate   

  b    Type II error rate   

  z
p
    100p% standard normal deviate   

  BMI    Body mass index   

  DBP    Diastolic blood pressure       

    1.1   Introduction 

 Sample size estimation is a fundamental step when designing clinical trials and epidemiological 

studies for which the primary objective is the estimation or the comparison of parameters. One may 

be interested in the prevalence of a given health condition, e.g. obesity, in a specifi c population; 

however, the true prevalence will always remain unknown and cannot be determined unless the 

whole population is observed. Statistical inference is the use of statistics and random sampling to 

make inferences concerning the true parameters of a population. By selecting a representative sample, 

inference based on the  observed     prevalence leads to an estimation of the  true  parameter. But how 

many subjects should be sampled to obtain an accurate estimate of the prevalence? 

 Sample size estimation can be either precision-based or power-based. In the fi rst scenario, one is 

interested in estimating a parameter, such as a proportion, or a difference between two means, with 

a specifi c level of precision. On the other hand, one might only be interested in testing whether two 

parameters differ. The sample size will be estimated as a function of the size of the difference one 

wishes to detect as well as the degree of certainty one wishes to obtain. 

 To understand the process of sample size estimation, it is important to be familiar with basic statis-

tical concepts. We fi rst review statistical principles, as well as general concepts of statistical inference, 

including estimation and hypothesis testing. Methods for sample size estimation are presented for 

various parameters using precision-based and power-based approaches, although there is greater 

emphasis on precision-driven estimation procedures (Gardner and Altman  1986,   1988  ) . 

 Most concepts presented in this chapter are available in introductory statistical textbooks (Altman et al. 

 2000 ; Armitage et al.  2002  )  and texts focusing on the methodology of clinical trials (Machin et al.  1997 ; 

Friedman et al.  1998 ; Sackett  2001 ; Piantadosi  2005  ) . We refer the interested readers to these works.  

    1.2   Basic Statistical Concepts 

    1.2.1   Random Variable 

 A random variable assigns a value to each subject of a population, such as weight, hair colour, etc. By 

random, it is implied that the true value of the variable cannot be known until it is observed. A variable 
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(for simplicity, we will often discard the term  random  throughout the rest of this chapter) is either 

 quantitative  or  qualitative . 

 A quantitative variable is one that can be measured and can take a range of values, for example, 

waist circumference, size, age, or the number of children in a household. Quantitative variables 

include  discrete  and  continuous  variables. A discrete variable is one that can take only a limited 

range of values, or similarly, the possible values are distinct and separated, such as the number of 

children in a household. On the other hand, a continuous variable can take an infi nite range of values, 

or similarly, can assume a continuous uninterrupted range of values, such as height or age. 

 A qualitative or categorical variable is one that cannot be numerically measured, such as the pres-

ence or absence of a disease, gender, or the colour of hair. A  dichotomous  or binary variable is one 

that can take one of two values, such as the presence or absence of a trait or state, or whether or not 

one is overweight.  

    1.2.2   Population Versus Sample Statistics 

 Suppose we are interested in describing the size of 10-year old girls attending English schools. 

Height in this population can be summarized by various quantities, such as the mean, the median or 

the variance. These quantities are called  population statistics  and are usually represented with 

Greek letters. Unless all 10-year old girls attending English schools are measured, the true value of 

population statistics, such as the mean height in our example, cannot be observed and is  unknown . 

It is however possible to  estimate  the true value with some degree of certainty. This involves randomly 

sampling from the whole population of interest. Based on a random sample of 10-year old girls 

attending English schools, one observes the distribution of heights in this sample and calculates the 

observed mean. Quantities derived from an  observed sample  are called  sample statistics , and are 

usually denoted using Roman letters. 

 Two random samples of equal size will usually not yield the same value of the sample statistic. 

The possible differences between the estimates from all possible samples (conceptual), or between 

each possible estimate and the true value are referred to as  sampling variation . As a result, it is not 

possible to conclude that the observed sample mean corresponds to the true population mean. By 

using appropriate statistical methods, sample statistics can be used to make inferences about population 

statistics. In the next section, we present commonly used statistics.  

    1.2.3   Summarizing Data 

    1.2.3.1   Categorical Variables 

 Summarizing categorical variables involves counting the number of observations for each category 

of the variable. These counts are usually referred to as frequencies. The proportion of such counts 

among the total can also be represented.  

    1.2.3.2   Quantitative Variables 

 Continuous variables can be summarized using measures of  location  and  dispersion . Measures of 

location, such as the mean or the median, represent the central tendency of distributions. Dispersion 

measures, such as the variance, represent the repartition of a variable around the central tendency. 
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 Given a population of size N and a variable X with observed values x
1
,…, x

N
, the population mean 

is given by:     
1

N

i

i

x

N
m

=

= å   . If only a random sample of size n is available, the sample mean m is calcu-

lated similarly and given by     
1

n

i

i

x
m

n=

= å   . 

 If observations are ordered in increasing order, the median is the middle observation of the sample. 

If the number of observations in a sample is odd, the median is the value of the     th
1

( 1)
2

n +    observation 

of the ordered sample, while it is the mean of the values of the two middle observations if the number 

of observations is even. 

 The most common measure of dispersion is the variance, or its square root, the standard devia-

tion. Given a population of size N, the variance s 2 is given by     
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population mean. The population standard deviation is     

2

( )
i

i

x

N

m

s

­
=

å
  . If a sample of size n is 

available, the sample variance s 2 is provided by     
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  , where m is the sample mean. The 

denominator is slightly different from that of a population variance. This correction ensures that the 

parameter s2 is an unbiased estimator of the population variance s 2. Similarly, the sample standard 

deviation, usually denoted as SD, is calculated as     
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 Other measures of dispersion include the range, the inter-quartile range and reference limits. The 

range corresponds to the difference between the maximum and the minimum values. When in 

increasing order, the fi rst or lower quartile corresponds to the value below which 25% of the data fall. 

The third or upper quartile corresponds to the value below which 75% of the data fall. There are 

several methods to compute quartiles: one involves calculating the fi rst and third quartiles as the rank 

of the     
1

( 1)
4

n +    th and     
3

( 1)
4

n +    th observed values. Other methods are available, but will usually 

lead to relatively close results (Armitage et al.  2002  ) . 

 The inter-quartile range is the difference between the upper and lower quartiles. Note that the 

second or middle quartile corresponds to the value below which 50% of the data fall, and as such, is 

equivalent to the median. 

 More generally, the 100p% reference limit, where 0 < p < 1, is the value below which 100p% of 

the values fall. For example, the median is equivalent to the 50% reference limit. Reference limits 

are also called reference values, percentiles, or quantiles. 

  Example : A random sample of ten 20-year-old women leads to the following observed weights 

(in kg): 50, 55, 60, 61, 45, 52, 62, 54, 48, 53. The variable of interest X is the weight, which is a 

continuous variable. We fi rst reorder this random sequence of n = 10 observations: 45, 48, 50, 52, 53, 

54, 55, 60, 61, 62. Based on previous formulae, we have the following results:

   The sample mean is calculated as  •    
10

1

45 62
54 kg

10 10
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= = =å

⋯

    

  The sample median is calculated as  •    
53 54

med 53.5 kg
2

+
= =     
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  The sample variance is calculated as  •    

2

2 2
2 2

( 54)
(45 54) (62 54)

32 kg
10 1 9
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­
­ + + ­

= = =
­

å
⋯

    

  The range is given by 62–45 = 17 kg       • 

    1.2.4   Probability Distributions 

 A distribution is defi ned as the set of frequencies of the values or categories of a measurement made 

on a group of persons. The distribution tells us either how many or what proportion of the group was 

found to have each value (or each range of values) out of all of the possible values that the quantita-

tive measure can have (Last  2001  ) . 

 Consider the variable X corresponding to the number of copies of a certain allele A. The variable 

X can take three distinct values: 0, 1, 2. Ten subjects are randomly selected from the general popula-

tion and the following series of outcomes is observed: 0, 0, 2, 1, 1, 2, 1, 0, 1, 1. This series is called 

a random series, since previous values cannot be used to predict future observation. One can then 

calculate the proportion of subjects carrying two copies of the allele. This observed proportion equals 

2/10 in our example. If subjects are randomly sampled indefi nitely, this proportion will tend towards 

a limiting value, called the  probability  of carrying two alleles, denoted by P(X = 2) = p. The sample 

probability distribution of the variable X is represented in Table  1.1 .  

 We have the following result:     ( ) 1.P X x= =å    This leads us to a fundamental property of proba-

bility distributions: for a given variable, the sum of the probabilities of each possible event equals 1. 

    1.2.4.1   Bernoulli and Binomial Distributions 

 Consider a dichotomous random variable X whose values can be either one state or the other, or the 

absence or presence of a specifi c trait. The true (unknown) proportion of the population that is in the 

index category of the state or trait (the probability that a randomly selected individual would be in this 

category (X = 1)) is denoted as p and the probability of being in the other (reference) category (X = 0) is 

thus 1 ­ p. The parameter p defi nes the probability distribution of X, and is called the  Bernoulli distri-

bution  (after J Bernoulli, a Swiss mathematician). The variable X is said to follow a Bernoulli distribu-

tion with parameter p. If, as here, the variable X is coded as 0 (reference category) or 1 (index category), 

its mean and variance are given respectively by mean(X) = p and var(X) = p (1–p). 

 Defi ne the random variable Y as the observed number of subjects with a particular state of interest out 

of n randomly selected subjects. If the probability that this state is present is p , the variable Y, that is, the 

sum of Bernoulli random variables with parameter p, is said to follow a  binomial  distribution  with 

mean and variance given respectively by mean(Y) = np and var(Y) = np (1–p). The probability that this 

state is present for k out of n subjects is given by:     
!

( ) (1 ) (1 )
( )! !

k k n k k n k

n

n
P Y k C

n k k
p p p p­ ­= = ­ = ­

­
  . 

   Table 1.1    Sample probability distribu-

tion for the categorical variable X defi ned 

as the number of copies of allele A   

 x  0  1  2 

 P(X = x)  3/10  5/10  2/10 
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When n is large, the distribution of Y will converge to a normal distribution with mean np and variance 

np (1–p). 

  Example : The presence of a health state S is assessed in n = 3 randomly selected subjects. The variable 

Y corresponds to the number of subjects with state S out of the n = 3  subjects, and can thus have 

4 possible values: 0, 1, 2, or 3. Assume that the state S is present in p = 50% of the population. 

The probability of observing k = 2 subjects with state S out of n = 3 randomly selected subjects is 

given by:     ( ) ( )2 3 22 2 3 2

3

3! 3
( 2) (1 ) 0.50 0.50

(3 2)!2! 8
P Y C p p

­­= = ­ = =
­

  .  

 The complete probability distribution of Y can be computed and is represented in Table  1.2 .   

    1.2.4.2   The Normal Distribution 

 Consider a continuous random variable with values that vary between –∞ and +∞. The most impor-

tant continuous probability distribution is the  Gaussian distribution  (after Karl Gauss, a German 

mathematician), also called the  normal distribution , which is indexed by two parameters: the mean 

and the variance. If X follows a normal distribution with mean m and variance s 2, we use the follow-

ing notation:  X  ~  N (m,s  2 ).The curve representing the normal distribution is symmetric, so that the 

mean and the median fall at the centre of the symmetry. It is described by the function 
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21
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2

x

f x e
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s
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­æ ö
­ ç ÷è ø=   . The probability that a random variable falls between two values,  A  and  B , is 

represented graphically by the area under the curve of the probability distribution and between the 

two vertical lines with coordinates x = A and x = B, as illustrated in Fig.  1.1 .  

 Numerically, this probability is obtained by computing the integral     ( ) ( )

B

A

P A x B f x dx< < = =ò   
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  . Calculation of this integral is not feasible using simple calculation tools; however, 

the properties of the normal distribution simplify the probability estimation in some cases. For exam-

ple, the probability that any random normal variable  X ~ N (m,s  2 ) falls within one standard deviation of 

the mean is known to be about 68%, that is P( m – s <  x  < m + s) = 68%, as presented in Fig.  1.2 .  

 Similarly, about 95% of the distribution falls within two standard deviations of the mean 

(P( m – 2s <  x  < m + 2s) = 95%), and 99.7% within three standard deviations (P(m ­ 3s < x < m + 3s) 

= 99.7%). For other values of the normal distribution, one has to either calculate the integral 

    ( ) ( )

B

A

P A x B f x dx< < = ò    (by hand or using a mathematical or statistical software) or rely on statisti-

cal tables for which these probabilities are tabulated for values of m and s . There is however an infi -

nite number of values for these parameters, and it is therefore not possible to have tables for all of 

them. Interestingly, every normal distribution with parameters m and s can be expressed in terms of a 

normal distribution with mean 0 and variance 1, called the  standard normal distribution . Indeed, 

if  X ~ N (m,s  2 ), then one can defi ne the variable Z such that     
X

Z
m

s

­
=   . It can be shown that  Z ~ N (0,1). 

   Table 1.2    Probability distribution for the 

categorical variable Y defi ned as the number of 

subjects with state S out of 3 randomly selected 

subjects   

 y  0  1  2  3 

 P(Y = y)  1/8  3/8  3/8  1/8 
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Thus, computing the probability that a variable  X ~ N (m,s  2 ) belongs to the interval [A;B], is equivalent 

to computing the probability that a variable  Z ~ N (0,1) belongs to the interval     
A B

;
m m

s s

­ ­é ù
ê úë û

  . 

Tables of the standard normal distribution are available in most statistical textbooks. Important tables 

are associated with the standard normal distribution, including the table  P ( z ), which provides for each 

  Fig. 1.1    Normal probability distribution function for a variable X. The  shaded area  represents the probability that the 

variable X falls between  A  and  B . Numerically, this probability is obtained by computing the integral     ( )P A x B< < =   

    

2
1

21
( )

2

xB

A

f x dx e dx

m

s

s p

­æ ö
­ ç ÷è ø=ò          

  Fig. 1.2    Probability distribution function for a normal random variable X with mean m and variance s 2. The  shaded 

area  represents the probability that the normal variable X falls within the interval from the mean minus one standard 

deviation to the mean plus one standard deviation, that is P(m ­ s < x < m + s), which is about 68%       
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value of z, the probability that Z falls outside the interval [– z ;  z ]:  P( z ) =  P (Z < – z or Z > z) = 1 – P(– z  

< Z <  z ). Some standard normal values are commonly used: P(1.64) = 0.10 and P(1.96) = 0.05, that is, 

P(–1.96 < Z < 1.96) = 95%. Thus, if a standard normal variable is randomly selected, there is a 95% 

chance that its value will fall within the interval [–1.96; 1.96]. Equivalently, the probability that a 

standard normal random variable  Z ~ N (0,1) falls outside the interval [–1.96; 1.96] is 5%. Given the 

symmetry of the normal distribution, P(Z > 1.96) = P(Z < –1.96)=2.5%. These standard results are 

illustrated in  Fig. 1.3 . The  Z -values are usually referred to as the  Z -scores and are commonly used in 

anthropometry. They are discussed in greater detail in a subsequent chapter.  

 The normal distribution is commonly used in anthropometry, in particular to construct reference 

ranges or intervals. This allows one to detect measurements which are extreme and possibly abnor-

mal. A typical example is the construction of growth curves (WHO Child growth standards  2006  ) . In 

practice, however, data can be skewed (i.e. not symmetric) and thus observations do not follow a nor-

mal distribution (Elveback et al.  1970  ) . In such cases, a transformation of the observations, such as 

logarithmic, can remove or at least reduce the skewness of the data (Harris and Boyd  1995 ; Wright 

and Royston  1999  ) .    

    1.3   Principles of Statistical Estimation 

 There are two estimation procedures:  point estimation  and  interval estimation . Point estimation 

provides a value that we hope to be as close as possible to the true unknown parameter value. 

Interval estimation provides an interval that has a fi xed a priori probability of containing the true 

parameter value. 

Probability of Cases
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P
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b
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−4σ

≈0.0013

−2.58σ 2.58σ
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Cumulative %
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  Fig. 1.3    The normal distribution. This plot illustrates standard results of the normal distribution including standard 

deviations from the means and the  Z -scores       
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    1.3.1   Point Estimation 

    1.3.1.1   Point Estimator and Point Estimate 

 Point estimation is the process of assigning a value to a population parameter based on the observation 

of a sample drawn from this population. The resulting numerical value is called the  point estimate ; 

the mathematical formula/function used to obtain this value is called the  point estimator . While the 

point estimator is identical whatever the sample, the point estimate varies across samples.  

    1.3.1.2   Point Estimation for a Proportion 

 The variable of interest is binary, such as the presence or absence of a specifi c health condition. We 

are interested in p, the true prevalence of this condition. Assume we randomly draw a sample of n 

subjects and denote the observed number of subjects with the condition of interest by k. The point 

estimator of p is given by     
k

p
n

=   , while point estimates correspond to the numerical values     1 2
, , ,p p ¼    

obtained from distinct samples of n observations.  

    1.3.1.3   Point Estimation for a Mean and a Variance 

 X is a continuous variable with population mean and variance denoted respectively by m and s 2. If n 

subjects are randomly selected with subjects i=1 to n having respectively observed values x
1
 to x

n
, the 

mean m, the variance s 2 and the standard deviation SD are estimated respectively by     
1

n

i

i

x
m

n=

= å   , 
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­å    and     
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­å   .  

    1.3.1.4   Point Estimation for a Reference Limit 

 Let X
1
, X

2
,…, X

n
 be the measurements for a random sample of n individuals. The 100p% reference 

limit, where 0 < p < 1, is the value below which 100p% of the values fall. Reference limits may be 

estimated using nonparametric or parametric (i.e. distribution-based) approaches (Wright and 

Royston  1999  ) . 

 The simplest approach is to fi nd the empirical reference limit, based on the order statistics. The 

 k th order statistic, denoted as X
(k)

, of a statistical sample is equal to its kth-smallest value. Thus, given 

our initial sample X
1
, X

2
,…, X

n
, the order statistics are X

(1)
, X

(2)
,…, X

(n)
, and represent the observations 

with fi rst, second, …,  n th smallest value, respectively. An empirical estimation of the 100p% refer-

ence limit is given by the value which has rank [p(n + 1)], where [.] denotes the nearest integer. For 

example, for a sample of size n = 199 and p = 0.025, [p(n + 1)]=5, and thus the value of the fi fth order 

statistic, X
(5)

, provides a point estimate of the 2.5% reference limit. 

 Reference limits can also be estimated based on parametric methods. Assume that the observa-

tions follow a normal distribution with mean m and variance s 2. For a random sample of size n, the 

sample mean and sample standard deviation are given by m and SD, respectively. The 100p% refer-

ence limit is then estimated as m + z
p
SD, where z

p
 is the 100p% standard normal deviate.   
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    1.3.2   Interval Estimation 

    1.3.2.1   Principles 

 A single-value point estimate, without any indication of its variability, is of limited value. Because 

of sample variation, the value of the point estimate will vary across samples, and it will not provide 

any information regarding precision. One could provide an estimation of the variance of the point 

estimator. However, it is more common to provide a range of possible values. A  confi dence interval  

has a specifi ed probability of containing the parameter value (Armitage et al.  2002  ) . By defi nition, 

this probability, called the coverage probability, is (1–a ), where 0 < a <1. If one selects a sample of 

size n at random, using say a set of random numbers, then the sample that one gets to observe is just 

one sample from among a large number of possible samples one might have observed, had the play 

of chance been otherwise. A different set of n random numbers would lead to a different possible 

sample of the same size n and a different point estimate of the parameter of interest, along with its 

confi dence interval. Of the many possible interval estimates, some 100(1– a)% of these intervals 

will capture the true value. This implies that we cannot be sure that the 100(1– a)% confi dence 

interval calculated from the actual sample will capture the true value of the parameter of interest. 

The computed interval might be one of the possible intervals (with proportion 100a %) that do not 

contain the true value. The most commonly used coverage probability is 0.95, that is a = 0.05 = 5%, 

in which case the interval is called a 95% confi dence interval.  

    1.3.2.2   Interval Estimation for a Proportion 

 In this situation, the variable of interest is binary, such as the presence or absence of a specifi c health 

condition, and we are interested in p, the prevalence rate of this condition. Given a random sample 

of n subjects, a point estimator for the proportion p is given by     
k

p
n

=   , where k is the observed num-

ber of subjects with the condition of interest in the sample. When n is large, the sampling distribution 

of p is approximately normal, with mean p and variance     
(1 )

n

p p­
  . Thus, a 100(1– a)% confi dence 

interval for p is given by     
( )

1
2

1p p
p z

n
a­

é ù­
ê ú±
ê úë û

  . In smaller samples ( np  < 5 or  n (1– p ) < 5), exact 

methods based on the binomial distribution should be applied rather than a normal approximation to 

it (Machin et al.  1997  ) . 

  Example : Assume one is interested in estimating p, the proportion of overweight children. In a 

selected random sample of  n  = 100 children, the observed proportion of overweight children is 

 p  = 40%.A 95% confi dence interval     ( )1
2

1.96z a­
=    for the true proportion p of overweight children 

is given by     
0.40(0.60)

0.40 1.96
100

é ù
±ê ú

ë û
  , that is [30%; 50%].  

    1.3.2.3   Interval Estimation for the Difference Between Two Proportions 

 The variables of interest are binary, and we are interested in p
1
 and p

2
, the prevalence rates of a 

 specifi c condition in two independent samples of size n
1
 and n

2
. Let k

1
 and k

2
 denote the number of 
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observed subjects with the condition of interest in these two samples. A point estimator for the 

 difference p
1
 ­ p

2
 is given by     1 2

1 2

1 2

k k
p p

n n
­ = ­   , where p

1
 and p

2
 are the two sample proportions. 

When n
1
 and n

2
 are large, the sampling distribution of p

1
 ­ p

2
 is approximately normal with mean 

p
1
 ­ p

2
 and variance     1 1 2 2

1 2

(1 ) (1 )

n n

p p p p­ ­
+   . Thus, a 100(1 ­ a)% confi dence interval for the true 

difference in proportions (p
1
 ­ p

2
) is given by     1 1 2 2

1 2 1
2

1 2

(1 ) (1 )
( )

p p p p
p p z

n n
a­

é ù­ ­
­ ± +ê ú

ê úë û
  . In case of 

smaller samples (n
1
 p

1
 < 5 or n

1
(1 ­ p

1
) < 5 or n

2
 p

2
 < 5 or n

2
(1 ­ p

2
) < 5), exact methods based 

on the binomial distribution should be applied rather than a normal approximation to it (Machin 

et al.   1997  ) . 

  Example : Assume a randomized trial is conducted to compare two physical activity interven-

tions for reducing waist circumference. A total of 110 and 100 subjects are assigned to receive 

 intervention A or B, respectively. The observed success rate is 40% in group A and 20% in group B. 

A 95% confi dence interval for the true difference in success rates is given by

    
0.40 0.60 0.20 0.80

(0.40 0.20) 1.96
110 100

é ù´ ´
­ ± +ê ú

ë û
  , that is, [8%; 32%].  

    1.3.2.4   Interval Estimation for a Mean 

 The variable of interest is continuous with true mean m and true variance σ2. We are interested in 

estimating the true population mean m. A total of n subjects have been randomly selected from this 

population of interest. When  n  is large ( n  > 30), the distribution of the sample mean  m  is approxi-

mately normal with mean m and variance     
2

n

s   . A 100(1–a) confi dence interval for m is thus given by 

    
2

1
2

m z
n

a

s

­

é ù
±ê ú

ê úë û
  . One can use s2 as an estimate of the population variance, unless the variance σ2 is 

known. If the sample size is small, and if the variable of interest is known to be normal, then a 

100(1–a) confi dence interval for m is given by     
2

1,n

s
m t

n
a­

é ù
±ê ú

ê úë û
  , where t

n–1,a
 corresponds to the a% 

tabulated point of the t
n–1,a

 distribution. 

  Example : One is interested in estimating the average weight of 15-year-old girls. After selecting a 

random sample of 100 girls, the observed average weight is 55 kg, and the standard deviation is 

15 kg. A 95% confi dence interval for the mean weight of 15-year-old girls is thus given by: 

    
215

55 1.96
100

é ù
±ê ú

ê úë û
  , that is [52; 58].  

    1.3.2.5   Interval Estimation for the Difference Between Two Means 

 Given two independent samples of size n
1
 and n

2
 with respective means m

1
 and m

2
, and variances     

2

1
s    

and     
2

2
s   , a point estimator for the difference     

1 2
m m­    is given     

1 2
m m­   , where     

1
m    and     

2
m    correspond 
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to the two sample means. When  n  
1 
 and  n  

2 
 are large, the distribution of  m  

1 
– m  

2 
 is approximately 

 normal with mean m 
1 
–m 

2 
 and variance     

2 2

1 2

1 2
n n

s s
+   . A 100(1–a)% confi dence interval for the true dif-

ference in means is then given by     

2 2

1 2

1 2 1
2

1 2

( )m m z
n n

a

s s
­

é ù
­ ± +ê ú

ê úë û
  . Unless the variances     

2

1
s    and     

2

2
s    

are known, one can use the sample variances     
2

1
s    and     

2

2
s    as their respective estimates: 

    

2 2

1 2

1 2 1
2

1 2

( ) .
s s

m m z
n n

a­

é ù
­ ± +ê ú

ê úë û    

  Example : One wishes to compare the diastolic blood pressure (DBP) between two populations of 

subjects A and B. In a sample of 50 randomly selected subjects from population A, the observed DBP 

mean is 110 mmHg, while the mean DBP in 60 patients randomly selected from population B is about 

100 mmHg. The observed standard deviations are, respectively, 10 mmHg and 8 mmHg. A 95% con-

fi dence interval for the true difference in DBP means is thus     
2 210 8

(110 100) 1.96
50 60

é ù
­ ± ´ +ê ú

ê úë û
  , 

that is, [6.6; 13.4].  

    1.3.2.6   Interval Estimation for a Reference Limit 

 Using a nonparametric approach, a confi dence interval for a reference limit can be expressed in terms 

of order statistics (Harris and Boyd  1995  ) . An approximate 100(1–a)%  confi dence interval for 

the 100p% reference limit is given by the order statistics  x  
( r ) 

 and  x  
( s ) 

, where  r  is the largest integer 

less than or equal to     
2

1
(1 )

2
np z np pa+ ­ ­   , and  s  is the smallest integer greater than or equal to 

    
2

1
(1 )

2
np z np pa+ + ­   . 

  Example : In their example, Harris and Boyd are interested in the 90% confi dence interval 

    ( )1
2

1.645z a­
=    for the 2.5% ( p  = 0.025) reference limit based on a random sample of size  n  = 240 

(Harris and Boyd  1995  ) . The lower bound of this interval corresponds to the value of the  r th order 

statistic, where r is the largest integer less than or equal to     
2

1
(1 ) 240 0.025

2
np z np pa+ ­ ­ = ´ +

      
1

1.645 100 0.025 0.975
2

­ ´ ´   , that is, 2. Similarly, the upper bound corresponds to the value of the 

sth order statistic, where s is the smallest integer greater than or equal to     
2

1
(1 )

2
np z np pa+ + ­   , that 

is, 11. Referring to the ordered observations, bounds of the 90% confi dence interval for the 2.5% 

reference limit are thus provided by the values of the second and eleventh order statistics. 
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 Confi dence intervals can also be built using parametric methods. Assume that the observations 

follow a normal distribution with mean m and variance σ2. For a random sample of size  n , the sample 

mean and sample standard deviation are given by  m   and SD, respectively. The parametric estimator 

of the 100 p % reference limit is m + z 
p 
SD, where z 

p 
 is the 100p% standard normal deviate. The vari-

ance of this estimator is given by     
22

1
2

p
z

n

s æ ö
+ç ÷

è ø
  . A 100(1–a)% confi dence interval for the 100p% 

reference limit is thus     

22

1
2

SD
SD 1

2

p

p

z
m z z

n
a

­

é ùæ ö
ê ú+ ± +ç ÷ê úè øë û

  . See Harris and Boyd for worked examples 

(Harris and Boyd  1995  ) .    

    1.4   Precision-Based Sample Size Estimation 

 Sample size can be computed using either a precision-based or power-based approach. In anthro-

pometry, however, there is greater emphasis on precision-driven estimation procedures (Gardner and 

Altman  1986,   1988  ) . 

 For any given parameter, the length of the confi dence interval is a function of the sample size. 

More specifi cally, the larger the sample, the narrower the confi dence interval. Thus, the main pur-

pose of confi dence intervals is to indicate the (im)precision of the sample study estimates as popula-

tion values (Gardner and Altman  1988  ) . Conversely, one can fi x the desired length of the interval and 

estimate the number of subjects needed accordingly. Formulae are available to estimate the sample 

size as a function of the precision, which can be expressed in two ways. 

 One can express the length of the interval in absolute terms based on the  absolute margin of 

error ,  ME , which represents half the width of the confi dence interval, and is the quantity often 

quoted as the “plus or minus” in lay reports of surveys. In such case, the confi dence interval is 

expressed as “estimate ± ΜΕ”. It is also possible to express the length of the interval in  relative  terms 

based on the  precision  usually denoted by e. In such cases, the confi dence interval is expressed as 

“estimate ± e × estimate”. There is a direct relationship between the margin of error and the precision  

since ME = e × estimate; sample size can thus be estimated as a function of either parameter. 

 Note that the term  error  is often a source of confusion when dealing with sample size and power 

calculations. Therefore, it is always very important to provide a precise defi nition of this term, that 

is, to clarify whether we are referring to an absolute or relative error. 

 Throughout this section, we consider that observations from the same sample are independent. 

In the case of two-sample problems, we consider that the two samples are independent.     

    1.4.1   Dichotomous Variables 

    1.4.1.1   Sample Size for Estimating a Single Proportion with a Given Precision 

 A 100(1–a)% confi dence interval for the true proportion p given a sample size n and an anticipated 

value p is given by:     
1

2

(1 )p p
p z

n
a

­

é ù­
±ê ú

ë û
  . The width of the confi dence interval is thus given by 
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1

2

(1 )
2

p p
z

n
a

­

­
´    and depends on the number of subjects in the sample. Conversely, the number of 

subjects needed to estimate the proportion will depend on the degree of precision (indicated by the 

maximum width of the confi dence interval) one is willing to accept. The margin of error, ME, is half 

the width of the confi dence interval. If one wants the absolute margin of error to be at most ME, that 

is, one wants     
1

2

(1 )
ME

p p
z

n
a

­

­
£   , then the number of subjects should be at least     

2

1
2

2

(1 )

.
ME

z p p

n

a
­

­

=    

This problem can also be expressed in terms of precision (or relative error). The confi dence interval 

    
1

2

(1 )p p
p z

n
a

­

é ù­
±ê ú

ë û
   can be rewritten as [p ± e p], implying that the estimation of p is provided to 

within 100e % of its anticipated value, where e is the precision of the estimation. Since ME = pe,the 

required sample size can thus be expressed as     

2

1
2

2

(1 )z p

n
p

a

e

­
­

=   . Note that the sample size is maxi-

mized for p = 0.50. 

 If either np or n(1– p) are small (i.e. below 5), exact approximations based on the binomial distri-

bution should be applied rather than a normal approximation to it (Machin et al.  1997  ) . 

  Example : One is interested in estimating the prevalence of overweight children with an absolute 

margin of error smaller than 0.05 (ME = 0.05). If the prevalence, p, is expected to be around 

50% ( p = 0.50), and interest is in estimating a 95% confi dence interval     
1

2

1.96z a
­

æ ö
=ç ÷è ø

  , the minimum 

number of subjects needed should be     
2

2

1.96 0.5(1 0.5)

0.05

­   , that is, at least 384 subjects.  

    1.4.1.2   Sample Size for Estimating the Difference Between Two Proportions 

with a Given Precision 

 Given two proportions p 
1 
 and p 

2 
 for two independent samples of size n 

1 
 and n 

2 
, a 100(1–a)% 

confi dence interval for the true difference in proportions (p 
1 
–p 

2 
) is estimated by 

    
1 1 2 2

1 2 1
2

1 2

(1 ) (1 )
( )

p p p p
p p z

n n
a­

é ù­ ­
­ ± +ê ú

ê úë û
  , where p 

1 
 and p 

2 
 are the observed sample proportions. 

The width of the confi dence interval is given by     1 1 2 2

1
2

1 2

(1 ) (1 )
2

p p p p
z

n n
a­

­ ­
´ +   . Assuming 

samples are of equal size  n  =  n  
1  
=  n  

2 
 and an absolute margin of error ME, the number of subjects 

 in each sample  should be at least     
( )

1
2

2

1 1 2 2

2

(1 ) (1 )

ME

z p p p p

n
a­

­ + ­
=   . In terms of precision 

e or relative error, where ME= e ( p  
1 
–p 

2 
), the required sample size is expressed as 

    
( )

1
2

2

1 1 2 2

2 2

1 2

(1 ) (1 )

( )

z p p p p

n
p p

a

e

­
­ + ­

=
­

  . Similar formulae have been derived for the case of unequal 

sample sizes (Machin et al.  1997  ) . 



171 Calculating Sample Size in Anthropometry

  Example:  A study is set up to compare a new physical activity intervention to a standard one for 

overweight subjects. The aim is to reduce the body mass index (BMI) down to 30 cm/kg 2  or lower. 

The anticipated success rates are expected to be approximately  p  
1 
 = 10% and  p  

1 
 = 25% for the new 

and standard interventions respectively. The investigator would like to recruit two groups of patients 

with equal sample sizes  n  =  n  
1  
=  n  

2 
, and provide a 95% confi dence interval for difference in success 

rates with an absolute margin of error ME = 10%. The minimum number of subjects per group 

should be at least     
( )2

2

1.96 0.10 0.90 0.25 0.75

0.10
n

´ + ´
=   , that is, 107 subjects per group.   

    1.4.2   Continuous Variables 

    1.4.2.1   Sample Size for Estimating a Single Mean with a Given Precision 

 A 100(1–a)% confi dence interval for a mean m given anticipated mean m and assuming a large 

sample is given by     
1

2

m z
n

a

s

­

é ù
±ê ú

ë û
  . The width of the confi dence interval is     

1
2

2 z
n

a

s

­
´   . If we want 

the absolute margin of error to be at most ME, then the number of subjects has to be greater than 

    

2 2

1
2

2ME

z

n

a s
­

=   . If one wishes to express the sample size in terms of precision e, where ME = em, the 

required sample size is expressed as     

2 2

1
2

2 2

z

n
m

a s

e

­

=   . Unless the variance s 2 is known, one can use a 

literature-based or experience-based s2 as an estimate of the population variance. 

  Example : An investigator is interested in estimating diastolic blood pressure (DBP) in a specifi c 

population. The mean DBP and standard deviation are anticipated to be about 105 mmHg (m = 105) 

and 20 mmHg (SD = 20). If the desired relative precision is 5% (e = 5%), the required sample size 

for estimating a 95% confi dence interval for the mean DBP should be at least     
2 2

2 2

1.96 20

0.05 105
n =   , that is 

56 subjects.  

    1.4.2.2   Sample Size for Estimating the Difference Between Two Means 

with a Given Precision 

 Assuming independent samples of size  n  
1 
 and  n  

2 
, with respective sample means  m  

1 
 and  m  

2 
 and com-

mon variance s 2, a 100(1–a)% confi dence interval for the true difference in means is given 

by     
1 2 1

2
1 2

1 1
( )m m z

n n
a s

­

é ù
­ ± +ê ú

ë û
  . The width of the confi dence interval is thus given by 

    
1

2
1 2

1 1
2 z

n n
a s

­
´ +   . Assuming samples of equal size   n  =  n  

1  
=  n  

2 
 and a margin of error ME, the 

number of subjects in each sample should be at least     
1

2

2 2

2

2

ME

z

n
a

s
­

=   . If one wishes to express the 
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sample size in terms of precision e, where ME = e( m  
1 
– m  

2 
), the required sample size is expressed as 

    
1

2

2 2

2 2

1 2

2

( )

z

n
m m

a
s

e

­

=
­

  . Unless the variance s 2 is known, one can use a literature-based or experience-

based s 2  as an estimate of the population variance. Similar formulae have been derived for the case 

of unequal sample sizes (Machin et al.  1997  ) . 

  Example : An investigator is interested in evaluating two treatments (A and B) aimed at decreasing 

cholesterol level. The anticipated mean cholesterol levels following treatments A and B are, respec-

tively, 200 and 250 mg/dL, with a 20 mg/dL common standard deviation. To obtain a 95% confi dence 

interval for the difference in cholesterol levels after treatment with (relative) precision e = 10%, the 

sample size should be at least     
2 2

2 2

2 1.96 20

0.10 (200 250)
n

´ ´
=

­
  , that is 123 subjects per group.  

    1.4.2.3   Sample Size for Estimating a Regression-Based Reference Limit 

with a Given Precision 

 In some cases, the variable of interest might be indexed by a secondary variable. Suppose we have a 

continuum of distributions indexed by a covariate. For example, assume that we are studying BMI in 

a group of children of different ages. Instead of the mean BMI, we might be interested in other 

parameters of the BMI distribution, more particularly in the 95% reference limit of the BMI distribu-

tion for various ages. How many children should we sample in order to have a precise estimate of 

this reference limit and for every possible value of age? This question can be answered by applying 

linear regression techniques to estimate the reference limit as a function of age. Methods have been 

developed to estimate sample sizes for regression-based reference limits under various situations 

(Bellera and Hanley  2007  ) . We provide an overview of these approaches, and refer the interested 

reader to this literature for additional details. 

 It is assumed that the mean value of the response variable of interest (e.g., BMI) varies linearly with 

the covariate (e.g., age), and that the response values are approximately normally distributed around 

this mean. The response variable and the covariate of interest are denoted by Y and X, respectively. 

Assume that at any given value x
0
 of age, the mean value of interest, such as BMI, is an approximate 

linear function of X and that individual BMI values are normally distributed around this mean (the 

latter eventually after a suitable transformation) with constant variance:     ( )2

0 0 1 0
~ ,Y x N xb b s+   . 

The 100p% reference limit for Y at this specifi c age point  x  
0 
 is given by:     

0 0 1 0 p
Q x zb b s= + +   , where 

 z
p
  is the standard normal deviate corresponding to the 100p% reference limit of interest. 

 Given n selected individuals with data points     ( )( ), , 1, ,
i i

x y i n= ¼   , a point estimator for the 100p% 

reference limit is given by:     0 00 1 p Y X
Q x z sb b

Ù ÙÙ
= + +   , where     

0
b
Ù

   and     
1

b
Ù

   are obtained by least-squares 

estimation of the regression coeffi cients b
0
 and b

1
, and     

Y X
s    is the observed root mean square error. 

 Sample size estimation for regression-based reference limits requires defi ning the following 

parameters:

   The 100• p% reference limit of interest, where 0 < p < 1, and the corresponding one-sided standard 

normal deviate, z
p
. For example, if we are interested in the 95% reference limit, the one-sided 

standard normal deviate is z
0.95

 = 1.64.  
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  The 100(1–• a)% confi dence interval for the reference limit of interest, and its corresponding two-

sided standard normal deviate     
1

2

z a
­

  , where     0 1a< <   . For example, if we want the 95% confi -

dence interval, then     0.05a =    and     
1

2

1.96z a
­

=   .  

  The 100(1–• b )% reference range, which encompasses 100(1–b )% of the values (e.g., BMI) as 

well as its corresponding two-sided standard normal deviate     
­1

2

z b   , where     0 1b< <   . For example, 

if we want the 95% reference range, then     0.05b =    and     
1

2

1.96z b
­

=   .  

  The relative margin of error • ∆, defi ned as the ratio of the width of the 100(1-a)% confi dence 

interval for the reference limit to the width of the 100(1–b)% reference range. This means that we 

want a sample size large enough so that the width of the 100(1–a)% confi dence interval for our 

reference limit is small when compared to the width of the 100(1–b)% reference range (we usu-

ally take a = b).  

  The design of the study, that is, the distribution of the covariate (e.g., age) in the sample investi-• 

gated, which will infl uence the computation of the sample size.    

 Once the above parameters have been specifi ed, we can estimate the sample size. Assume, fi rst 

that we choose our sample so that the covariate (e.g., age) follows a uniform distribution. In such 

cases, the variance of the estimator     Q
Ù

   of the reference limit is approximately equal to 

    

22

0var( ) 4
2

p
z

Q
n

sÙ æ ö
= +ç ÷

è ø
  . The width of the 100(1–a)% confi dence interval for the 100p% reference 

limit at the  extreme  value of age is therefore     

2

1
2

4
2

2

p
z

z
n

a s
­

+
  . Assume we want a relative error of ∆, 

defi ned as the ratio of the width of the 100(1–a)% confi dence interval for the reference limit to the 

width of the 100(1–b)% reference range. The width of the 100(1–a)% reference range is given by 

    
1

2

2z b s
­

  . Thus, if we want the ratio of the width of the 100(1–a)% confi dence interval for the refer-

ence limit to the width of the 100(1–b)% reference range to be smaller than the relative error ∆, we 

require     

2

1
2

1
2

4
2

p
z

z

z n

a

b

­

­

+

£ ∆  . That is, the minimum sample size, n, required to estimate the 100(1–a)% 

confi dence interval for the 100p% reference limit, with a relative margin of error of ∆, when com-

pared to the 100(1–b)% reference range, should be at least     

2

2

1
2

2 2

1
2

4
2

p
z

z

n
z

a

b

­

­

æ ö
+ç ÷

è ø
=

∆
  . Similar formulae 

have been derived assuming other sampling strategies (Bellera and Hanley  2007  ) . For example, 

instead of a uniform age distribution, one might take one-third of the sample at one age extreme, 

one-third at the midpoint, and one-third at the other age extreme. In this study design, the minimum 
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sample size requirement is then     

2

2

1
2

2 2

1
2

5

2 2

p
z

z

z

a

b

­

­

æ ö
+ç ÷

è ø

∆

  . Similarly, we can also expect that the age distribu-

tion in the sample will follow a normal distribution. If we assume that the range of X is approxi-

mately 4 times the standard deviation of X, then we show that the sample size requirement becomes: 

    
2

2

1
2

2 2

1
2

5
2

.

p
z

z

z

a

b

­

­

æ ö
+ç ÷

è ø

∆

   

 Notice that the previous formulae were derived under the “worst-case” scenario, that is, assuming 

that we are interested in estimating the reference limit at the extreme end of age, where the variability 

is highest, and thus the largest sample size is needed. If one is interested in the 100p% reference limit 

at the average age value (where the variability is minimized), then the sample size is reduced to 

    

2

2

1
2

2 2

1
2

1
2

p
z

z

z

a

b

­

­

æ ö
+ç ÷

è ø

∆

  , for any given age distribution (or similarly, assuming a homogeneous population not 

indexed by a covariate). Put simply, information from either side of the average age adds strength to 

the information at the average age. In contrast, information at the extremes of the age distribution can 

only gather “strength” from one side of the age distribution; on the other side, there is infi nite 

uncertainty. 

 Several other factors can impact the sample size (Cole  2006  ) , such as for example the range of the 

covariate of interest. If one is interested in the height of children, a larger sample will be needed 

when considering birth to 18 years than when considering 5–12 years. Non-constant variability can 

also affect the sample size, since the variance of the estimator,     0var( )Q
Ù

  , is proportional to     
2

n

s
  , 

where s 2 varies with age. This ratio can be made constant across age groups by ensuring that the 

sample size n is proportional to s 2. Thus, at the ages at which the variability is increased, for exam-

ple during puberty, the sample size needs to be increased appropriately to compensate (Goldstein 

 1986 ; Cole  2006  ) . Similarly, in case of heteroscedasticity of the variable of interest across the covari-

ate, regression techniques can be used to model the standard deviation as a function of the mean, and 

previous formulae can still be used as a rough guide for sample size planning. Notice that the varia-

tion s 2 to be used in planning includes both the true inter-individual variability and the variability of 

the measuring instruments used: measurement tools with differing precisions will provide different 

sample size estimates. Finally, the nature of the relation between the covariate and the variable of 

interest can also affect the sample size, as more subjects will be needed to capture “wiggles” in the 

relation compared to a simple linear relation. If there is some nonlinearity in the covariate, such as 

for example a quadratic relationship, the formulae can also be accommodated by adjusting the point 

estimator of the reference limit of interest. 

  Example : We are interested in estimating a specifi c BMI reference limit as a linear function of age. 

Specifi cally, we wish to produce a 95% confi dence interval     
1

2

1.96z a
­

æ ö
=ç ÷è ø

   for the 95% BMI  reference 
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limit (z
0.95

 = 1.64), with a relative margin of error ∆ = 10%, when compared with the 95% reference 

range     
1

2

1.96z b
­

æ ö
=ç ÷è ø

  . If age is uniformly distributed in the sample, then the minimum required sample 

size is     
( )2 2

2 2

1.96 4 1.64

1.96 0.10
n

+
=   , i.e., we would need at least 536 observations to obtain this precise an 

estimate of the 95% BMI reference limit at any place in the age range. If, on the other hand, one is 

interested in the 95% reference limit only at the average age value, or in a homogeneous population 

not indexed by a covariate, then we would need at least     
( )2 2

2 2

1.96 1 1.64

1.96 0.10
n

+
=   , that is, 236 

observations.    

    1.5   Principles of Hypothesis Testing 

 We have presented formulae for the estimation of the sample size required to estimate various 

parameters with a desired degree of precision. Similarly, one may want to ensure that a suffi cient 

number of subjects are available to show a difference between two parameters. We discuss here 

some basic principles of hypothesis testing which can be found in introductory statistical textbooks, 

as well as works devoted to clinical trials or epidemiology (Lachin  1981 ; Friedman et al.  1998 ; 

Armitage et al.  2002  ) . 

 One wishes to compare two groups, A and B, with true prevalence rates, p
A
 and p

B
. From a statis-

tical point of view, this comparison is expressed in terms of a  null hypothesis , called H
0
, which 

states that no difference exists between the two groups: H
0
: p

A
– p

B
 = 0. Hypothesis testing consist in 

testing whether or not H
0
 is true, more specifi cally, whether or not it should be rejected. Thus, until 

otherwise proven, H
0
 is considered to be true. The true prevalence rates, p

A
 and p

B
 are unknown. If 

two groups of subjects are properly sampled, one can obtain appropriate estimates P
A
 and P

B
. 

Although p
A
 and p

B
 might not differ, it is possible that by chance alone, the observed proportions P

A
 

and P
B
 are different. In such cases, one might falsely conclude that the two groups have different 

prevalence rates. Such a false-positive error is called  a type 1 error , and the probability of making 

such an error corresponds to the  signifi cance level  and is denoted by a. The probability of making a 

type 1 error should be minimized. However, decreasing the signifi cance level increases the sample 

size. The probability of observing a difference as extreme as or more extreme than the difference 

actually observed, given that the null hypothesis is true, is called the  p-value  and is denoted by P. 

The null hypothesis H
0
 will be rejected if p < a. 

 If the null hypothesis is not correct, then an  alternative hypothesis , denoted by H
A
 must be 

true, that is H
A
:p

A
– p

B
=d, where d ¹ 0. It is possible that by chance alone, the observed proportions 

P
A
 and P

B
 differ only by a small amount. As a result, the investigator may fail to reject the null 

hypothesis. This false-negative error is called  a type 2 error , and the probability of making such 

error is denoted by b. The probability of correctly accepting H
0
 is thus 1–b and is referred as the 

 power . It defi nes the capability of a statistical test to reveal a given difference between two param-

eters, if this difference really exists. The power depends on the size of the difference we wish to 

detect, the type 1 error, and the number of subjects. That is, if the type 1 error and the sample size 

are held constant, a study will have a larger power if one wishes to detect a large difference com-

pared to a small one.  
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    1.6   Power-Based Sample Size Estimation 

 The number of subjects needed should be planned carefully in order to have suffi cient power to 

detect signifi cant differences between the groups considered. To provide a power-based (or test-

based) estimation of sample size requires defi ning a priori the difference one wishes to detect, the 

desired signifi cance level and the desired power of the test. 

 As will be discussed below, sample size formulae involve the ratio of the variance of the observa-

tions over the difference one wishes to detect, or more generically, a noise–signal ratio, where the 

signal corresponds to the difference one wishes to detect, and the noise (or uncertainty) is the sum of 

all the factors (sources of variation) that can affect the signal (Sackett  2001  ) . 

 Note that we only discuss the case of independent observations. In clinical trials, for example, it 

may not always be possible to randomize individuals. For example, a physical activity intervention 

might be implemented by randomizing schools. Individuals are then grouped or clustered within 

schools. They cannot be considered as statistically independent, and the sample size needs to be 

adapted since standard formulae underestimate the total number of subjects (Donner et al.  1981 ; 

Friedman et al.  1998  ) . 

    1.6.1   Dichotomous Variables 

    1.6.1.1   Sample Size for Comparing a Proportion to a Theoretical Value 

 The variable of interest is dichotomous. For example, one is interested in the prevalence of obese 

children p
1
. Based on a random sample, the objective is to compare this proportion to a target (fi xed) 

value  p  
0 
. The null and alternative hypotheses are given respectively by H

0
:  p  

1 
 = p 

0  
and H

A
:  p  

1 
 ¹ p 

0 
 . The 

minimum number of subjects needed to perform this comparison assuming an observed prevalence 

rate p
1
, a signifi cance level a and power 1–b is     

( )

­
­

æ ö
­ + ­ç ÷è ø

=
­

2

0 0 1 1 1
1

2

2

1 0

(1 ) (1 )z p p z p p

n
p p

a b

  . 

  Example:  One is interested in evaluating a specifi c diet aimed at reducing weight in obese subjects. 

A success is defi ned as reducing a BMI down to 25 or lower. One wishes to test whether this new diet 

has a better success rate than the standard diet for which the effi cacy rate is known to be p
0
 = 20%. 

The anticipated effi cacy rate of the new diet is p
1
 = 40%. The sample size needed to show a 

 difference between the effi cacy rate of the new diet and the target effi cacy rate p
0
 assuming a 

signifi   cance level a = 0.05     
­

æ ö
=ç ÷è ø1

2

1.96z a   , and power 1–b = 0.90 (z
1–b

 = 1.28) is at least 

    
( )

( )

2

2

1.96 0.20(1 0.20) 1.28 0.40(1 0.40)

0.40 0.20
n

­ + ­
=

­
  , i.e., 36 patients. If the anticipated effi cacy rate is  

p
1
 = 30%, that is, one wishes to detect a smaller difference, then the sample size must be increased 

to at least     
( )

( )

2

2

1.96 0.20(1 0.20) 1.28 0.30(1 0.30)

0.30 0.20
n

­ + ­
=

­
  , that is, 137 subjects. 
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 Note that the calculated sample sizes are quite low. This is because we are comparing one sample 

to one historical (or literature-based) sample. In practice, one will usually be comparing two samples 

(next section), as in clinical trials. In this case, the resulting sample size is much higher as variability 

of the second sample has to be accounted for.  

    1.6.1.2   Sample Size for Comparing Two Proportions 

 The outcome of interest is dichotomous and two independent groups of equal size are being sampled 

and compared. The objective is to detect a difference between two proportions p
0
 and p

1
, that is, the 

null and alternative hypotheses are given respectively by H
0
: p

1
–p

0
 = 0 and H

A
: p

1
–p

0
 = d, where d ¹ 0. 

The size of each sample required to detect an anticipated difference p
1
–p

0
, assuming a signifi cance 

level a , and power b is     
( )

­
­

æ ö
­ + ­ + ­ç ÷è ø

=
­

2

1 0 0 1 1
1

2

2

1 0

2 (1 ) (1 ) (1 )z p p z p p p p

n
p p

a b

  , where     p    is the aver-

age of the two anticipated proportions p
0
 and p

1
. Similar formulae are available for the case of 

unequal sample sizes (Piantadosi  2005  ) . 

  Example : A trial is set up to compare two physical activity interventions with anticipated 

 success rates of 50% and 30%. The sample size per group needed to show a difference 

between the two interventions assuming a difference in success rates     = ­ =50% 30% 20%d   , 

a significance level     = 0.05a        
­

æ ö
=ç ÷è ø1

2

1.96z a   , and power     ­ =1 0.90b        ( )­ =
1

1.28z b    is 

    
( )2

2

1.96 0.40(1 0.40) 1.28 0.30(1 0.30) 0.50(1 0.50)

0.20
n

­ + ­ + ­
=    that is, 84 subjects per group.   

    1.6.2   Continuous Variables 

    1.6.2.1   Sample Size for Comparing a Mean to a Theoretical Value 

 The variable of interest is continuous. For example, one is interested in the mean waist circumfer-

ence, m
1
, following a physical activity intervention. Based on a random sample of subjects, the objec-

tive is to compare this mean circumference to a target mean value m
0
. The null and alternative 

hypotheses are thus given respectively by H
0 
: m

1 
= m

0
 and H

A
: m

1
 ¹ m

0
. For this one sample problem, 

the number of subjects needed to perform this comparison assuming an anticipated mean value m
1
, 

a standard deviation s, signifi cance level a and power 1–b is     
( )

­
­

æ ö
+ç ÷è ø

=
­

2

2

1
1

2

2

1 0

z z

n
m m

a bs

  . Unless the vari-

ance s 2 is known, one can use a literature-based or experience-based s2 as an estimate of the popula-

tion variance. 
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  Example : One wishes to test whether mean waist circumference in a given population following a 

new physical activity intervention is reduced compared to a standard intervention. Following the 

standard intervention, the mean waist circumference is known to be about m
0
 = 140 cm. It is antici-

pated that the new intervention will reduce this circumference to m
1
 = 130 cm. The sample size 

needed to show a difference between the mean waist circumference with the new intervention and a 

target value m
0
, assuming a signifi cance level a = 0.05     

­

æ ö
=ç ÷è ø1

2

1.96z a   , a 90% power     ( )­ =
1

1.28z b
   

and standard deviation SD = 20cm, is     
( )

( )

22

2

20 1.96 1.28

130 140
n

+
=

­
  , that is, 42 patients.  

    1.6.2.2   Sample Size for Comparing Two Means 

 The variable of interest is continuous and two independent groups of equal size are being sampled and 

compared. The objective is to detect a difference between two means, that is, the null and alternative 

hypotheses are given respectively by H
0 
: m

1
– m

0 
= 0 and H

A 
: m

1
– m

0 
= d, where d ¹ 0. The sample size of 

each group required to detect this difference assuming an anticipated difference m
1
–m

0
, common vari-

ance s 2, signifi cance level a and power b is     

­
­

æ ö
´ +ç ÷è ø

=
­

2

2

1
1

2

2

1 0

2

( )

z z

n
m m

a bs

  . Unless the variance s 2 is known, 

one can use a literature-based or experience-based s2 as an estimate of the population variance. 

  Example : In their example, Armitage et al. are interested in comparing two groups of men using the 

forced expiratory volume (FEV) (Armitage et al.  2002  ) . From previous work, the standard deviation 

of FEV is 0.5 L. A two-sided signifi cance level of 0.05     
­

æ ö
=ç ÷è ø1

2

1.96z a    is to be used with an 80% 

power (z
1–b

 = 0.842). In order to show a mean difference of 0.25 L between the groups, and assuming 

samples of equal sizes, the total number of men should be at least     
( )22

2

2 0.5 1.96 0.842

0.25
n

´ ´ +
=   , that 

is, 63 men per group.    

    1.7   Other Parameters, Other Settings 

 Sample sizes can be estimated for various parameters and under various settings. As such, it is not pos-

sible to cover all possible situations into a single book chapter! We have reviewed formulae for the 

estimation of sample sizes for commonly used parameters such as means, proportions and reference 

limits. Other parameters such as time-to-event outcomes (Freedman  1982 ; Schoenfeld  1983 ; Dixon 

and Simon  1988  ) , correlation coeffi cients (Bonett  2002  ) , concordance coeffi cients (Donner  1998  ) , or 

even multiple endpoints can be considered (Gong et al.  2000  ) . Similarly, methods for calculating sam-

ple size assuming other designs have been investigated. Instead of detecting a specifi c difference, one 

might be interested in showing equivalence or noninferiority (Fleming  2008  ) ; observations may be 

clustered (Donner et al.  1981 ; Hsieh  1988  ) , etc. Sample size estimation procedures have been devel-

oped for these settings and we refer the interested reader to specialized literature or general works on 

sample size (Friedman et al.  1998 ; Machin et al.  1997 ; Altman et al.  2000 ; Piantadosi  2005  ) . 
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 Finally, although they should be used with caution, several statistical software packages, such as 

nQuery ®  (nQuery Advisor ® 6.0), or East ®  (Cytel), are available to compute sample size and power 

for means, proportions, survival analysis, etc.  

    1.8   Application to Other Areas of Health and Disease 

 The methods presented in this chapter can be applied to many areas of research and study design, 

including anthropometry, but also fundamental biology, epidemiology, clinical trials, social sciences, 

demography, or economics.  

      Summary Points 

    Before estimating a sample size, the nature and the distribution of the variable of interest must be • 

defi ned. The parameter of interest (mean, proportion, reference limit) can then be identifi ed.  

  Before estimating a sample size, the type of sample has to be identifi ed: one single sample? Two • 

samples?  

  Sample size estimation can be either precision-based or power-based.  • 

  When performing precision-based sample size estimation, the anticipated value of the parameter as • 

well as the level of signifi cance and the precision (absolute or relative) must be defi ned a priori.  

  When performing power-based sample size estimation, the anticipated value of the parameter as • 

well as the level of signifi cance and the power must be defi ned a priori.          

     Key Features of Sample Size Estimation        

   Table 1.3    Sample-size required for the estimation of a 100(1–a)% confi dence interval for various parameters 

(assuming an absolute margin of error ME)   

 Parameter of interest  Sample size 

 Proportion (assuming an anticipated value P) 

     

­
­

=

2

1
2

2

(1 )

ME

z p p

n

a

   

 Difference between 2 proportions (assuming independent 

samples with the same sample size and anticipated 

proportions p
1
 and p

2
) 

     ( )
1

2

2

1 1 2 2

2

(1 ) (1 )

(per group)
ME

z p p p p

n
a­

­ + ­
=

   

 Mean (assuming sample variance s2) 

     
­

=

2 2

1
2

2ME

z s

n

a    

 Difference between 2 means (assuming independent 

samples with the same sample size and common 

sample variance s2) 

     
1

2

2 2

2

2

(per group)
ME

z s

n
a­

=
   

 Regression-based reference limit for the 100p% reference 

limit (assuming a uniform distribution for the covariate 

and a relative margin of error of ∆ when compared to the 

100(1–b)% reference range) 

     

­

­

æ ö
+ç ÷

è ø
=

2

2

1
2

2 2

1
2

4
2

p
z

z

n
z

a

b ∆
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 Two means (assuming independent samples 
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