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Things They Don’t Teach You in Graduate School'
James A Hanley
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Abstract

Much of what statisticians teach and use in practice is learnt ‘on the job.’
I recount here some of my early statistical experiences, and the lessons we
might learn from them. They are aimed at those of you starting out in the
profession today, and at the teachers who train you. I stress the importance

of communication.
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TABLE I: Rating of 109 CT Images

Rating
True Definitely Probabl Question- Probably Definitely
Disease Normal Norma able Abnormal Abnormal
Status (1) (2) 3) (4) (5) Total
Normal 33 6 6 11 2 nn = 58
Abnormal 3 2 2 11 33 ng = 51
Totals 36. 8 8 22 35 109




JOURNAL OF MATHEMATICAL PSYCHOLOGY: 6, 487-496 (1969)

Maximum-Likelihood Estimation of Parameters
of Signal-Detection Theory and Determination
of Confidence Intervals—Rating-Method Data!

Donarp D. Doreman?

San Diego State College, San Diego, California 92115
AND

Epwarp ALF, JR.

U.S. Naval Personnel Research Activity, San Diego, California 92133

Procedures have been developed for obtaining maximum-likelihood estimates of
the parnmeters of the Thurstonian model for the method of successive intervals. The
model for rating-method data is a special case of the Thurstonian
model with fixed boundaries, in that there are two stimuli rather than an unspecified
set. The present paper presents the solution to the two-stimulus case, and in addition,
provides procedures for obtaining the variance-covariance matrix and confidence
intervals. The expected values of the second partial derivatives are presented in analytic
form to ensure accurate of the vari iance matrix. An applica-
tion of these methods was employed on some data collected by others.

Dorfman and Alf (1968) recently developed p d for ob
likelihood esti of the p of signal-d. ion theory from data of yes-no
ROC curves. Ogilvie and Creelman (1968) recently developed maximum-likelihood
estimates and confidence intervals for the parameters of signal-detection theory from
rating-method data, by using the logistic distribution rather than the normal distribu-
tion to make the mathematics more tractable. They estimated d’ by means of an
empirical relation which they obtained between 4’ and an analogous parameter in the
logistic model. This relation was found through numerical experiments on a high-
speed computer. Unfortunately, a stable empirical relation could not be found between
the sigma ratio of signal-detection theory and the analogous parameter of the logistic
model. Consequently, a procedure assuming underlying normal distributions would
be preferred. Schénemann and Tucker (1967) developed maximum likelihood
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Figure 1 Example of empirical ROC points and smooth
curve fitted to them. The empirical points are calculated
from successively more liberal definitions of test positivity
applied to the 2 x 5 table (inset) of disease status (D+
or D—) and rating category (—— to ++). The smooth
ROC curve is derived from the fitted binormal model (inset,
lower right, with parameters ¢ = 1.657 and » = 0.713 on
a continuous latent scale) by using all possible scale values
for test positivity. The fitted parameters a and b, together
with the four estimated cutpoints, produce fitted frequencies
of {32.9,6.4,5.9,10.7,2.1} and {3.2,1.5,2.1,11.2,32.9}
for the D— and D+ rows of the 2 x 5 table. Note that
a monotonic transformation of the latent axis may produce
overlapping distributions with nonbinormal shapes, but will
yield the same multinomial distributions and the same fitted
ROC curve
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JOURNAL OF MATHEMATICAL PSYCHOLOGY 12, 387-415 (1975)

The Area above the Ordinal Dominance Graph and the Area below
the Receiver Operating Characteristic Graph

DoNALD BAMBER

Psychology Service, Veterans Administration Hospital, St. Cloud, Minnesota 56301

Receiver operating characteristic graphs are shown to be a variant form of ordinal
dominance graphs. The area above the latter graph and the area below the former
graph are useful measures of both the size or importance of a difference between two
populations and/or the accuracy of discrimination performance. The usual estimator
for this area is closely related to the Mann—Whitney U statistic. Statistical literature
on this area estimator is reviewed. For large sample sizes, the area estimator is ap-
proximately normally distributed. Formulas for the variance and the maximum
variance of the area estimator are given. Several different methods of constructing
confidence intervals for the area measure are presented and the strengths and weaknesses
of each of these methods are discussed. Finally, the Appendix presents the derivation
of a new mathematical result, the maximum variance of the area estimator over convex
ordinal dominance graphs.
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A representation and interpretation of
the area under a receiver operating char-
acteristic (ROC) curve obtained by the
“rating” method, or by mathematical pre-
dictions based on patient characteristics,
is presented. It is shown that in such a
setting the area represents the probability
that a randomly chosen diseased subject
is (correctly) rated or ranked with greater
suspicion than a randomly chosen non-
diseased subject. Moreover, this probabil-
ity of a correct ranking is the same quan-
tity that is estimated by the already well-
studied nonparametric Wilcoxon statistic.
These two relationships are exploited to
(a) provide rapid closed-form expressions
for the approximate magnitude of the
sampling variability, i.e., standard error
that one uses to accompany the area
under a smoothed ROC curve, (b) guide
in determining the size of the sample re-
quired to provide a sufficiently reliable
estimate of this area, and (c) determine
how large sample sizes should be to en-
sure that one can statistically detect dif-
ferences in the accuracy of diagnostic
techniques. ’



TABLE I: Rating of 109 CT Images

Rating
True Definitely Probabl Question- Probably Definitely
Disease Normal Norma able Abnormal Abnormal
Status (1) (2) 3) (4) (5) Total
Normal 33 6 6 11 2 nn = 58
Abnormal 3 2 2 11 33 ng = 51
Totals 36. 8 8 22 35 109




TABLEII: Computation of W and Its Standard Error

Column (Rating)
Row Contents x=1 x=2 x=3 x=4 x=35 Total Remarks

1 Number of normals rated x 33 6 6 11 2 58=ny Obtained from TABLE I

2 Number of abnormals rated >x 48 46 44 33 0 Obtained from 3 by successive sub-
stractions from nq = 51

3 Number of abnormals rated x 3 2 2 11 33 51=n4 Obtained from TABLEI

4 Number of normals rated-<x " 0 33 39 45 56 Obtained from 1 by successive addi-
tions to 0

5 (1)X(2)+ %X (1)X(3) 1,633Y, 282 270 423Y, 33 2,642 W =Total (5)+ (ny * nq) = 0.893

6 (B)X[4)2+ ()X 1)+ %X ()2 1,089 2,508 3,534 28,163% 107,228 142,612% Q2= Total (6) + (ms » n}) = 0.8313
7 (W) X[2P+ @) X3)+ VX (3)7] 80,883 13,256 12,152 16415% 726 123,432% Q1 =Total (7) + (ny » n}) = 0.8182
W =0 = total (5) + (ny - n4) = 2,642 + (58 51) = 0.893 = 89.3%

- - - ~f2 — —p2
SE(0)=\/0(1 )+ (a 1)(in :)+(nN 1(Q2 9)=\/0‘o99551+0;)137g4+ 1926686 _ o 5 0gpe
780 -




VisiCale

From Wikipedia, the free encyclopedia

VisiCale (for "visible calcu\alor")“] was the first spreadsheet computer program for personal computers,
originally released for the Apple Il by VisiCorp. It is often considered the application that turned the
microcomputer from a hobby for computer enthusiasts into a serious business tool, prompting IBM to
introduce the IBM PC two years later.l?] VisiCalc is considered the Apple II's killer app. It sold over 700,000
copies in six years, and as many as 1 million copies over its history.

Initially developed in a 6502 assembler running on the Multics time sharing syslem,[all“][S] VisiCalc was
ported to numerous platforms, both 8-bit and some of the early 16-bit systems. In order to do this, the
company developed porting platforms that produced bug compatible versions. The company took the
same approach when the IBM PC was launched, producing a product that was essentially identical to the
original 8-bit Apple Il version. Sales were initially brisk, with about 300,000 copies sold.

VisiCalc used the A1 notation in formulas. ]

When Lotus 1-2-3 was launched in 1983, taking full advantage of the expanded memory and screen of the
PC, VisiCalc sales practically ended overnight. Sales imploded so rapidly that the company was soon
insolvent. Lotus Development purchased the company in 1985, and immediately ended sales of VisiCalc
and the company's other products.

Contents [hide]
1 History

1.1 Releases
2 Reception
3 See also
4 References
5 Further reading
& External links

VisiCalc

VISICALC

€11 (L) TOTAL '

An example VisiCalc spreadsheet on an Apple Il
Developer(s) Software Arts

Initial release 1979; 38 years ago

VisiCalc Advanced Version / 1983;
34 years ago

Stable release

Operating system Apple Il, Apple SOS, CP/M, Atari 8-
bit family, Commodore PET,
TRSDOS, Sony SMC-70, DOS, HP

series 80
Type Spreadsheet
License ‘Commercial proprietary software

Website danbricklin.com/visicale.htm e



Med Decis Making
Vol. 5, No. 2, 1985

A Visicalc Program

for Estimating the Area
Under a Receiver Operating
Characteristic (ROC) Curve

Robert M. Centor, M.D.

The area under the ROC curve interests us as a method for analyzing discrimination
or detectability. One can assess a diagnostic test or probability assessor with respect
to its degree of discrimination. The area under the ROC curve gives us the
probability of correctly identifying abnormal from normal in a forced-choice, two-
alternative problem. Previous methods used for calculating the area involved
maximum likelihood estimation on a mainframe or minicomputer. This paper
demonstrates an adaptation of a recently published nonparametric method for
estimating the area. This adaptation takes advantage of electronic spreadsheet
software and may be used on most (if not all) microcomputers. The paper develops
the construction of the program needed for the necessary calculations. (Med Decis
Making 5:139-148, 1985)
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ROC curve for data in TABLE L. Dashed line =
empirical curve; solid line = smoothed
(Gaussian-based) curve; dotted diagonal line

= no discrimination.

ny, Formula 1 contains three other
parameters—f, Qy, and Q,. While one
can use anticipated values of the true
area f, the quantities Q; and Q> are
complex functions of the underlying
distributions for x4 and xy. Fortu-
nately, for any specified pair of distri-
butions Formula 1 is almost entirely
determined by #, and only very slightly

Figure 2
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Anticipated standard error for area under ROC
curve generated from different underlying
distributions. Circles = Gaussian with variance
ratio 1:1.5; triangles = Gaussian with variance
ratio 1:0.5; squares = gamma with various de-
grees of freedom; solid line = negative expo-
nential.
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TaBLE IIl: Number of Normal and Abnormal Subjects Rezuired to Provide a Probability of 80%, 90%, or 95% of Detecting
Various Differences between the Areas f; and 8, under Two ROC Curves (Using a One-Sided Test of
Significance with p = 0.05)

[

8, 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975
0.700 652 286 158 100 68 49 37 28 22 18
897 392 216 135 92 66 49 38 29 23

1131 493 271 169 115 82 61 . 46 36 29

0.725 610 267 148 93 - 63 45 34 26 20
839 366 201 126 85 61 45 34 27

1057 459 252 157 106 75 55 42 33

0.750 565 246 136 85 58 41 31 23
776 337 185 115 77 55 41 31

976 423 231 143 9% 68 50 38

0775 516 224 123 77 52 37 27
707 306 167 104 69 49 36

889 383 209 129 86 60 44

0.800 463 201 110 68 46 33
634 273 149 92 61 43

797 342 185 113 75 53

0.825 408 176 96 59 40
557 239 129 79 52

699 298 160 97 64

0.850 350 150 81 50
477 203 108 66

597 252 134 81

0.875 290 123 66
393 165 87

491 205 107

0.900 960 228 96
1314 308 127

1648 383 156

0.925 710 165
966 220

1209 272

0.950 457
615

765

80% probability = top number; 90% probability = middle number; 95% probability = bottom number.
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A Method of Comparing the Areas
under Receiver Operating
Characteristic Curves Derived from
the Same Cases’




BIOMETRICS 44, 837-845
September 1988

Comparing the Areas Under Two or More Correlated Receiver
Operating Characteristic Curves: A Nonparametric Approach

Elizabeth R. DeLong

Quintiles, Inc., 1829 East Franklin Street,
Chapel Hill, North Carolina 27514, US.A.

David M. DeLong
SAS Institute, Cary, North Carolina 27511, U.S.A.
and
Daniel L. Clarke-Pearson

Division of Oncology, Department of OBGYN, Duke University Medical Center,
Durham, North Carolina 27710, U.S.A.

SUMMARY

Methods of evaluating and comparing the performance of diagnostic tests are of increasing importance
as new tests are developed and marketed. When a test is based on an observed variable that lies on a
continuous or graded scale, an assessment of the overall value of the test can be made through the
use of a receiver operating characteristic (ROC) curve. The curve is constructed by varying the
cutpoint used to determine which values of the observed variable will be considered abnormal and
then plotting the resulting sensitivities against the corresponding false positive rates. When two or
more empirical curves are constructed based on tests performed on the same individuals, statistical
analysis on differences between curves must take into account the correlated nature of the data. This
paper presents a nonparametric approach to the analysis of areas under correlated ROC curves, by
using the theory on generalized Usstatistics to generate an estimated covariance matrix.

1. Introduction

Methods of evaluating and comparing the performance of diagnostic tests or indices are of
increasing importance as new tests or indices are developed or measured. When a test is
based on an observed variable that lies on a continuous or graded scale, an assessment of
the overall value of the test can be made through the use of a receiver operating characteristic
(ROC) curve (Hanley and McNeil, 1982; Metz, 1978). The underlying population curve is
theoretically given by varying the cutpoint used to determine the values of the observed
variable to be considered abnormal and then plotting the resulting sensitivities against the
corresponding false positive rates. If a test could perfectly discriminate, it would have a
value above which the entire abnormal population would fall and below which all normal
values would fall (or vice versa). The curve would then pass through the point (0, 1) on the
unit grid. The closer an ROC curve comes to this ideal point, the better its discriminating
ability. A test with no discriminating ability will produce a curve that follows the diagonal
of the grid.

For statistical analysis, a reccommended index of accuracy associated with an ROC curve
is the area under the curve (Swets and Pickett, 1982). The area under the population ROC

Key words: Jackknifing; Mann-Whitney test; Receiver operating characteristic (ROC) curve; Struc-
tural components; U-statistics.
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Harold L. Kundel, MD, Editor

Sampling Variability of
Nonparametric Estimates of the
Areas under Receiver Operating

Characteristic Curves:

An Update

James A. Hanley, PhD'2, Karim O. Hajian-Tilaki, PhD"

Rationale and Objectives, Several methods have been proposed iur al
culating the variances and of

area under receiver operating characteristic curves (AUC). The anthms pm
vide an explanation of the relationships between them and illustrate the
factors that determine sampling variability.

Methods. The authors investigated the algebraic links between two meth-
ods, that of and that of *p:
They also a numerical i
mance of the two methods.

Results. The “placement” method has a simple structure that illustrates
the determinants of the sampling variability and does not require special-
ized software. The authors show that the pseudovalues used in the jack-
knife method are directly linked to the placement values.

Conclusion. Because of the close link, borne out in a numeric investiga-
tion of the sampling variation, and because of the ease of computation, the
choice between the two methods can be based on users’ preferences. For
indexes other than the AUC, however, the use of pscudovalues holds
greater promise.

Key Words. Nonparametric ROC analysis; area under the curve, DeLong
method; jackknife pseudovalues

perfor-

lhe area under the receiver operating characteristic (ROC) curve
(AUC) is commonly used as a measure of the accuracy of a diagnostic

test. It can be estimated parametrically or nonparametrically [1-6]. Al

though this statistic has a helpful interpretation, the assessment of its sam-

Fonds de .
Address reprint requests to J. A. Hanley, PhD,
Department of Epidemiology and Biostatistics,
McGill University, 1020 Pina Ave W, Montreal,
Quebec, Canada HIA 1A2.
Received March 25, 1996, and accspted for pub-
lication after revision S.pumblr 18,1996,
Acad Radiol 1997;4:4

Sroat rasociaton o Unvrsty Radalogits

pling variability—especially in the case—is less intuitive. At
least four formulas o approaches have been proposed for calculating the
variance of a nonparametric AUC estimate, two of which are extendable to
the covariance between estimates from two curves.

‘The first of these four approaches was initially suggested by Bamber (7},
who noted the connection between the AUC and the parameter estimated
with the Wilcoxon statistic. Hanley and McNeil (6] used this link to give a



TABLE 2: DeL.ong Method: Calculation of Placements (and of the AUC and Its
Varlance) from Rating Data tor Six Diseased and Nine Nondlseased Subjects

Ratings for n=9 Ratings for m = 6 Diseased Subjects*

Nondi d Pltacement
Subjects® Y,=1 Y,=5 Y,=1 Y,=2 Y,=2 Y¥,=§ vy
X=2 0.0 1 0.0 0.5 0.5 1 0.50
X,=1 0.5 1 0.5 1 1 1 0.83
X=1 0.5 1 0.5 1 1 1 0.83
X =1 0.5 1 0.5 1 1 1 0.83
X,=2 0.0 1 0.0 0.5 0.5 1 0.50
X,=1 0.5 1 0.5 1 1 1 0.83
X=1 0.5 1 0.5 1 1 1 0.83
X,= 1 0.5 1 05 1 1 1 0.83
X,=1 0.5 1 05 1 1 1 0.83

" Placement V, 0.39 1 039 089 0.89 1 e

Note.—Data indicate the placement of each Y with respect to each X, with 1 indicating
the “correct” ordering, O an “incorrect” ordering, and 0.5 if Yand X are equal. The data in
the right column and bottom row of the Table, obtained as the averages of the correspond-
ing rows/columns, are the placements or pseudoaccuracies corresponding to each X and
each Y. Calculations in this and later tables were performed with spreadsheet precision,
but numbers were rounded for presentation. Data were obtained with the first of the two
field strengths in Table 1. AUC = average of V,’s = average of V,'s =0.76. Var(V,) =
0.0216; Var(V,) = 0.0848. Var(AUC) = 0.0216/9 + 0.0848/6 = 0.0165. SE(AUC) =
V0.0165 = 0.13.

*Rating scale ranged from 1 (definitely negative) to 5 (definitely positive).



Up to now, the reader may ask why one would
bother to calculate these six individual V's and nine
V,’s, since one can simply calculate the AUC directly
from the average of the 6 X 9 = 54 comparisons of each
Y with each X. The answer is that the variations of
these six and nine Vs can be used directly to estimate
the variance of the AUC estimate.

Variance of the AUC Estimate

In the method used by DeLong et al [9], the variance
of the AUC estimate is calculated as the sum of two
contributions, one relating to the number and variabil-
ity of the V,’s, the other to the number and variability
of the Vs, as follows:

.

Variance of V,'s
n:number of V,'s  m:number of V,'s’

Variance of Vy's

Var[AUC] = (Y]

Those interested in the equivalence of this equation
and the formula given in Hanley and McNeil's first ar-
ticle [6] can consult the textbook by Hettmansperger
[14]. DeLong et al [9] omitted the third variance com-
ponent, AUC(1 — AUC)/mn, since it is negligible when
n and m are large.

0.0848

Var[AUC] = <

+

°‘°9216 = 00165,

so that the standard error (SE) is —

SE[AUC] = J0.0165 =013

The structure of Equation (1) reveals one additional
insight into the sampling variability (and its control)
that does not appear to have been commented on pre-
viously. This insight comes from the nature of the com-
ponent variances (0.0216 and 0.0848 in our example).
These are estimates of the variance of the true-positive
fraction (TPF) and false-positive fraction (FPF) points
on the smooth ROC curve underlying the data. One can
imagine the smooth ROC curve as a very large number
(say 1,000 or 10,000) of TPF points corresponding to
100 or 10,000 equally spaced FPF points. If the ROC
curve were the 45° diagonal line, these TPF points
would be uniform on the (0,1) scale, and their variance
would be 1/12 or 0.0833. The closer the curve is to the
top left corner, the more concentrated and closer to
the 1 than the 0 end of the (0,1) scale the TPF points

) will be and the smaller will be their variance. The V’s
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Transfer of Technology From Statistical
Journals to the Biomedical Literature

Past Trends and Future Predictions
Douglas G. Altman, Steven N. Goodman, MD, PhD

Objective.—To investigate the speed of the transfer of new statistical methods
into the medical literature and, on the basis of current data, to predict what meth-
ods medical journal editors should expect to see in the next decade.

Design.—Influential statistical articles were identified and the time pattern of ci-
tations in the medical literature was ascertained. In addition, longitudinal studies of
the statistical content of articles in medical journals were reviewed.

Main Outcome Measures.—Cumulative number of citations in medical journals
of each article in the years after publication.

Results.—Annual citations show some evidence of decreasing lag times
between the introduction of new statistical methods and their appearance in medi-
cal journals. Newer technical innovations still typically take 4 to 6 years before they
achieve 25 citations in the medical literature. Few methodological advances of the
1980s seem yet to have been widely cited in medical journals. Longitudinal studies
indicate a large increase in the use of more complex statistical methods.

Conclusions.—Time trends suggest that technology diffusion has speeded up
during the last 30 years, although there is still a lag of several years before medical
citations begin to accrue. Journals should expect to see more articles using
increasingly sophisticated methods. Medical journals may need to modify review-
ing procedures to deal with articles using these complex new methods.

(JAMA. 1994;272:129-132)

using computer searches of the
SciSearch database (Institute of Scien-
tific Information, Philadelphia, Pa).
These searches were carried out in July
and August 1993, by which time cita-
tions for 1992 should have been virtu-
ally complete. We did not search for
articles that had incorrect citations of
the articles of interest. It is our impres-
sion that the rate of incorrect citations
of these articles was about 10% (exclud-
ing errors in titles). Some minor incon-
sistency between the two methods of
searching may have arisen through prob-
lems in identifying what constitutes a
medical journal. For comparison, simi-
lar citation analyses were performed for
two heavily cited expository statistical
articles published in medical journals. 2

We also sought evidence from longi-
tudinal studies of the statistical content
of articles in medical journals to exam-
ine chances in the methads nneed nver



Table 1.—Statistical Articles Included in This Study
]

Source, y Topic
Methodological articles
Cornfield,? 1951 Odds ratio

Cochran,® 1954
Woolf,5 1955

Kaplan and Meier,6 1958
Mantel and Haenszel,”

1958
Cohen,?® 1960
Mantel,® 1963
Box and Cox,'® 1964
Mantel,'" 1966
Elston and Stewart,'?
1971

Peto and Peto," 1972

Cox, 1972

Dempster et al,'s 1977

Efron,'® 1979
Hanley and McNeil,'”
1982

Geman and Geman,™®

1984
Breiman et al,'® 1984

Zeger and Liang, 1986

Expository articles
Peto et al,2' 1977
Bland and Altman,?

1986

2 Trend test
Combining 2x2 tables
Survival curve
Stratified 2x2 table

Kk Statistic
Survival analysis
Transformations
Survival analysis
Heredity

Log rank test

Proportional hazards
regression

EM algorithm

Bootstrap

Receiver operating
characteristic curve

Gibbs sampling

Classification and
regression trees
Longitudinal data

Log rank test
Method comparison
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Fig 1.—Cumulative citations in medical journals for selected articles published in 1950 through 1959 (top
left), 1960 through 1969 (top right), 1970 through 1979 (bottom left), and 1980 through 1989 (bottom right).



5000 - Cox,141972
4000 1
3000 - Kaplan and

Me\'er,6195'7

_///

0 5 10 15 20 25 30
Years Since Publication

2000 b
1000 -
0

No. of Citations

Fig 2—Cumulative citations in medical journals for
two heavily cited articles on survival analysis meth-
ods.

4000 |
3500 -
3000
2500 -
2000 -
1500 4
1000 -

500

0 L T T T T T T T
0 5 10 15 20 25 30
Years Since Publication

Peto et al,21 1877

No. of Citations

Bland and Altman,22 1986

Fig 3.—Cumulative citations in medical journals for
two expository articles.



ooooooeggg

T
000¥1

I
000zt

I
0000}

I I
0008 0009

suoneyD aAleINWNY

I
000¥

I
000C

2020

2010

2000

1990

1980



WWILEY

Statistical Methods in
Diagnostic Medicine

The Statistical
Evaluation of Medical
Tests for Classification
and Prediction

Xiao-Hua Zhou
Nancy A. Obuchowski
H;// Donna K. McClish

WILEY SERIES IN PROBABILITY AND STATISTICS

2002 2003



Cumulative Citations

2000 4000 6000 8000 10000 12000 14000

0

s§§§

cooo000888

Breiman et al.,
1984

Hanley and McNeil,
1982

Geman & Geman,
1984

Zeger & Liang,
1986

1980

T
1990

2000

2010

2020




Politicians use statistics in the same
way that a drunk uses lamp-posts:

for support rather than illumination.

Andrew Lang (1844 — 1912), Scottish poet, novelist, and literary

critic, and contributor to anthropology.
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How does direct-to-consumer advertising (DTCA)
affect prescribing? A survey in primary care
environments with and without legal DTCA

Barbara Mintzes, Morris L. Barer, Richard L. Kravitz, Ken Bassett, Joel Lexchin,
Arminée Kazanjian, Robert G. Evans, Richard Pan, Stephen A. Marion

8 See related articles pages 421 and 425

Abstract

Background: Direct-to-consumer advertising (DTCA) of prescrip-
tion drugs has increased rapidly in the United States during the
last decade, yet little is known about its effects on prescribing
decisions in primary care. We compared prescribing decisions
in a US setting with legal DTCA and a Canadian setting where
DTCA of prescription drugs is illegal, but some cross-border
exposure occurs.

Methods: We recruited primary care physicians working in Sacra-
mento, California, and Vancouver, British Columbia, and their
group practice partners to participate in the study. On pre-
selected days, patients aged 18 years or more completed a
questionnaire before seeing their physician. We asked these
patients’ physicians to complete a brief questionnaire immedi-
ately following the selected patient visit. By pairing individual
patient and physician responses, we determined how many
patients had been exposed to some form of DTCA, the fre-
quency of patients’ requests for prescriptions for advertised
medicines and the frequency of prescriptions that were stimu-
lated by the patients’ requests. We measured physicians’ con-
fidence in treatment choice for each new prescription by ask-
ing them whether they would prescribe this drug to a patient
with the same condition.

Results: Seventy-eight physicians (Sacramento n = 38, Vancouver
n = 40) and 1431 adult patients (Sacramento n = 683, Van-

48), or 61% of patients who consulted participat-

ing physicians on pre-set days, participated in the survey. Ex-

posure to DTCA was higher in Sacramento, although 87.4% of

Vancouver patients had seen prescription drug advertisements.

Of the Sacramento patients, 7.2% requested advertised drugs

as opposed to 3.3% in Vancouver (odds ratio [OR] 2.2, 95%

confidence interval [Cl] 1.2-4.1). Patients with higher self-

U randitinne that winen natan

to be only “possible” or “unlikely” choices for other similar
patients, as compared with 12.4% of new prescriptions not re-
quested by patients (p < 0.001).

Interpretation: Our results suggest that more advertising leads to
more requests for advertised medicines, and more prescrip-
tions. If DTCA opens a conversation between patients and
physicians, that conversation is highly likely to end with a
prescription, often despite physician ambivalence about treat-
ment choice.

CMAJ 2003;169(5):405-12

advertising (DTCA) of prescription drugs in the
United States more than tripled,' reaching US$2.7
billion in 2001.* The United States and New Zealand are the
only industrialized countries that allow such advertising, al-
though restrictive legislation in the European Union' and
Canada® has recently been under review. Canada allows ad-
vertising of over-the-counter (OTC) drugs but prohibits
DTCA of prescription medicines, although a 1978 exemp-
tion, which was intended to allow price comparisons, permits
advertising of product name, price and quantity.’ Neverthe-
less, Canadians see advertisements in US magazines and on
US cable television, as well as an increasing volume of do-
mestically generated DTCA of questionable legality.’ Propo-
nents of DTCA argue that advertisements empower pa-
tients, whereas critics counter that they encourage wasteful
prescribing.* Empirical research is needed to assess the
effects of DTCA on prescribing decisions, the patient—
physician relationship and, ultimately, health outcomes.
‘We surveyed primary care patients and their physicians in
Sacramento, California, and Vancouver, British Columbia.

Frum 1996 to 2000, spending on direct-to-consumer
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‘10 events per variable’ rule for logistic regression

e ‘One common criterion for the validity of such statistical
models: a minimum of at least 10 outcome events per
model parameter.

¢ The model has a sample size of 74 events; collectively at
least 12 main parameters being estimated from these 74
events [in the 1400 patients studied].

e The sample size is therefore clearly too small to support an
analysis of this complexity with any reliability. ’



‘10 events per variable’ rule for [logistic] regression

e ‘Work by others has shown that conclusions from such
models fitted with insufficient sample size can be
substantially in error with respect to the magnitude,
precision, statistical significance, and even the direction of
the associations indicated in the results.

e These concerns are particularly pertinent when the factors
included in the model may themselves be related to one
another.”’
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A Simulation Study of the Number of Events per Variable in
Logistic Regression Analysis

Peter Peduzzi,"*" John Concato,*’ Elizabeth Kemper,'* Theodore R. Holford,* and
Alvan R. Feinstein??+
lCOOPE'RAT]VE STUDIES PROGRAM COORDINATING CENTER AND THE zIleDICAL SERVICE, VETERANS AFFAIRS
MEDICAL CENTER, WEST HAVEN CONNECTICUT 06516; AND THE DEPARTMENTS OF 3MEDICINE (CLINICAL
EPIDEMIOLOGY UNIT) AND ’EPIDEMIOLOGY AND PUBLIC HEALTH, YALE UNIVERSITY SCHOOL OF MEDICINE,
NEW HAVEN, CONNEcTICcUT 06510

ABSTRACT. We performed a Monte Carlo study to evaluate the effect of the number of events per variable
(EPV) analyzed in logistic regression analysis. The simulations were based on data from a cardise trial of
673 patients in which 252 deaths occurred and seven variables were cogent predictors of mortality; the
number of events per predictive variable was (252/7=) 36 for the full sample. For the simulations, at values
of EPV = 2, 5, 10, 15, 20, and 25, we randomly generated 500 samples of the 673 patients, chosen with
replacement, according to a logistic model derived from the full sample. Simulation results for the regression
coefficients for each variable in each group of 500 samples were compared for bias, precision, and significance
testing against the results of the model fitted to the original sample.

For EPV values of 10 or greater, no major problems occurred. For EPV values less than 10, however, the
regression coefficients were biased in both positive and negative directions; the large sample variance estimates
from the logistic model both overestimated and underestimated the sample variance of the regression coeffi-
cients; the 90% confidence limits about the estimated values did not have proper coverage; the Wald statistic
was conservative under the null hypothesis; and paradoxical associations (significance in the wrong direction)
were increased. Although other factors (such as the total number of events, or sample size) may influence
the validity of the logistic model, our findings indicate that low EPV can lead to major problems. Copyright
© 1996 Elsevier Science Inc. j cLIN piDEMIOL 49;12:1373-1379, 1996.

KEY WORDS. Monte Carlo, bias, precision, significance testing




American Journal of Epidemiology Vol. 165, No. 6
Copyright © 2006 by the Johns Hopkins Bloomberg School of Public Health DOI: 10.1093/aje/kwk052
Al rights reserved; printed in U.S.A. Advance Access publication December 20, 2006

Original Contribution

Relaxing the Rule of Ten Events per Variable in Logistic and Cox Regression

Eric Vittinghoff and Charles E. McCulloch
From the Department of Epidemiology and Biostatistics, University of California, San Francisco, CA.

Received for publication March 15, 2006; accepted for publication August 15, 2006.

The rule of thumb that logistic and Cox models should be used with a minimum of 10 outcome events per
predictor variable (EPV), based on two simulation studies, may be too conservative. The authors conducted a large
simulation study of other influences on confidence interval coverage, type | error, relative bias, and other model
performance measures. They found a range of circumstances in which coverage and bias were within acceptable
levels despite less than 10 EPV, as well as other factors that were as influential as or more influential than EPV.
They conclude that this rule can be relaxed, in particular for sensitivity analyses undertaken to demonstrate ade-
quate control of confounding.

bias (epidemiology); coverage probability; event history analysis; model adequacy; type | error; variable selection

Abbreviation: EPV; events per predictor variable.
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The number of subjects per variable required in linear regression analyses

. ab,c,x d
Peter C. Austin , Ewout W. Steyerberg
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Accepted 24 December 2014; Published online 22 January 2015

Abstract

Objectives: To determine the number of independent variables that can be included in a linear regression model.

Study Design and Setting: We used a series of Monte Carlo simulations to examine the impact of the number of subjects per variable
(SPV) on the accuracy of estimated regression coefficients and standard errors, on the empirical coverage of estimated confidence intervals,
and on the accuracy of the estimated R? of the fitted model.

Results: A minimum of approximately two SPV tended to result in estimation of regression coefficients with relative bias of less than
10%. Furthermore, with this minimum number of SPV, the standard errors of the regression coefficients were accurately estimated and
estimated confidence intervals had approximately the advertised coverage rates. A much higher number of SPV were necessary to minimize
bias in estimating the model R?, although adjusted R? estimates behaved well. The bias in estimating the model R? statistic was inversely
proportional to the magnitude of the proportion of variation explained by the population regression model.

Conclusion: Linear regression models require only two SPV for adequate estimation of regression coefficients, standard errors, and
confidence intervals. © 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Regression; Linear regression; Bias; Monte Carlo simulations; Explained variation; Statistical methods
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Simple and multiple linear regression: sample size considerations
James A. Hanley*

Department of Epidemiology, Bi istics and Occupational Health, McGill University, 1020 Pine Avenue West, Montreal, Quebec H3A 1A2, Canada
Accepted 6 May 2016; Published online 5 July 2016

Abstract

Objective: The suggested “two subjects per variable” (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring
out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression.

Study Design and Setting: This article distinguishes two of the major uses of regression models that imply very different sample size
considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing ‘“‘expo-
sure”” (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre
guides clinical practice. It addresses Y levels for individuals with different covariate patterns or ““profiles.” It focuses on the profile-specific
(mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates.

Results and Conclusion: By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple
regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research gen-
res. © 2016 Elsevier Inc. All rights reserved.

Keywords: Precision; Power; Prediction; Confounding; Degrees of freedom




World Anti-Doping Agency (WADA):

Detection limits for Human Growth Hormone tests



Clinical Chemistry 50:10
1762-1768  (2004)

Lipids, Lipoproteins,
and Cardiovascular
Risk Factors

REFERENCE VALUES

C-Reactive Protein and Features of the Metabolic
Syndrome in a Population-Based Sample of
Children and Adolescents

MARIE LAMBERT,"” EDGARD E. DELVIN,? GILLES PARADIS,* JENNIFER O’LOUGHLIN,*
James A. HANLEY,* and EMILE LEvY®

Background: C-Reactive protein (CRP) is a risk marker
for type 2 diabetes and cardiovascular diseases. In
youth, limited data are available on the distribution of
high-sensitivity CRP as well as on its association with
components of the metabolic syndrome.

Methods: In 1999, we conducted a school-based survey
of a representative sample of youths 9, 13, and 16 years
of age in the province of Quebec, Canada. Standardized
clinical measurements and fasting plasma lipid, glu-
cose, insulin, and CRP concentrations were available for
2224 individuals.

pressure was no longer statistically significant after
adjustment for BMIL.

Conclusions: The metabolic correlates of excess weight,
including a state of low-grade systemic inflammation,
are detectable early in life. Their health impact in adults
remains to be fully examined.

© 2004 American Association for Clinical Chemistry

Measurement of the concentration of C-reactive protein
(CRP),” an acute-phase reactant, has been used for de-
cades in the diagnosis and monitoring of active infections



Clinical Chemistry 50, No. 10, 2004 1765

Table 2. Percentile values for pl. CRP ration by age and sex.
CRP concentration by percentiles (95% Cl), mg/L

Sex Age, years Exclusion? n 50th 75th 95th
Boys 9 No 340 <0.2 (<0.2t0 0.20) 0.47 (0.37-0.76) 3.13 (2.25-4.32)
Yes 221 <0.2 (<0.2t0 0.20) 0.47 (0.36-0.68) 2.73(2.09-4.22)
13 No 365 0.21 (<0.2 to 0.25) 0.71 (0.56-1.0) 4.24 (2.80-5.71)
Yes 192 <0.2 (<0.2t00.23) 0.66 (0.54-1.0) 4.44 (2.96-5.74)
16 No 372 0.30 (0.25-0.37) 1.09 (0.82-1.33) 5.06 (3.77-10.7)
Yes 125 0.31 (0.27-0.38) 0.88 (0.71-1.08) 3.28 (2.29-5.04)
Girls 9 No 366 0.31 (0.23-0.37) 1.06 (0.73-1.66) 5.65 (4.04-10.1)
Yes 236 0.28 (0.22-0.32) 0.88 (0.63-1.58) 5.02 (3.81-6.36)
13 No 349 <0.2(<0.2t0 0.21) 0.54 (0.40-0.71) 2.72 (2.00-4.02)
Yes 142 <0.2(<0.2t0 0.22) 0.59 (0.45-0.75) 2.43(2.03-3.94)
16 No 432 0.56 (0.42-0.73) 1.90 (1.44-2.17) 6.28 (5.11-7.85)
Yes 85 0.38 (0.34-0.42) 1.63 (0.88-2.16) 5.29 (4.32-6.33)
2 Excludes current smokers and individuals who took antibiotics or icati for pain/fever, cold, ies, or respil y in the 2 weeks before blood

sampling.
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hGH isoform differential immunoassays applied to blood samples from @Cmsmk
athletes: Decision limits for anti-doping testing

James A. Hanley *>*, Olli Saarela % David A. Stephens ", Jean-Christophe Thalabard ¢

* Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
b Department of Mathematics and Statistics, McGill University, Montreal, Canada

© Paris Descartes University, MAP5, UMR CNRS 8145, Paris, France
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ARTICLE INFO ABSTRACT

Article history: Objective: To detect hGH doping in sport, the World Anti-Doping Agency (WADA)-accredited laboratories use the
Received 17 May 2014 ratio of the concentrations of recombinant hGH (‘rec’) versus other ‘natural’ pituitary-derived isoforms of hGH
Accepted 2 June 2014 (*pit’), measured with two different kits developed specifically to detect the administration of exogenous hGH.

Available online 11 June 2014 The current joint compliance decision limits (DLs) for ratios derived from these kits, designed so that they

would both be exceeded in fewer than 1 in 10,000 samples from non-doping athletes, are based on data accrued

g?;“[:g::s’ in anti-doping labs up to March 2010, and later confirmed with data up to February-March 2011. In April 2013,
Regression 'WADA asked the authors to analyze the now much larger set of ratios collected in routine hGH testing of athletes,
Decision limits and to document in the peer-reviewed literature a statistical procedure for establishing DLs, so that it be re-
Isoforms applied as more data become available.

Human Growth Hormone Design: We examined the variation in the rec/pit ratios obtained for 21,943 screened blood (serum) samples sub-

Doping mitted to the WADA accredited laboratories over the period 2009-2013. To fit the relevant sex- and kit-specific



‘LMS’ (A, u, o) method
(developed for growth charts by Tim Cole)

JRSS A, 1988
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Fig. 6. Cambridge infant growth study weight: fitted centile curves for boys as derived from equation (7): L(t) and
S(t) are shown in Figs 4 and 5, while M(t) is shown here as the 50th centile



LMS : ‘X’ = Geom. Mean of REC & PIT

Kit 1 Females (N = 4543 ; 3983 with REC >= 0.1 & PIT >=0.05)

Kit 1 Males (N = 10144 ; 5930 with REC >= 0.1 & PIT >= 0.05)
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Choice of ‘X’ and its
representation

X = Rank(GM of REC & PIT)

Evenly distributed along X-axis

Kit1 Fomales (N = 4540 /4545 )

Kit1 Males (/N = 10067/ 10155 )
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Kit 1 Females (N = 4546 : 4353 with GM >= 0.075)

Geometric Mean of REC and PIT
Ratio

—0.075
—0.1
—0.2

2
= - ©
|

=20

25

.
N

e®~ S N-
O TTmeeally - 15
4 1
2 5w o 07
8 N O 05
B N .o 04
03
. 0.2
’ 0.1

(3,3,3)




Kit 1 Females (N = 4546 ; 4353 with GM >= 0,075 )

Kit 1 Males (N = 10155 ; 7915 with GM >=0,075)
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Kit 1 Femal N = 4546 : 4 with GM >= 0.075)

Distribution of z-scores
(a) actual, with ref. to a constant mean/variance but otherwise untransformed
(b) actual, with ref. to a constant mean/variance and a single Box-Cox power

m1, m2, m3, excess kurtosis: 0, 1, -0.41, 0.28 0,1,-0.01,-0.19

(a) actual, with reference to LMS model
(b) selected randomly from a N(0,1) distribution

m1, m2, m3, excess kurtosis: -0.01, 1.01, 0.04, 0.31 -0.01, 0.99, -0.01, 0.04
Percentage of z-scores < (fitted) 97.5%-ile

97.7% 97.9% 97.7% 97.5% 97.9%
(RMSE of 5 %'s ... 0.3% [Expected 0.5%])




Kit 1 Females (N = 4546 ; 4353 with GM

075)

Kit 1 Males (N = 10155 ; 7915 with GM

0.075)

Distribution of z-scores.
(@) actual, with ref. to a constant mean/variance but otherwise untransformed
(b) actual, with ref. to a constant mean/variance and a single Box-Cox power

i, b,

(a) actual, with reference to LMS model
(b) selected randomly from a N(0,1) distribution

-

™, m2, m3, excess kurtosis: -0.01, 101, 004,031

001,089, 001,004
Percentage of zscores < (fitted) 97.5%-lle

97.7% 97.9% 97.7% 97.5% 97.9%
(RMSE of 5 % ... 0.3% [Expected 0.5%])

Distribution of z-scores
(a) actual, with ref. to a constant mean/variance but otherwise untransformed
(b) actual, with ref. to a constant mean/variance and a single Box-Cox power

(a) actual, with reference to LMS model
(b) selected randomly from a N(0,1) distribution

b b

1,2, m3, excess kurosis: 0,01, 101, 005, 064

001,09, 003,008
Percentage of z-scores < (fitted) 97.5%-le

97.8% 97.5% 976% 97.5% 977%
(RMSE of 5 %'s ... 0.2% [Expected 0.4%])

Kit 2 Females (N = 2150 ; 2107 with GM >=

.075)

Kit 2 Males (N = 5092 ; 3944

GM >=

.075)

Distribution of -scores.
but otherwise

(a) actual, with ref. to a

(b) actual, with ref. to a constant meanivariance and a single Box-Cox power

_dh,_ b,

m, m2, m3, excess kurtosis: 0, 1, 057, 066

01,004,025

(a) actual, with reference to LMS model
(b) selected randomly from a N(0,1) distribution

by

1, m2, 3, excess kurtosis:0, 1, 0.0, 0.18 201,1,004,008
Percentage of z-scores < (itted) 97.5%-le
98.1% 98.3% 97.6% 96% 96.9%

(RMSE of 5 % ... 0.9% [Expected 0.8%])

Distribution of z-scores
(a) actual, with ref. to a constant mean/variance but otherwise untransformed
(b) actual, with ref. to a constant mean/variance and a single Box-Cox power

. _d

1, m2, m3, excess kurtosis: 0,1, 042, 16 0.1,005,075

(a) actual, with reference to LMS model
(b) selected randomly from a N(0,1) distribution

. m2, m3, excess kurosis: 0.01, 101, 0.1,0.88 002,1,01,-01

Percentage of z-scores < (fitted) 97.5%-le
9% 98.2% 98.1% 97.3% 97.2%
(RMSE of 5 %'s ... 0.5% [Expected 0.6%])




Analysis of the data from human Growth Hormone (hGH) Isoforms Differential
Immunoassays in sportspersons, with the objective of setting test compliance decision limits
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ARTICLE INFO ABSTRACT

Article history: Objective: To detect hGH doping in sport, the World Anti-Doping Agency (WADA)-accredited laboratories use the
Received 17 May 2014 ratio of the concentrations of recombinant hGH (‘rec’) versus other ‘natural’ pituitary-derived isoforms of hGH
Accepted 2 June 2014 (*pit’), measured with two different kits developed specifically to detect the administration of exogenous hGH.

Available online 11 June 2014 The current joint compliance decision limits (DLs) for ratios derived from these kits, designed so that they

would both be exceeded in fewer than 1 in 10,000 samples from non-doping athletes, are based on data accrued

g?;“[:g::s’ in anti-doping labs up to March 2010, and later confirmed with data up to February-March 2011. In April 2013,
Regression 'WADA asked the authors to analyze the now much larger set of ratios collected in routine hGH testing of athletes,
Decision limits and to document in the peer-reviewed literature a statistical procedure for establishing DLs, so that it be re-
Isoforms applied as more data become available.

Human Growth Hormone Design: We examined the variation in the rec/pit ratios obtained for 21,943 screened blood (serum) samples sub-

Doping mitted to the WADA accredited laboratories over the period 2009-2013. To fit the relevant sex- and kit-specific
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Follow-up experience in a randomised controlled trial
comparing screening for cancer with no screening in respect
to pecific mortality: of

At any given point in the follow-up there is a particular mortality density,
MD, among the screened and the not screened; for an interval of t to
t+dt, with dC cases expected in it, MD=dC/Pdt, where P is the size of the

. population. Contrasting the screened with the not screened, there is the
Mammographic screening: Gormesponding mortaltydensiy ratio, MDR. This raio 5 depictod a5 a
H H H function of time since entry into the trial. The early excess mortality
no reliable supporting evidence? among the screensa i no shown, snce focus 5 on the Itended resul
of reduced fatality rate, FR, quantified in terms of fatality-rate ratio, FRR.

The Lancet, 2002 MOR coincides with FRR i particular interval of follow.p tme f the

duration of screening, S, exceeds the difference between the maximum,



A single Hazard Ratio is Appropriate if Reduction is
VIRTUALLY IMMEDIATE & ...

e SUSTAINED

e Adult circumcision quickly reduces the risk of getting HIV
by about 50%; reduced rate is lifelong.

¢ Polio, HPV, ... Once there is full immunity, vaccine
protection lasts for decades.

or if we ...

e STOP COUNTING AS SOON AS PROTECTION STOPS
e Blood thinners

e beta blockers



Reduction is CONSIDERABLY DELAYED following ...

PROSTATE CANCER SCREENING



Screening & Prostate-Ca Mortality in Randomized European Study '92-'08 (“ERSPC” nejm2009.04)

8.8 years mean F.U., 214 & 326 deaths: HAZARD RATIO: 0.80
“PSA-based screening reduced rate of [pr. ca.] death by 20%. ”

T 00207
&
b
€I
0.0154
F Control group
s 0.0104
¥
< 0.0054
Screening group
: __—-!‘
Z  0.000 T T 1 P e e g o |
92 1011 12 13 14

T L
01 2 3 4 5 6
Years since Randomization

No. at Risk
Screening group 65,078 58,902 20,288
Control group 80,101 73,534 23,758




RE-ANALYSIS OF ERSPC DATA
using
year-specific prostate cancer mortality ratios



Year-specific mortality ratios

Prostate Cancer Mortality Rate Ratio (S / C)

—
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Year:

Time-Distribution of Deaths was ‘FRONT-LOADED’

very staggered entry;

many more man-years & deaths at front than at back end

Yearly Numbers of Prostate Cancer Deaths
in Control (C) and Screening (S) Arms . . .

2 6 21 27 26 39 29 59 40 40 21 1
5 5 10 20 21 28 27 33 25 24 8 3

Numbers of Men Being Followed at Mid-Year
in Control (C) and Screening (S) Arms . ..

89K 88K 87K 84K 82K 79K 76K 71K 55K 38K 22K 9K
73K 72K 71K 68K 66K 64K 61K 57K 44K 31K 18K 8K
1 2 3 4 5 6 7 8 9 10 1" 12
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FOBT screening for colon cancer — Minnesota Trial 1976-2008
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Long-Term Mortality after Screening

for Colorectal Cancer
Aasma Shaukat, M.D., M.P.H., Steven J. Mongin, M.S., Mindy S. Geisser, M.S.,

Frank A. Lederle, M.D., John H. Bond, M.D., Jack S. Mandel, Ph.D., M.P.H.,
and Timothy R. Church, Ph.D.

ABSTRACT

BACKGROUND
In randomized trials, fecal occult-blood testing reduces mortality from colorectal
cancer. However, the duration of the benefit is unknown, as are the effects specific
to age and sex.

METHODS
In the Minnesota Colon Cancer Control Study, 46,551 participants, 50 to 80 years
of age, were randomly assigned to usual care (control) or to annual or biennial
screening with fecal occult-blood testing. Screening was performed from 1976
through 1982 and from 1986 through 1992. We used the National Death Index to
obtain updated information on the vital status of participants and to determine
causes of death through 2008.



FOBT screening for colon cancer — Minnesota Trial 1976-2008

RESULTS
Through 30 years of follow-up, 33,020 participants (70.9%) died. A total of 732 deaths
were attributed to colorectal cancer: 200 of the 11,072 deaths (1.8%) in the annual-
screening group, 237 of the 11,004 deaths (2.2%) in the biennial-screening group,
and 295 of the 10,944 deaths (2.7%) in the control group. Screenipg reduced
colorectal-cancer mortality (relative risk with annual screening, 0.68; |[32%pnfi-
dence interval [CI], 0.56 to 0.82; relative risk with biennial screening, 0.78;|229, |,
0.65 to 0.93) through 30 years of follow-up. No reduction was observed in all-cause
mortality (relative risk with annual screening, 1.00; 95% CI, 0.99 to 1.01; relative
risk with biennial screening, 0.99; 95% CI, 0.98 to 1.01). The reduction in colorectal-
cancer mortality was larger for men than for women in the biennial-screening group
(P=0.04 for interaction).

CONCLUSIONS
The effect of screening with fecal occult-blood testing on colorectal-cancer mortality
persists after 30 years but does not influence all-cause mortality. The sustained
reduction in colorectal-cancer mortality supports the effect of polypectomy. (Funded
by the Veterans Affairs Merit Review Award Program and others.)
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Radiologists as Statisticians, and Statisticians as Radiologists
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Figure 1. Rep. Alexander Pirnie, R-NY, draws the first capsule in the lottery drawing held on Dec. 1, 1969. The capsule contained
the date. Sent. 14.
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Figure 4. Side-by-side boxplots of draft numbers for each month.
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Reduction in Colon Cancer Mortality

SSSSSS SSSSS
Years since Randomization

T T T T
0 10 20 30

Yearly reductions in colon cancer mortality in two screening arms. Each dot is based
on number of deaths in a three year moving window; smooth curves were fitted though

them. Because the hiatus was in calendar-time rather than follow-up time, and entries
were staggered, the timing of the screens (each denoted by an ‘S’) is only approximate.



Liu Model: A Fitted to Data; B Projected i.e., no interruption. 6 & 11 Rounds
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STATISTICAL MODEL
leading to

BATHTUB-SHAPED HAZARD-RATIO FUNCTION



Time-pattern of mortality deficits (HRs) if NO screening: age 50 onwards
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Loneliness of Long-Distance (non-)Experimentalist

Cumulative Cause-Specific Mortality

Timing of Screening Effects

(as seen in cumulative cause-specific mortality curves)

Control
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(One-off Screening, MASS)

Screening
Am
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