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Things They Don’t Teach You in Graduate School1
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Abstract

Much of what statisticians teach and use in practice is learnt ‘on the job.’

I recount here some of my early statistical experiences, and the lessons we

might learn from them. They are aimed at those of you starting out in the

profession today, and at the teachers who train you. I stress the importance

of communication.
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An expansion on some after-dinner remarks made at the Conference of Applied

Statisticians of Ireland, held in Killarney, May 17-19, 2006. The article is dedicated to

two former colleagues – and superb communicators – Fred Mosteller and Steve Lagakos,

who are no longer with us.
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Maximum-Likelihood Estimation of Parameters 
of Signal-Detection Theory and Determination 
of Confidence Intervals-Rating-Method Data1 

DONALD D. DORFMAN~ 

San Diego State College, San Diego, California 92115 

AND 

EDWARD ALF, JR. 

U.S. Naval Personnel Research Activity, San Diego, California 92133 

Procedures have been developed for obtaining maximum-likelihood estimates of 
the parameters of the Thurstonian model for the method of successive intervals. The 
signal-detection model for rating-method data is a special case of the Thurstonian 
model with fixed boundaries, in that there are two stimuli rather than an unspecified 
set. The present paper presents the solution to the two-stimulus case, and in addition, 
provides procedures for obtaining the variance-covariance matrix and confidence 
intervals. The expected values of the second partial derivatives are presented in analytic 
form to ensure accurate computation of the variance-covariance matrix. An applica- 
tion of these methods was employed on some data collected by others. 

Dorfman and Alf (1968) recently developed procedures for obtaining maximum- 
likelihood estimates of the parameters of signal-detection theory from data of yes-no 
ROC curves. Ogilvie and Creelman (1968) recently developed maximum-likelihood 
estimates and confidence intervals for the parameters of signal-detection theory from 
rating-method data, by using the logistic distribution rather than the normal distribu- 
tion to make the mathematics more tractable. They estimated d’ by means of an 
empirical relation which they obtained between d’ and an analogous parameter in the 
logistic model. This relation was found through numerical experiments on a high- 
speed computer. Unfortunately, a stable empirical relation could not be found between 
the sigma ratio of signal-detection theory and the analogous parameter of the logistic 
model. Consequently, a procedure assuming underlying normal distributions would 
be preferred. Schijnemann and Tucker (1967) developed maximum likelihood 
estimates of the parameters of the Thurstonian model for the method of successive 
intervals. Specifically, they assumed a set of normally distributed stimuli with unequal 
dispersions, and a set of fixed boundaries or cutoffs. They estimated the stimulus 

i Research supported in part by a grant from the National Science Foundation, GS-1466. 
a Now at the University of Iowa. 
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2 Receiver Operating Characteristic (ROC) Curves
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Figure 1 Example of empirical ROC points and smooth
curve fitted to them. The empirical points are calculated
from successively more liberal definitions of test positivity
applied to the 2 × 5 table (inset) of disease status (D+
or D−) and rating category (−− to ++). The smooth
ROC curve is derived from the fitted binormal model (inset,
lower right, with parameters a = 1.657 and b = 0.713 on
a continuous latent scale) by using all possible scale values
for test positivity. The fitted parameters a and b, together
with the four estimated cutpoints, produce fitted frequencies
of {32.9, 6.4, 5.9, 10.7, 2.1} and {3.2, 1.5, 2.1, 11.2, 32.9}
for the D− and D+ rows of the 2 × 5 table. Note that
a monotonic transformation of the latent axis may produce
overlapping distributions with nonbinormal shapes, but will
yield the same multinomial distributions and the same fitted
ROC curve

The complexity of the test material can have an
important bearing on the ability of a study to compare
tests. Cases resulting in an ROC curve that is midway
between the diagonal (subtle or completely obscure
ones) and the upper left corner (all ‘obvious’) allow
for sizable differences in performance; however, the
closer the curve is to the upper left corner, the
narrower is the sampling distribution of the various
indices derived from the curve [39].

For clinical imaging studies involving inter-
pretations, the most economical method of col-
lecting a reader’s impression of each case is
through the use of a rating scale, i.e. graded lev-
els of confidence that the case is D+. A discrete
five-point scale – 1 = “definitely not diseased”, 2 =
“probably not diseased”, 3=“possibly diseased”, 4=
“probably diseased”, 5 = “definitely diseased” – is

commonly used. Getting a reader to use all of the
rating categories provided yields a more stable ROC
curve estimate, but is not always easy to accomplish
without causing other problems [23]. Use of ratings
from the continuous 0–100% confidence scale [31,
49] has several advantages: it more closely resem-
bles reader’s clinical thinking and reporting; its use
of a finer scale leads to somewhat smaller stan-
dard errors of estimated indices of accuracy; and
it increases the possibility that the data will allow
parametric curve fitting.

Obtaining an ROC Curve and Summary
Indices Derived from it

For rating scale data, the 2 (D states) × k (rating
categories) frequency table of the ratings yields k − 1
empirical (TPF, FPF) ROC points. As shown in
Figure 1, these are obtained from the k − 1 possible
two-by-two tables formed by different re-expressions
of the 2 × k data table. After TPF = 0 at FPF = 0,
the lowest leftmost ROC point is derived using the
strictest cutpoint, where only the most positive cate-
gory would be regarded as positive; each subsequent
point towards the top right ROC corner (TPF =
1, FPF = 1) is obtained by employing successively
laxer criteria for test positivity. For objective tests
that yield numerical data, the same procedure – with
each distinct observed numerical test value as a cate-
gory boundary and with k no longer fixed a priori but
rather determined by the numbers of ‘runs’ of D+ and
D− in the aggregated data – is used to calculate the
series of empirical ROC data points. The sequence of
points can then be joined to form the empirical ROC
curve or a smooth curve can be fitted.

As a summary measure of accuracy, one can
use: (i) TPF[FPF], the TPF corresponding to a single
selected FPF; (ii) the area under the ROC curve; or
(iii) the area under a selected portion of the curve,
often called the partial area. Summary (i) is readily
understood and most clinically pertinent. However,
reported TPFs are often in reference to different FPF
values, and it may be unclear whether a reference
FPF was chosen in advance or after inspection of the
curve. Moreover, the statistical reliability tends to be
lower than that of other summary indices.

Summary (ii) has been recommended as an alter-
native [52]. It has an interpretation in signal detection
theory as the proportion of correct choices in a two-
alternative forced choice experiment [21], i.e. an

Figure 1 Example of empirical ROC points and smooth
curve fitted to them. The empirical points are calculated
from successively more liberal definitions of test positivity
applied to the 2 × 5 table (inset) of disease status (D+
or D−) and rating category (−− to ++). The smooth
ROC curve is derived from the fitted binormal model (inset,
lower right, with parameters a = 1.657 and b = 0.713 on
a continuous latent scale) by using all possible scale values
for test positivity. The fitted parameters a and b, together
with the four estimated cutpoints, produce fitted frequencies
of {32.9, 6.4, 5.9, 10.7, 2.1} and {3.2, 1.5, 2.1, 11.2, 32.9}
for the D− and D+ rows of the 2 × 5 table. Note that
a monotonic transformation of the latent axis may produce
overlapping distributions with nonbinormal shapes, but will
yield the same multinomial distributions and the same fitted
ROC curve



No.s of students in intro. course ’81-’93 (n=7 in ’80)
and Distribution of Birthdays



JOURNAL OF MATHEMATICAL PSYCHOLOGY 12, 387-415 (1975) 

The Area above the Ordinal Dominance Graph and the Area below 
the Receiver Operating Characteristic Graph 

DONALD BAMBER 

Psychology Service, Veterans Administration Hospital, St. Cloud, Minnesota 56301 

Receiver operating characteristic graphs are shown to be a variant form of ordinal 
dominance graphs. The area above the latter graph and the area below the former 
graph are useful measures of both the size or importance of a difference between two 
populations and/or the accuracy of discrimination performance. The usual estimator 
for this area is closely related to the Mann-Whitney U statistic. Statistical literature 
on this area estimator is reviewed. For large sample sizes, the area estimator is ap- 
proximately normally distributed. Formulas for the variance and the maximum 
variance of the area estimator are given. Several different methods of constructing 
confidence intervals for the area measure are presented and the strengths and weaknesses 
of each of these methods are discussed. Finally, the Appendix presents the derivation 
of a new mathematical result, the maximum variance of the area estimator over convex 
ordinal dominance graphs. 

ORDINAL DOMINANCE GRAPHS 

Suppose two random variables X and Y are given. Let c be an arbirary constant. 
Consider a graph in which a point is plotted having as its horizontal coordinate 
P(X < c) and as its vertical coordinate P(Y < c), Let this point be denoted by T(c). 
Suppose that, for all values of c from -co to + cc, a point T(c) is plotted on this graph. 
Following Darlington (1973), this graph will be called the ordinal dominance (OD) 
graph for X and Y, or the (X, Y) OD graph. More specifically, this graph is a particular 
type of OD graph, namely a population OD graph. A second type of OD graph, 
the sample OD graph, will be discussed later in this paper. 

One interesting property of OD graphs is that they are invariant under order- 
preserving transformations. Let m be a strictly increasing function which is defined 
over all possible values of the random variables X and Y. Then, the OD graph for X 
and Y is identical to the OD graph for the random variables m(X) and m(Y). 

OD Graphs for Continuous and Finitely Discrete X and Y 

This paper is concerned primarily with the OD graphs of random variables having 
either continuous or finitely discrete distributions. By a finitely discrete random 
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A Visicalc Program
for Estimating the Area
Under a Receiver Operating
Characteristic (ROC) Curve
Robert M. Centor, M.D.

The area under the ROC curve interests us as a method for analyzing discrimination
or detectability. One can assess a diagnostic test or probability assessor with respect
to its degree of discrimination. The area under the ROC curve gives us the

probability of correctly identifying abnormal from normal in a forced-choice, two-
alternative problem. Previous methods used for calculating the area involved
maximum likelihood estimation on a mainframe or minicomputer. This paper
demonstrates an adaptation of a recently published nonparametric method for
estimating the area. This adaptation takes advantage of electronic spreadsheet
software and may be used on most (if not all) microcomputers. The paper develops
the construction of the program needed for the necessary calculations. (Med Decis
Making 5 :139-148, 1985)

We physicians generally consider diagnostic test results as positive or

negative. Dichotomizing test results, however, decreases a test’s information
value. Alternatively one could consider a variety of values as possible cut
points; as these values change, the characteristics of the test change.
Studying this spectrum yields more information than examining a single
value. The following discussion focuses on the area under the receiver
operating characteristic (ROC) curve as one measure of overall test

performance.
An ROC curve demonstrates the relationship between the true-positive

ratio and the false-positive ratio as the definition of a positive test is varied.
Physician researchers are using these curves with increased frequency [1-4].
ROC curves free us from the constraint of a predetermined definition of
positivity. The physician can decide on the appropriate trade-off between
sensitivity and specificity for a particular clinical situation.

From the Division of General Medicine and Primary Care, Department of Medicine,
Medical College of Virginia, Richmond, Virginia. Dr. Centor is a Teaching and
Research Scholar of the American College of Physicians. Please address requests for
reprints to Dr. Centor, Box 25 MCV Station, Richmond, Virginia 23298-0001, USA.
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 Comparing the Areas Under Two or More Correlated Receiver
 Operating Characteristic Curves: A Nonparametric Approach

 Elizabeth R. DeLong

 Quintiles, Inc., 1829 East Franklin Street,
 Chapel Hill, North Carolina 27514, U.S.A.

 David M. DeLong

 SAS Institute, Cary, North Carolina 27511, U.S.A.

 and

 Daniel L. Clarke-Pearson

 Division of Oncology, Department of OBGYN, Duke University Medical Center,

 Durham, North Carolina 27710, U.S.A.

 SUMMARY

 Methods of evaluating and comparing the performance of diagnostic tests are of increasing importance
 as new tests are developed and marketed. When a test is based on an observed variable that lies on a
 continuous or graded scale, an assessment of the overall value of the test can be made through the
 use of a receiver operating characteristic (ROC) curve. The curve is constructed by varying the
 cutpoint used to determine which values of the observed variable will be considered abnormal and
 then plotting the resulting sensitivities against the corresponding false positive rates. When two or
 more empirical curves are constructed based on tests performed on the same individuals, statistical
 analysis on differences between curves must take into account the correlated nature of the data. This
 paper presents a nonparametric approach to the analysis of areas under correlated ROC curves, by
 using the theory on generalized U-statistics to generate an estimated covariance matrix.

 1. Introduction

 Methods of evaluating and comparing the performance of diagnostic tests or indices are of
 increasing importance as new tests or indices are developed or measured. When a test is
 based on an observed variable that lies on a continuous or graded scale, an assessment of
 the overall value of the test can be made through the use of a receiver operating characteristic
 (ROC) curve (Hanley and McNeil, 1982; Metz, 1978). The underlying population curve is
 theoretically given -by varying the cutpoint used to determine the values of the observed
 variable to be considered abnormal and then plotting the resulting sensitivities against the
 corresponding false positive rates. If a test could perfectly discriminate, it would have a
 value above which the entire abnormal population would fall and below which all normal
 values would fall (or vice versa). The curve would then pass through the point (0, 1) on the

 unit grid. The closer an ROC curve comes to this ideal point, the better its discriminating
 ability. A test with no discriminating ability will produce a curve that follows the diagonal
 of the grid.

 For statistical analysis, a recommended index of accuracy associated with an ROC curve
 is the area under the curve (Swets and Pickett, 1982). The area under the population ROC

 Key words. Jackknifing; Mann-Whitney test; Receiver operating characteristic (ROC) curve; Struc-
 tural components; U-statistics.
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1994
Transfer of Technology From Statistical
Journals to the Biomedical Literature
Past Trends and Future Predictions
Douglas G. Altman, Steven N. Goodman, MD, PhD

Objective.\p=m-\Toinvestigate the speed of the transfer of new statistical methods
into the medical literature and, on the basis of current data, to predict what meth-
ods medical journal editors should expect to see in the next decade.
Design.\p=m-\Influentialstatistical articles were identified and the time pattern of ci-

tations in the medical literature was ascertained. In addition, longitudinal studies of
the statistical content of articles in medical journals were reviewed.
Main Outcome Measures.\p=m-\Cumulativenumber of citations in medical journals

of each article in the years after publication.
Results.\p=m-\Annualcitations show some evidence of decreasing lag times

between the introduction of new statistical methods and their appearance in medi-
cal journals. Newer technical innovations still typically take 4 to 6 years before they
achieve 25 citations in the medical literature. Few methodological advances of the
1980s seem yet to have been widely cited in medical journals. Longitudinal studies
indicate a large increase in the use of more complex statistical methods.
Conclusions.\p=m-\Timetrends suggest that technology diffusion has speeded up

during the last 30 years, although there is still a lag of several years before medical
citations begin to accrue. Journals should expect to see more articles using
increasingly sophisticated methods. Medical journals may need to modify review-
ing procedures to deal with articles using these complex new methods.

(JAMA. 1994;272:129-132)

THE INFLUX of statistical methods
into the medical literature has increased
over more than 60 years. Over the same
period, statistics itself has undergone
major changes, so that not only is the
use ofstatistics in medical researchmuch
more common, but the methods used
have become progressively more com¬

plex. Although some of the methods be¬
ing introduced in medical research were
developed in other contexts, many sta¬
tistical advances have arisen as solu¬
tions to problems arising in medical
research. Changes in the type of statis¬
tical methods being used in medical ar¬
ticles have implications for editors, ref¬
erees, and readers.
We report herein a study of citations

to investigate the transfer of new sta¬
tistical methods into the medical litera¬
ture. We predict some newmethods that

From the Medical Statistics Laboratory, Imperial
Cancer Research Fund, London, England (Mr Altman),
and Oncology Center, Division of Biostatistics, The
Johns Hopkins University, Baltimore, Md (Dr Good-
man).
Presented in part at the Second International Con-

gress on Peer Review in Biomedical Publication, Chi-
cago, III, September 10, 1993.
Reprint requests to Medical Statistics Laboratory,

Imperial Cancer Research Fund, PO Box 123, Lincoln's
Inn Fields, London, England WC2A 3PX (Mr Altman).

medical journal editors should expect to
see in the next decade.

METHODS
Influential statistical articles published

after 1950 were identified from two books
that reprinted important statistical ar¬
ticles,1,2 from a list of the most cited ar¬
ticles in medical journals, and from per¬
sonal knowledge (Table 1). Several ar¬
ticles relate to survival analysis6·9·11'13,14
or meta-analysis,5,7 two of the strongest
growth areas (in bothmedicine and medi¬
cal statistics) in recent years. Unfortu¬
nately, in some important areas of sta¬
tistical methods there was no key article
that could be widely cited by a large pro¬
portion of users, such as logistic regres¬
sion and sample size calculations for clini¬
cal trials. We have included some articles
that were published in medical journals
(notably, cancer journals) when these
seemed to be the primary source of the
new method, and also one book.
For each article, the time pattern of

citations in the medical literature was
ascertained. Citations prior to 1971 were
obtained by hand searching of printed
volumes of the Science Citation Index,,23
as were citations for a few of the later
articles with relatively few citations. Ci¬
tations from 1971 to 1992 were obtained

using computer searches of the
SciSearch database (Institute of Scien¬
tific Information, Philadelphia, Pa).
These searches were carried out in July
and August 1993, by which time cita¬
tions for 1992 should have been virtu¬
ally complete. We did not search for
articles that had incorrect citations of
the articles of interest. It is our impres¬
sion that the rate of incorrect citations
of these articles was about 10% (exclud¬
ing errors in titles). Some minor incon¬
sistency between the two methods of
searchingmay have arisen through prob¬
lems in identifying what constitutes a
medical journal. For comparison, simi¬
lar citation analyses were performed for
two heavily cited expository statistical
articles published in medical journals.21·22
We also sought evidence from longi¬

tudinal studies of the statistical content
of articles in medical journals to exam¬
ine changes in the methods used over
time.

RESULTS
Figure 1 shows cumulative numbers

ofcitations for the articles listed in Table
1 divided into four decades—the 1950s,
1960s, 1970s, and 1980s. The article by
Cox14 was excluded because it has been
cited much more often than the other
articles. It is shown in Fig 2, together
with the article by Kaplan and Meier.6
These two articles are frequently cited
together in articles reporting the re¬
sults of survival analyses. They were
published 14 years apart, and Fig 2
shows that the citations for the earlier
article have risen in parallel with those
for the Cox article, but about 14 years
later in relation to the year of publica¬
tion. These are now two of the most
heavily cited articles in medical jour¬
nals. The rise in citations for the article
by Kaplan and Meier6 is especially
marked given that it received only six
citations in medical journals in the first
10 years after publication.
Annual citations for the articles pub¬

lished in the four decades do show some
evidence ofdecreasing lag times between
the introduction and widespread use of
new statistical methods. Newer techni¬
cal innovations still typically take 4 to 6



Table 1.—Statistical Articles Included in This Study
Source, y Topic

Methodological articles
Cornfield,3 1951 Odds ratio
Cochran,41954  2 Trend test
Woolf,51955 Combining 2x2 tables
Kaplan and Meier,61958 Survival curve
Mantel and Haenszel,7 Stratified 2x2 table

1958
Cohen,81960  Statistic
Mantel,91963 Survival analysis
Box and Cox,101964 Transformations
Mantel," 1966 Survival analysis
Elston and Stewart," Heredity

1971
Peto and Peto,131972 Log rank test
Cox,141972 Proportional hazards

regression
Dempster et al,'51977 EM algorithm
Efron,16 1979 Bootstrap
Hanley and McNeil,17 Receiver operating

1982 characteristic curve
Geman and Geman,18 Gibbs sampling

1984
Breiman et al,191984 Classification and

regression trees
Zeger and Liang,201986 Longitudinal data

Expository articles
Peto et al,21 1977 Log rank test
Bland and Altman,22 Method comparison

1986

years before they achieve 25 citations in
the medical literature. Few methodologi¬
cal advances of the 1980s seem yet to
have been widely cited in medical jour¬
nals. By contrast, expository articles in
medical journals can reach 500 citations
within 4 to 5 years (Fig 3). Citations for
one of the two expository articles21 have
leveled out, with a roughly constant num¬
ber of citations each year. Most of the
methodological articles (notably, the
heavily cited articles) have increasing
numbers of citations each year.

Few authors have studied changes
over time in the use of statistical meth¬
ods in one journal. Hayden24 gave a brief
summary of the rise in the use of simple
statistical methods in Pediatrics from
1952 to 1982, while Felson et al25 de¬
scribed similar changes in Arthritis and
Rheumatism from 1967 to 1968 vs 1982.
The most detailed information we are
aware of relates to the New England
Journal ofMedicine. Articles published
in 1978 and 1979,26 1989,27 and 199028
have been reviewed using the same set
of categories.26 A large increase was
noted during this period in the use of
most statistical methods, especially the
more complex methods (Table 2). It is
notable that survival analysis and logis¬
tic regression were found in almost a
third oforiginal articles published in 1989
and 1990.

COMMENT
Citation studies are rightly criticized

as a means of grading researchers,29 but
we think they provide a valuable mea¬
sure of the impact of a new methodolog¬
ical development on medical research.
Figure 1 suggests that technology dif-
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Fig 1.—Cumulative citations in medical journals for selected articles published in 1950 through 1959 (top
left), 1960 through 1969 (top right), 1970 through 1979 (bottom left), and 1980 through 1989 (bottom right).
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two heavily cited articles on survival analysis meth¬
ods.

fusion may have speeded up during the
last 30 to 40 years, although there is still
usually a lag ofseveral years before medi¬
cal citations begin to accrue.

We used cumulative citations rather
than annual citations, as we feel the to¬
tal impact is more relevant in this con¬
text and that fluctuations in the annual
counts obscure the trends. For the pur¬
poses of documenting technology trans¬
fer, it is not the actual number of cita¬
tions but the shape of the citation curve
that is most informative. This shape
seems not to have changed greatly dur¬
ing four decades. Almost all ofthe curves
for these classic articles have a dormant
earlyphase followed byasomewhat dra¬
matic takeoff. The general shape does
not seem to vary in relation to how
heavily cited an article is. There are,
however, a few exceptions to this pat¬
tern, notably the article by Hanley and
McNeil17 (Fig 1). Developments that
have probably contributed to the more
rapid diffusion ofstatistical methods into
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Fig 3.—Cumulative citations in medical journals for
two expository articles.

the medical literature are the increas¬
ing number of statisticians working in
medicine, the accessibility of powerful
desktop computers to medical research¬
ers, and the more rapid development
and dissemination of software to imple¬
ment new statistical methods.

Our analyses took no account of the
large increase in the number of articles
being published each year in medical
journals (1730 journals published in 1950,
increasing in 10-year intervals to 2800,
4420, 6780, and 9480) (Ulrich's Interna¬
tional Serials database, Bowker Elec¬
tronic Publishing). However, this in¬
crease has been almost linear since 1970,
so adjustment for the increasing size of
the literature would not greatly alter
the shapes of the curves. Furthermore,
such adjustment is not appropriate if, as
seems likely, researchers today need to
access many more articles in a greater
number ofjournals than their predeces¬
sors. Huth30 found a large increase be¬
tween 1950 and 1985 in the number of
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years before they achieve 25 citations in
the medical literature. Few methodologi¬
cal advances of the 1980s seem yet to
have been widely cited in medical jour¬
nals. By contrast, expository articles in
medical journals can reach 500 citations
within 4 to 5 years (Fig 3). Citations for
one of the two expository articles21 have
leveled out, with a roughly constant num¬
ber of citations each year. Most of the
methodological articles (notably, the
heavily cited articles) have increasing
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scribed similar changes in Arthritis and
Rheumatism from 1967 to 1968 vs 1982.
The most detailed information we are
aware of relates to the New England
Journal ofMedicine. Articles published
in 1978 and 1979,26 1989,27 and 199028
have been reviewed using the same set
of categories.26 A large increase was
noted during this period in the use of
most statistical methods, especially the
more complex methods (Table 2). It is
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two heavily cited articles on survival analysis meth¬
ods.

fusion may have speeded up during the
last 30 to 40 years, although there is still
usually a lag ofseveral years before medi¬
cal citations begin to accrue.

We used cumulative citations rather
than annual citations, as we feel the to¬
tal impact is more relevant in this con¬
text and that fluctuations in the annual
counts obscure the trends. For the pur¬
poses of documenting technology trans¬
fer, it is not the actual number of cita¬
tions but the shape of the citation curve
that is most informative. This shape
seems not to have changed greatly dur¬
ing four decades. Almost all ofthe curves
for these classic articles have a dormant
earlyphase followed byasomewhat dra¬
matic takeoff. The general shape does
not seem to vary in relation to how
heavily cited an article is. There are,
however, a few exceptions to this pat¬
tern, notably the article by Hanley and
McNeil17 (Fig 1). Developments that
have probably contributed to the more
rapid diffusion ofstatistical methods into
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two expository articles.

the medical literature are the increas¬
ing number of statisticians working in
medicine, the accessibility of powerful
desktop computers to medical research¬
ers, and the more rapid development
and dissemination of software to imple¬
ment new statistical methods.

Our analyses took no account of the
large increase in the number of articles
being published each year in medical
journals (1730 journals published in 1950,
increasing in 10-year intervals to 2800,
4420, 6780, and 9480) (Ulrich's Interna¬
tional Serials database, Bowker Elec¬
tronic Publishing). However, this in¬
crease has been almost linear since 1970,
so adjustment for the increasing size of
the literature would not greatly alter
the shapes of the curves. Furthermore,
such adjustment is not appropriate if, as
seems likely, researchers today need to
access many more articles in a greater
number ofjournals than their predeces¬
sors. Huth30 found a large increase be¬
tween 1950 and 1985 in the number of



Table 1.—Statistical Articles Included in This Study
Source, y Topic

Methodological articles
Cornfield,3 1951 Odds ratio
Cochran,41954  2 Trend test
Woolf,51955 Combining 2x2 tables
Kaplan and Meier,61958 Survival curve
Mantel and Haenszel,7 Stratified 2x2 table

1958
Cohen,81960  Statistic
Mantel,91963 Survival analysis
Box and Cox,101964 Transformations
Mantel," 1966 Survival analysis
Elston and Stewart," Heredity

1971
Peto and Peto,131972 Log rank test
Cox,141972 Proportional hazards

regression
Dempster et al,'51977 EM algorithm
Efron,16 1979 Bootstrap
Hanley and McNeil,17 Receiver operating

1982 characteristic curve
Geman and Geman,18 Gibbs sampling

1984
Breiman et al,191984 Classification and

regression trees
Zeger and Liang,201986 Longitudinal data

Expository articles
Peto et al,21 1977 Log rank test
Bland and Altman,22 Method comparison

1986

years before they achieve 25 citations in
the medical literature. Few methodologi¬
cal advances of the 1980s seem yet to
have been widely cited in medical jour¬
nals. By contrast, expository articles in
medical journals can reach 500 citations
within 4 to 5 years (Fig 3). Citations for
one of the two expository articles21 have
leveled out, with a roughly constant num¬
ber of citations each year. Most of the
methodological articles (notably, the
heavily cited articles) have increasing
numbers of citations each year.

Few authors have studied changes
over time in the use of statistical meth¬
ods in one journal. Hayden24 gave a brief
summary of the rise in the use of simple
statistical methods in Pediatrics from
1952 to 1982, while Felson et al25 de¬
scribed similar changes in Arthritis and
Rheumatism from 1967 to 1968 vs 1982.
The most detailed information we are
aware of relates to the New England
Journal ofMedicine. Articles published
in 1978 and 1979,26 1989,27 and 199028
have been reviewed using the same set
of categories.26 A large increase was
noted during this period in the use of
most statistical methods, especially the
more complex methods (Table 2). It is
notable that survival analysis and logis¬
tic regression were found in almost a
third oforiginal articles published in 1989
and 1990.

COMMENT
Citation studies are rightly criticized

as a means of grading researchers,29 but
we think they provide a valuable mea¬
sure of the impact of a new methodolog¬
ical development on medical research.
Figure 1 suggests that technology dif-
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fusion may have speeded up during the
last 30 to 40 years, although there is still
usually a lag ofseveral years before medi¬
cal citations begin to accrue.

We used cumulative citations rather
than annual citations, as we feel the to¬
tal impact is more relevant in this con¬
text and that fluctuations in the annual
counts obscure the trends. For the pur¬
poses of documenting technology trans¬
fer, it is not the actual number of cita¬
tions but the shape of the citation curve
that is most informative. This shape
seems not to have changed greatly dur¬
ing four decades. Almost all ofthe curves
for these classic articles have a dormant
earlyphase followed byasomewhat dra¬
matic takeoff. The general shape does
not seem to vary in relation to how
heavily cited an article is. There are,
however, a few exceptions to this pat¬
tern, notably the article by Hanley and
McNeil17 (Fig 1). Developments that
have probably contributed to the more
rapid diffusion ofstatistical methods into
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the medical literature are the increas¬
ing number of statisticians working in
medicine, the accessibility of powerful
desktop computers to medical research¬
ers, and the more rapid development
and dissemination of software to imple¬
ment new statistical methods.

Our analyses took no account of the
large increase in the number of articles
being published each year in medical
journals (1730 journals published in 1950,
increasing in 10-year intervals to 2800,
4420, 6780, and 9480) (Ulrich's Interna¬
tional Serials database, Bowker Elec¬
tronic Publishing). However, this in¬
crease has been almost linear since 1970,
so adjustment for the increasing size of
the literature would not greatly alter
the shapes of the curves. Furthermore,
such adjustment is not appropriate if, as
seems likely, researchers today need to
access many more articles in a greater
number ofjournals than their predeces¬
sors. Huth30 found a large increase be¬
tween 1950 and 1985 in the number of
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Politicians use statistics in the same
way that a drunk uses lamp-posts:

for support rather than illumination.

Andrew Lang (1844 – 1912), Scottish poet, novelist, and literary

critic, and contributor to anthropology.



Extra-mural consultations

1. 2007. CANWEST vs Government of Canada:
– Direct to Consumer Advertising of Medications

2. 2013. World Anti-Doping Agency (WADA):
– Detection limits for Human Growth Hormone tests

3. 1994-5. Québec Health Ministry:
– Should it pay for PSA screening for Prostate Cancer?



From 1996 to 2000, spending on direct-to-consumer
advertising (DTCA) of prescription drugs in the
United States more than tripled,1 reaching US$2.7

billion in 2001.2 The United States and New Zealand are the
only industrialized countries that allow such advertising, al-
though restrictive legislation in the European Union3 and
Canada4 has recently been under review. Canada allows ad-
vertising of over-the-counter (OTC) drugs but prohibits
DTCA of prescription medicines, although a 1978 exemp-
tion, which was intended to allow price comparisons, permits
advertising of product name, price and quantity.4 Neverthe-
less, Canadians see advertisements in US magazines and on
US cable television, as well as an increasing volume of do-
mestically generated DTCA of questionable legality.5 Propo-
nents of DTCA argue that advertisements empower pa-
tients, whereas critics counter that they encourage wasteful
prescribing.6 Empirical research is needed to assess the
effects of DTCA on prescribing decisions, the patient–
physician relationship and, ultimately, health outcomes.

We surveyed primary care patients and their physicians in
Sacramento, California, and Vancouver, British Columbia.
This design allowed us to distinguish between prescriptions

How does direct-to-consumer advertising (DTCA)
affect prescribing? A survey in primary care
environments with and without legal DTCA 

Barbara Mintzes, Morris L. Barer, Richard L. Kravitz, Ken Bassett, Joel Lexchin,
Arminée Kazanjian, Robert G. Evans, Richard Pan, Stephen A. Marion 

ß See related articles pages 421 and 425

Abstract

Background: Direct-to-consumer advertising (DTCA) of prescrip-
tion drugs has increased rapidly in the United States during the
last decade, yet little is known about its effects on prescribing
decisions in primary care. We compared prescribing decisions
in a US setting with legal DTCA and a Canadian setting where
DTCA of prescription drugs is illegal, but some cross-border
exposure occurs. 

Methods: We recruited primary care physicians working in Sacra-
mento, California, and Vancouver, British Columbia, and their
group practice partners to participate in the study. On pre-
selected days, patients aged 18 years or more completed a
questionnaire before seeing their physician. We asked these
patients’ physicians to complete a brief questionnaire immedi-
ately following the selected patient visit. By pairing individual
patient and physician responses, we determined how many
patients had been exposed to some form of DTCA, the fre-
quency of patients’ requests for prescriptions for advertised
medicines and the frequency of prescriptions that were stimu-
lated by the patients’ requests. We measured physicians’ con-
fidence in treatment choice for each new prescription by ask-
ing them whether they would prescribe this drug to a patient
with the same condition. 

Results: Seventy-eight physicians (Sacramento n = 38, Vancouver
n = 40) and 1431 adult patients (Sacramento n = 683, Van-
couver n = 748), or 61% of patients who consulted participat-
ing physicians on pre-set days, participated in the survey. Ex-
posure to DTCA was higher in Sacramento, although 87.4% of
Vancouver patients had seen prescription drug advertisements.
Of the Sacramento patients, 7.2% requested advertised drugs
as opposed to 3.3% in Vancouver (odds ratio [OR] 2.2, 95%
confidence interval [CI] 1.2–4.1). Patients with higher self-
reported exposure to advertising, conditions that were poten-

to be only “possible” or “unlikely” choices for other similar
patients, as compared with 12.4% of new prescriptions not re-
quested by patients (p < 0.001). 

Interpretation: Our results suggest that more advertising leads to
more requests for advertised medicines, and more prescrip-
tions. If DTCA opens a conversation between patients and
physicians, that conversation is highly likely to end with a
prescription, often despite physician ambivalence about treat-
ment choice.

CMAJ 2003;169(5):405-12







‘10 events per variable’ rule for logistic regression

• ‘One common criterion for the validity of such statistical
models: a minimum of at least 10 outcome events per
model parameter.

• The model has a sample size of 74 events; collectively at
least 12 main parameters being estimated from these 74
events [in the 1400 patients studied].

• The sample size is therefore clearly too small to support an
analysis of this complexity with any reliability. ’



‘10 events per variable’ rule for [logistic] regression

• ‘Work by others has shown that conclusions from such
models fitted with insufficient sample size can be
substantially in error with respect to the magnitude,
precision, statistical significance, and even the direction of
the associations indicated in the results.

• These concerns are particularly pertinent when the factors
included in the model may themselves be related to one
another. ’



J Clin Epidemiol Vol. 49, No. 12, pp. 1373-1379, 1996 
Copyright 0 1996 Elsevier Science, Inc. 
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A Simulation Study of the Number of Events per Variable in 
Logistic Regression Analysis 

Peter Peduz$,‘~4~* John Concato,2’3 Elizabeth Kemper,‘z4 Theodore R. Holford,4 and 
Alvan R. Feinstein2~3~4 

'COOPERATIVE STUDIES PROGRAM COORDINATING CENTER AND THE 'MEDICALSERVICE,VETERANS AFFAIRS 
MEDICALCENTER, WEST HAVEN CONNECTICUT 06516; AND THE DEPARTMENTS OF 3~~~~~~~~ (CLINICAL 
EPIDEMIOLOGY UNIT) AND 'EPIDEMIOLOGY AND PUBLIC HEALTH,YALE UNIVERSITY SCHOOL OF MEDICINE, 

NEW HAVEN,CONNECTICUT 06510 

ABSTRACT. We performed a Monte Carlo study to evaluate the effect of the number of events per variable 
(EPV) analyzed in logistic regression analysis. The simulations were based on data from a cardise trial of 
673 patients in which 252 deaths occurred and seven variables were cogent predictors of mortalitfr; the 
number of events per predictive variable was (252/7=) 36 for the full sample. For the simulations, at values 
of EPV = 2, 5, 10, 15, 20, and 25, we randomly generated 500 samples of the 673 patients, chosen with 
replacement, according to a logistic model derived from the full sample. Simulation results for the regression 
coefficients for each variable in each group of 500 samples were compared for bias, precision, and significance 
testing against the results of the model fitted to the original sample. 

For EPV values of 10 or greater, no major problems occurred. For EPV values less than 10, however, the 
regression coefficients were biased in both positive and negative directions; the large sample variance estimates 
from the logistic model both overestimated and underestimated the sample variance of the regression coeffi- 
cients; the 90% confidence limits about the estimated values did not have proper coverage; the Wald statistic 
was conservative under the null hypothesis; and paradoxical associations (significance in the wrong direction) 
were increased. Although other factors (such as the total number of events, or sample size) may influence 
the validity of the logistic model, our findings indicate that low EPV can lead to major problems. Copyright 
0 1996 Elsevier Science Inc. J CLIN EPIDEMIOL 49;12:1373-1379, 1996. 

KEY WORDS. Monte Carlo, bias, precision, significance testing 

INTRODUCI’ION 

Multivariable methods of analysis have been suspected of producing 
problematic results if too few outcome events are available relative 
to the number of independent variables analyzed in the model [l]. 
The main concerns have been accuracy and precision of the regres- 
sion coefficients, and potentially misleading associations. Three 
types of errors have been discussed: overfitting (Type I error) occurs 
when too many variables, some of which may be “noise,” are se- 
lected for retention in the final model; underfitting (Type II error) 
occurs when important variables are omitted from the final model; 
and paradoxical fitting (Type 111 error) is produced when a particular 
factor is given an incorrect direction of association which is the 
opposite of the true effect. 

Because of these problems, general guidelines have been suggested 
for the minimum number of events per variable (EPV) required in 
multivariate analysis. On theoretical grounds, Harrell and colleagues 
[2] advocated a criterion equivalent to a minimum of lo-20 EPV. 
In a simulation study of forward stepwise multiple linear regression, 
Freedman and Pee [3] demonstrated that the Type I error was in- 
flated when the ratio of the number of variables to the number of 
observations was greater than 0.25, corresponding to an EPV < 4. 
In simulation studies of the effect of EPV on proportional hazards 

*Address for correspondence: Peter Peduzzi. Cooperative Studies Program 
(151A), VA Medical Center, 950 Campbell Avenue, West Haven, Con- 
necticut 06516. 

Accepted for publication on 13 May 1996. 

regression [4,5], we recently suggested that at least 10 events per 
variable analyzed were desirable to maintain the validity of the 
model. 

Because the impact of EPV may not be the same for all multivari- 
able methods, we conducted a Monte Carlo study for the effect in 
logistic regression analysis. For the logistic model, the number of 
outcome events is the smaller number of binary outcomes (e.g., alive 
versus dead). Thus, a particular study may have many subjects, but 
too few deaths for a valid analysis. To investigate this problem, we 
conducted simulations using data from a cardiac trial having 252 
deaths (events) among 673 patients. Seven known prognostic vari- 
ables were selected for analysis, yielding an EPV of 252/7=) 36 for 
the full sample. The simulations were conducted for selected values 
of EPV ranging from 2 to 25. Results were compared with the model 
fitted to the original sample to examine bias, precision, and signifi- 
cance testing of the regression coefficients. 

METHODS 
Design of Simulation Study 

Using sampling with replacement, 500 hundred simulations were 
each conducted at individual settings of EPV = 2, 5, 10, 15, 20, 
and 25. Deaths and survivors were separately sampled based on the 
predicted probability of dying (P,) or surviving (Q, = 1 - P,) by 
the logistic model, where P, = l/{ 1 + exp[ - (a + X,/3)]>; (Y is the 
intercept term; X, = (X,1, . . ,X,7) is the set of covariate values for 
patient i; and p = (8, . . , b), is the set of corresponding values 

J. CLINICAL EPIDEMIOLOGY 1996



Original Contribution

Relaxing the Rule of Ten Events per Variable in Logistic and Cox Regression

Eric Vittinghoff and Charles E. McCulloch

From the Department of Epidemiology and Biostatistics, University of California, San Francisco, CA.

Received for publication March 15, 2006; accepted for publication August 15, 2006.

The rule of thumb that logistic and Cox models should be used with a minimum of 10 outcome events per
predictor variable (EPV), based on two simulation studies, may be too conservative. The authors conducted a large
simulation study of other influences on confidence interval coverage, type I error, relative bias, and other model
performance measures. They found a range of circumstances in which coverage and bias were within acceptable
levels despite less than 10 EPV, as well as other factors that were as influential as or more influential than EPV.
They conclude that this rule can be relaxed, in particular for sensitivity analyses undertaken to demonstrate ade-
quate control of confounding.

bias (epidemiology); coverage probability; event history analysis; model adequacy; type I error; variable selection

Abbreviation: EPV; events per predictor variable.
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FAILURE TO DISTINGUISH

SAME EQUATION

E [Y |X1, X2, . . . , Xp] = β0 + β1X1 + β2X2, · · ·+ βp Xp

DIFFERENT OBJECTIVES (TARGETS)

• β1

• ∑
βjXj , for various {X1, X2, . . . ,Xp} ‘profiles’

• {β1, β2, . . . , βp}



The number of subjects per variable required in linear regression analyses
Peter C. Austina,b,c,*, Ewout W. Steyerbergd
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dDepartment of Public Health, Erasmus MCdUniversity Medical Center Rotterdam, ‘s-Gravendijkwal 230 3015 CE, Rotterdam, The Netherlands

Accepted 24 December 2014; Published online 22 January 2015

Abstract

Objectives: To determine the number of independent variables that can be included in a linear regression model.
Study Design and Setting: We used a series of Monte Carlo simulations to examine the impact of the number of subjects per variable

(SPV) on the accuracy of estimated regression coefficients and standard errors, on the empirical coverage of estimated confidence intervals,
and on the accuracy of the estimated R2 of the fitted model.

Results: A minimum of approximately two SPV tended to result in estimation of regression coefficients with relative bias of less than
10%. Furthermore, with this minimum number of SPV, the standard errors of the regression coefficients were accurately estimated and
estimated confidence intervals had approximately the advertised coverage rates. A much higher number of SPV were necessary to minimize
bias in estimating the model R2, although adjusted R2 estimates behaved well. The bias in estimating the model R2 statistic was inversely
proportional to the magnitude of the proportion of variation explained by the population regression model.

Conclusion: Linear regression models require only two SPV for adequate estimation of regression coefficients, standard errors, and
confidence intervals. ! 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Regression; Linear regression; Bias; Monte Carlo simulations; Explained variation; Statistical methods
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Simple and multiple linear regression: sample size considerations
James A. Hanley*

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1020 Pine Avenue West, Montreal, Quebec H3A 1A2, Canada

Accepted 6 May 2016; Published online 5 July 2016

Abstract

Objective: The suggested ‘‘two subjects per variable’’ (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring
out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression.

Study Design and Setting: This article distinguishes two of the major uses of regression models that imply very different sample size
considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing ‘‘expo-
sure’’ (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre
guides clinical practice. It addresses Y levels for individuals with different covariate patterns or ‘‘profiles.’’ It focuses on the profile-specific
(mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates.

Results and Conclusion: By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple
regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research gen-
res. ! 2016 Elsevier Inc. All rights reserved.

Keywords: Precision; Power; Prediction; Confounding; Degrees of freedom
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World Anti-Doping Agency (WADA):

Detection limits for Human Growth Hormone tests



C-Reactive Protein and Features of the Metabolic
Syndrome in a Population-Based Sample of

Children and Adolescents
Marie Lambert,1* Edgard E. Delvin,2 Gilles Paradis,4 Jennifer O’Loughlin,4

James A. Hanley,4 and Emile Levy3

Background: C-Reactive protein (CRP) is a risk marker
for type 2 diabetes and cardiovascular diseases. In
youth, limited data are available on the distribution of
high-sensitivity CRP as well as on its association with
components of the metabolic syndrome.
Methods: In 1999, we conducted a school-based survey
of a representative sample of youths 9, 13, and 16 years
of age in the province of Quebec, Canada. Standardized
clinical measurements and fasting plasma lipid, glu-
cose, insulin, and CRP concentrations were available for
2224 individuals.
Results: The distribution of CRP was positively

pressure was no longer statistically significant after
adjustment for BMI.
Conclusions: The metabolic correlates of excess weight,
including a state of low-grade systemic inflammation,
are detectable early in life. Their health impact in adults
remains to be fully examined.
© 2004 American Association for Clinical Chemistry

Measurement of the concentration of C-reactive protein
(CRP),5 an acute-phase reactant, has been used for de-
cades in the diagnosis and monitoring of active infections
and chronic inflammatory diseases. Recently, epidemio-

Clinical Chemistry 50:10
1762–1768 (2004)

Lipids, Lipoproteins,
and Cardiovascular
Risk Factors

REFERENCE VALUES



Table 2. Percentile values for plasma CRP concentration by age and sex.

Sex Age, years Exclusiona n

CRP concentration by percentiles (95% CI), mg/L

50th 75th 95th

Boys 9 No 340 !0.2 (!0.2 to 0.20) 0.47 (0.37–0.76) 3.13 (2.25–4.32)
Yes 221 !0.2 (!0.2 to 0.20) 0.47 (0.36–0.68) 2.73 (2.09–4.22)

13 No 365 0.21 (!0.2 to 0.25) 0.71 (0.56–1.0) 4.24 (2.80–5.71)
Yes 192 !0.2 (!0.2 to 0.23) 0.66 (0.54–1.0) 4.44 (2.96–5.74)

16 No 372 0.30 (0.25–0.37) 1.09 (0.82–1.33) 5.06 (3.77–10.7)
Yes 125 0.31 (0.27–0.38) 0.88 (0.71–1.08) 3.28 (2.29–5.04)

Girls 9 No 366 0.31 (0.23–0.37) 1.06 (0.73–1.66) 5.65 (4.04–10.1)
Yes 236 0.28 (0.22–0.32) 0.88 (0.63–1.58) 5.02 (3.81–6.36)

13 No 349 !0.2 (!0.2 to 0.21) 0.54 (0.40–0.71) 2.72 (2.00–4.02)
Yes 142 !0.2 (!0.2 to 0.22) 0.59 (0.45–0.75) 2.43 (2.03–3.94)

16 No 432 0.56 (0.42–0.73) 1.90 (1.44–2.17) 6.28 (5.11–7.85)
Yes 85 0.38 (0.34–0.42) 1.63 (0.88–2.16) 5.29 (4.32–6.33)

a Excludes current smokers and individuals who took antibiotics or medications for pain/fever, cold/allergies, or respiratory problems in the 2 weeks before blood
sampling.

Clinical Chemistry 50, No. 10, 2004 1765



hGH isoform differential immunoassays applied to blood samples from
athletes: Decision limits for anti-doping testing
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Objective: To detect hGHdoping in sport, theWorld Anti-Doping Agency (WADA)-accredited laboratories use the
ratio of the concentrations of recombinant hGH (‘rec’) versus other ‘natural’ pituitary-derived isoforms of hGH
(‘pit’), measured with two different kits developed specifically to detect the administration of exogenous hGH.
The current joint compliance decision limits (DLs) for ratios derived from these kits, designed so that they
would both be exceeded in fewer than 1 in 10,000 samples from non-doping athletes, are based on data accrued
in anti-doping labs up to March 2010, and later confirmed with data up to February–March 2011. In April 2013,
WADAasked the authors to analyze the nowmuch larger set of ratios collected in routine hGH testing of athletes,
and to document in the peer-reviewed literature a statistical procedure for establishing DLs, so that it be re-
applied as more data become available.
Design:Weexamined the variation in the rec/pit ratios obtained for 21,943 screened blood (serum) samples sub-
mitted to the WADA accredited laboratories over the period 2009–2013. To fit the relevant sex- and kit-specific
centiles of the logs of the ratios, we classified ‘rec/pit’ ratios based on low ‘rec’ and ‘pit’ values as ‘negative’ and
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Fig. 6. Cambridge infant growth study weight: fitted centile curves for boys as derived from equation (7): L(t) and 
S(t) are shown in Figs 4 and 5, while M(t) is shown here as the 50th centile 

TABLE 4 
Cambridge infant growth 
study weight: change in the 
estimated power relative to 
the original value after delet- 
ing the largest and smallest 

valuet 

Weeks Pair 
1 2 

2 0.00 -0.19 
4 -0.04 -0.15 
8 -0.59 -0.81 

12 -0.06 -0.32 
16 -0.11 -0.03 
20 +0.27 +0.32 
24 +0.28 +0.28 
28 +0.45 +0.46 
32 +0.26 +0.52 
36 +0.17 +0.38 
40 +0.33 +0.49 
44 +0.35 +0.29 
48 +0.22 +0.29 
52 +0.31 +0.46 
78 +0.48 +0.59 

tResults are shown after deleting one and 
two such pairs. 

This content downloaded from 132.216.65.151 on Mon, 8 Jul 2013 21:11:29 PM
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LMS : ‘X’ = Geom. Mean of REC & PIT
Kit 1 Females ( N = 4543 ; 3983 with REC >= 0.1 & PIT >= 0.05 )
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Harmonize: so ‘Low’ cutoff is based on ‘X’
Kit 1 Females ( N = 4543 ; 4255 with GM  >= 0.1 )
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Choice of ‘X’ and its
representation

X = Rank(GM of REC & PIT)

Evenly distributed along X-axis
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Kit 1 Females ( N = 4546 ; 4353 with GM  >= 0.075 )
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Kit 2 Females ( N = 2150 ; 2107 with GM  >= 0.075 )
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Kit 2 Males ( N = 5092 ; 3944 with GM  >= 0.075 )
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Kit 1 Females ( N = 4546 ; 4353 with GM  >= 0.075 )
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Kit 1 Males ( N = 10155 ; 7915 with GM  >= 0.075 )
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Kit 2 Females ( N = 2150 ; 2107 with GM  >= 0.075 )
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Kit 2 Males ( N = 5092 ; 3944 with GM  >= 0.075 )
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Kit 1 Females ( N = 4546 ; 4353 with GM  >= 0.075 )

Distribution of z-scores
(a) actual, with ref. to a constant mean/variance but otherwise untransformed  
(b) actual, with ref. to a constant mean/variance and a single Box-Cox power

m1, m2, m3, excess kurtosis: 0, 1, -0.41, 0.28   0, 1, -0.01, -0.19

(a) actual, with reference to LMS model  
(b) selected randomly from a N(0,1) distribution 

m1, m2, m3, excess kurtosis: -0.01, 1.01, 0.04, 0.31   -0.01, 0.99, -0.01, 0.04

97.7% 97.9% 97.7% 97.5% 97.9%

Percentage of z-scores < (fitted) 97.5%-ile

(RMSE of 5 %'s ... 0.3%  [Expected 0.5%])

Kit 1 Males ( N = 10155 ; 7915 with GM  >= 0.075 )

Distribution of z-scores
(a) actual, with ref. to a constant mean/variance but otherwise untransformed  
(b) actual, with ref. to a constant mean/variance and a single Box-Cox power

m1, m2, m3, excess kurtosis: 0, 1, -0.17, 0.67   0, 1, 0.02, 0.49

(a) actual, with reference to LMS model  
(b) selected randomly from a N(0,1) distribution 

m1, m2, m3, excess kurtosis: -0.01, 1.01, 0.05, 0.64   -0.01, 0.99, -0.03, -0.08

97.8% 97.5% 97.6% 97.5% 97.7%

Percentage of z-scores < (fitted) 97.5%-ile

(RMSE of 5 %'s ... 0.2%  [Expected 0.4%])

Kit 2 Females ( N = 2150 ; 2107 with GM  >= 0.075 )

Distribution of z-scores
(a) actual, with ref. to a constant mean/variance but otherwise untransformed  
(b) actual, with ref. to a constant mean/variance and a single Box-Cox power

m1, m2, m3, excess kurtosis: 0, 1, -0.57, 0.66   0, 1, -0.04, -0.26

(a) actual, with reference to LMS model  
(b) selected randomly from a N(0,1) distribution 

m1, m2, m3, excess kurtosis: 0, 1, 0.03, 0.18   -0.01, 1, 0.04, 0.09

98.1% 98.3% 97.6% 96% 96.9%

Percentage of z-scores < (fitted) 97.5%-ile

(RMSE of 5 %'s ... 0.9%  [Expected 0.8%])

Kit 2 Males ( N = 5092 ; 3944 with GM  >= 0.075 )

Distribution of z-scores
(a) actual, with ref. to a constant mean/variance but otherwise untransformed  
(b) actual, with ref. to a constant mean/variance and a single Box-Cox power

m1, m2, m3, excess kurtosis: 0, 1, -0.42, 1.6   0, 1, 0.05, 0.75

(a) actual, with reference to LMS model  
(b) selected randomly from a N(0,1) distribution 

m1, m2, m3, excess kurtosis: -0.01, 1.01, 0.1, 0.88   -0.02, 1, 0.1, -0.1

98% 98.2% 98.1% 97.3% 97.2%

Percentage of z-scores < (fitted) 97.5%-ile

(RMSE of 5 %'s ... 0.5%  [Expected 0.6%])



Kit 1 Females ( N = 4546 ; 4353 with GM  >= 0.075 )

Distribution of z-scores
(a) actual, with ref. to a constant mean/variance but otherwise untransformed  
(b) actual, with ref. to a constant mean/variance and a single Box-Cox power

m1, m2, m3, excess kurtosis: 0, 1, -0.41, 0.28   0, 1, -0.01, -0.19

(a) actual, with reference to LMS model  
(b) selected randomly from a N(0,1) distribution 

m1, m2, m3, excess kurtosis: -0.01, 1.01, 0.04, 0.31   -0.01, 0.99, -0.01, 0.04

97.7% 97.9% 97.7% 97.5% 97.9%

Percentage of z-scores < (fitted) 97.5%-ile

(RMSE of 5 %'s ... 0.3%  [Expected 0.5%])

Kit 1 Males ( N = 10155 ; 7915 with GM  >= 0.075 )

Distribution of z-scores
(a) actual, with ref. to a constant mean/variance but otherwise untransformed  
(b) actual, with ref. to a constant mean/variance and a single Box-Cox power

m1, m2, m3, excess kurtosis: 0, 1, -0.17, 0.67   0, 1, 0.02, 0.49

(a) actual, with reference to LMS model  
(b) selected randomly from a N(0,1) distribution 

m1, m2, m3, excess kurtosis: -0.01, 1.01, 0.05, 0.64   -0.01, 0.99, -0.03, -0.08

97.8% 97.5% 97.6% 97.5% 97.7%

Percentage of z-scores < (fitted) 97.5%-ile

(RMSE of 5 %'s ... 0.2%  [Expected 0.4%])

Kit 2 Females ( N = 2150 ; 2107 with GM  >= 0.075 )

Distribution of z-scores
(a) actual, with ref. to a constant mean/variance but otherwise untransformed  
(b) actual, with ref. to a constant mean/variance and a single Box-Cox power

m1, m2, m3, excess kurtosis: 0, 1, -0.57, 0.66   0, 1, -0.04, -0.26

(a) actual, with reference to LMS model  
(b) selected randomly from a N(0,1) distribution 

m1, m2, m3, excess kurtosis: 0, 1, 0.03, 0.18   -0.01, 1, 0.04, 0.09

98.1% 98.3% 97.6% 96% 96.9%

Percentage of z-scores < (fitted) 97.5%-ile

(RMSE of 5 %'s ... 0.9%  [Expected 0.8%])

Kit 2 Males ( N = 5092 ; 3944 with GM  >= 0.075 )

Distribution of z-scores
(a) actual, with ref. to a constant mean/variance but otherwise untransformed  
(b) actual, with ref. to a constant mean/variance and a single Box-Cox power

m1, m2, m3, excess kurtosis: 0, 1, -0.42, 1.6   0, 1, 0.05, 0.75

(a) actual, with reference to LMS model  
(b) selected randomly from a N(0,1) distribution 

m1, m2, m3, excess kurtosis: -0.01, 1.01, 0.1, 0.88   -0.02, 1, 0.1, -0.1

98% 98.2% 98.1% 97.3% 97.2%

Percentage of z-scores < (fitted) 97.5%-ile

(RMSE of 5 %'s ... 0.5%  [Expected 0.6%])



Analysis of the data from human Growth Hormone (hGH) Isoforms Differential 
Immunoassays in sportspersons, with the objective of setting test compliance decision limits 
to detect doping with hGH. 

 

Report prepared for the 

World Anti-Doping Agency [“WADA”], 
800 Square Victoria, Suite 1700, Montreal, QC, Canada, H4Z 1B7, 

by 

James A. Hanley1, Olli Saarela1, 
David A. Stephens2, 

1 Department of Epidemiology, Biostatistics and Occupational Health 
[1020 Pine Ave. West, H3A 1A2] 

2 Department of Mathematics and Statistics 
[805 Sherbrooke Street West, H3A 0B9] 

McGill University, Montreal, Canada 

 

August 11, 2013 

(text amended Aug 26 to make clearer references to Figures) 



Determining the Decision Limits for the hGH
Isoform Differential Immunoassays

Jean- Christophe Thalabard

03/11/2013

Contents

1 Introduction 3

Introduction 3

2 Available Documentation 3

Available Documentation 3

3 Available Data Sets 3

Available Data Sets 3
3.1 Data Set 1: Paired data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Data Set 2: Athlete Screening Control Data set 2009- 2013 . . . . . . . . . . . . 4
3.3 Data Set 3: Clinical trials of voluntary exposure to exogenous rec-hGH versus

placebo or pre- hGH administration and blood samples from blood donors . 4

4 Statistical Analyses 6
4.1 The current WADA approach for suspecting an abnormal situation . . . . . . 6

4.1.1 The effect of the between kit correlation . . . . . . . . . . . . . . . . . . 6
4.2 Statistical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2.1 Analysis of the paired ratio determinations . . . . . . . . . . . . . . . . 6
4.2.2 Analysis of the unpaired ratio determinations . . . . . . . . . . . . . . 7
4.2.3 Specificity and Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.3 Analytical software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Results 8
5.1 Descriptive analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.1.1 Data set 1: Paired data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.1.2 Data set 2: WADA Screening Control data set . . . . . . . . . . . . . . . 10
5.1.3 Data Set 3: Pharmacokinetics studies and blood donors . . . . . . . . . 11

5.2 Statistical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2.1 Paired data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2.2 Control Screening data set . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.3 Study of the Specificity and the Sensitivity based on the third data set

(samples either during the pre- exposure times in pharmacokinetics
studies or from German blood donors) . . . . . . . . . . . . . . . . . . 24

1



Report JCT- October 2013 LIST OF TABLES

6 Discussion- Conclusion 34

List of Tables

1 Paired data, raw data: summary statistics . . . . . . . . . . . . . . . . . . . . . 8
2 Paired data, left truncated data: summary statistics . . . . . . . . . . . . . . . 9
3 WADA Screening Control Left truncated data set. Descriptive 0.9999 percentiles 11
4 Empirical Percentiles of the ratios according to each kit. The last column cor-

responds to the maximum value observed in this data set . . . . . . . . . . . . 12
5 Binormal distribution: 0.9999 equicoordinate quantile for each component ac-

cording to the correlation coefficient rho between the two coordinates . . . . . 13
6 Paired data set: 0.9999 DLs according to kit, gender and type of transforma-

tion applied to the ratios. No adjustment on covariates . . . . . . . . . . . . . 13
7 Truncated paired data set: estimates of a 95%CI for the 0.9999 DLs according

to kit and gender. Ratios are used directly without any transformation . . . . 15
8 Truncated paired data set: result of a bootstrap procedure (1000×) for esti-

mating a 95%CI for the 0.9999 DLs according to kit and gender. Ratios are
used directly without any transformation . . . . . . . . . . . . . . . . . . . . . 15

9 Threshold levels according to the kit. No adjustment on gender and ethnicity 20
10 Box cox transformation. 0.99999 DL according to kit. No adjustment . . . . . 21
11 Kit 1, 0.9999 DL according to gender and ethnicity . . . . . . . . . . . . . . . . 22
12 Kit 2: 0.9999 DL according to gender and ethnicity. Note that the only sam-

ple with a labeled "Chinese" ethnic covariate was merged into the "unkown"
category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

13 Kit 1, 0.9999 DL according to gender . . . . . . . . . . . . . . . . . . . . . . . . 24
14 Kit 2, 0.9999 DL according to gender . . . . . . . . . . . . . . . . . . . . . . . . 24
15 Specificity study: max values observed with a single measurement or with

paired measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
16 Sensitivity Study, Men, Barcelona. O (resp 1) corresponds to values below

(resp above) DL for each method . . . . . . . . . . . . . . . . . . . . . . . . . . 27
17 Sensitivity Study, Men, Beijing. O (resp 1) corresponds to values below (resp

above) DL for each method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
18 Sensitivity Study, Men, Tokyo. O (resp 1) corresponds to values below (resp

above) DL for each method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
19 Sensitivity Study: Women, Tokyo. Paired data. 0: post- injection period.

Number of positive samples according to kit types and methods . . . . . . . . 33
20 Sensisitivy study. Tokyo centre, Women. Single injection at time 0. O (resp 1)

corresponds to below (resp above) the DL for each method . . . . . . . . . . . 34

Page 2 sur 37



hGH isoform differential immunoassays applied to blood samples from
athletes: Decision limits for anti-doping testing

James A. Hanley a,b,⁎, Olli Saarela a, David A. Stephens b, Jean-Christophe Thalabard c,d

a Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
b Department of Mathematics and Statistics, McGill University, Montreal, Canada
c Paris Descartes University, MAP5, UMR CNRS 8145, Paris, France
d Endocrine Gynaecology Unit, Hôpital Cochin, Paris, France

a b s t r a c ta r t i c l e i n f o

Article history:
Received 17 May 2014
Accepted 2 June 2014
Available online 11 June 2014

Keywords:
Quantile
Regression
Decision limits
Isoforms
Human Growth Hormone
Doping

Objective: To detect hGHdoping in sport, theWorld Anti-Doping Agency (WADA)-accredited laboratories use the
ratio of the concentrations of recombinant hGH (‘rec’) versus other ‘natural’ pituitary-derived isoforms of hGH
(‘pit’), measured with two different kits developed specifically to detect the administration of exogenous hGH.
The current joint compliance decision limits (DLs) for ratios derived from these kits, designed so that they
would both be exceeded in fewer than 1 in 10,000 samples from non-doping athletes, are based on data accrued
in anti-doping labs up to March 2010, and later confirmed with data up to February–March 2011. In April 2013,
WADAasked the authors to analyze the nowmuch larger set of ratios collected in routine hGH testing of athletes,
and to document in the peer-reviewed literature a statistical procedure for establishing DLs, so that it be re-
applied as more data become available.
Design:Weexamined the variation in the rec/pit ratios obtained for 21,943 screened blood (serum) samples sub-
mitted to the WADA accredited laboratories over the period 2009–2013. To fit the relevant sex- and kit-specific
centiles of the logs of the ratios, we classified ‘rec/pit’ ratios based on low ‘rec’ and ‘pit’ values as ‘negative’ and
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HSPH’s Marvin Zelen dies at 87
Was considered a ‘tremendous force’ in biostatistics
November 19, 2014 | Editor's Pick

Photo by Shaina Andelman

Harvard Professor Marvin Zelen was noted for developing the statistical methods and study designs that are used in clinical cancer trials, in
which experimental drugs are tested for toxicity, effectiveness, and proper dosage.

HSPH Communications

Professor Marvin Zelen of the Department of Biostatistics at the Harvard T.H. Chan School of Public Health
(HSPH) died on Nov. 15 after a battle with cancer. He was 87.

Zelen was the Lemuel Shattuck Research Professor of Statistical Science, as well as a member of the Faculty
of Arts and Sciences Emeritus at Harvard University. He served for a decade in the 1980s as chair of HSPH’s
Department of Biostatistics. He was known as a giant in his field, and as a man of vision, generosity, and
warmth.

Zelen was noted for developing the statistical methods and study designs that are used in clinical cancer
trials, in which experimental drugs are tested for toxicity, effectiveness, and proper dosage. He introduced
measures to ensure that data from the trials were as free as possible of errors and biases — measures that are
now standard practice. Zelen helped transform clinical trial research into a well-managed and statistically
sophisticated branch of medical science. His work in this area led to significant medical advances, such as
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On the theory of screening for chronic diseases
BY M. ZELEN

State University of New York at Buffalo

AND M. FEINLEIB
National Institutes of Health

SUMMARY

It is assumed that a chronic disease progresses from a pre-clinical state to a clinical state.
If an individual, having pre-clinical disease, participates in an early detection programme,
the disease may be detected in the pre-clinical state. The potential benefit of a screening
programme is related to the lead time gained by early diagnosis. A stochastic model is
developed for early detection programmes which leads to an estimate of the mean lead
time as a function of observable variables. An investigation is also made of a non-progressive
disease model in which individuals in a pre-clinical state may not neoessarily advance to
the clinical state.

1. INTRODUCTION

At the present time special diagnostic procedures are available for early detection of some
chronic diseases. For example, chest X-rays have long been used to detect tuberculosis.
Currently, there are many public health programmes to detect women having cancer of the
uterine cervix by using Papanicolaou smears; other programmes designed to test for
glaucoma and diabetes are in wide use. An especially interesting programme for early
detection of breast cancer using soft tissue X-rays, mammography, is now being conducted
by the Health Insurance Plan of Greater New York; see Shapiro, Strax & Venet (1967).

The aim of all such programmes is to detect the disease earlier than it normally would be
detected, the motivation being that earlier detection may result in a cure or better prognosis.
Unfortunately, with only a few exceptions we know of no chronic disease in which unam-
biguous evidence has been collected showing that early detection has resulted in significantly
improved prognosis. Even in cancer of the uterine cervix, the results are not without
question, because the survival rate had been increasing before the widespread introduction
of the Papanicolaou smear.

I t is the purpose of this paper to discuss statistical considerations associated with the
evaluation of such early detection programmes. Attention is confined to screening pro-
grammes where an individual is examined only once. In a future paper, we shall examine
problems associated with screening programmes where an individual is examined
periodically.

It will be assumed that a person having a particular chronic disease can be regarded as
being in a pre-clinical state SP, or a clinical state, Sc. The disease-free state will be denoted
by So. I t will also be assumed that the pre-clinical disease eventually progresses to clinical
disease if not detected and treated. The explicit definition of these states will depend on
the particular disease. However, the pro-clinical state is regarded as a state where clinical
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Planning clinical trials to evaluate early detection programmes
BY PING HU AND MARVIN ZELEN

Division of Biostatistics, Dana Farber Cancer Institute, 44 Binney Street, Boston,
Massachusetts 02115, U.S.A.

e-mail: phu@jimmy.harvard.edu zelen@jimmy.harvard.edu

SUMMARY

The lack of statistical theory for the planning of early detection trials has resulted in
current trials being sub-optimal. We develop probability models that address three charac-
teristics of early detection trials: (i) the optimal time of analysis and length of follow-up,
(ii) the optimal spacing between examinations, and (iii) the planning of trials where the
numbers of examinations versus sample size are balanced for fixed costs. The optimisation
criterion is to maximise the power of the statistical test for comparing mortality.
Application is made to breast cancer early detection trials.

Some key words: Breast cancer; Clinical trial; Design of experiments; Early detection; Screening.

1. INTRODUCTION
Screening for cancer is based on the expectation that early detection combined with

available therapy may decrease the risk of death and improve the long-term prognosis.
For example, it was demonstrated in a randomised trial carried out by the Health
Insurance Plan of Greater New York that mortality from breast cancer was reduced as a
result of periodic screening for breast cancer utilising both mammography and a clinical
examination (Shapiro et al, 1982). This was followed by evidence from seven other trials
(Tabar et al., 1985; Andersson et al., 1988; Frisell et al., 1991; Miller et al., 1992a,b;
Roberts et al., 1990; O'Neill, Tallis & Leppard, 1995), summarised in Fletcher et al. (1993)
and on the Internet (http.//www.arc.com/cgi-bin/Cancernet.sh?english/support = Screening_
for_breast_cancer).

Various statistical models for evaluating screening programmes have been proposed
(Albert et al., 1978; Baker & Chu, 1990; Eddy, 1980, 1983; Oortmarssen & Habbema,
1995; Prorok, 1976a,b; Schwartz, 1978; Shahani & Crease, 1977; Walter & Day, 1983;
Zelen & Feinleib, 1969; Zelen, 1993). The paper by Etzioni et al. (1995) addresses issues
of the design of cancer screening trials. It is of some concern that most screening trials
are not based on optimal planning. Furthermore, there is almost no statistical theory to
serve as a basis for the planning of early detection studies which take advantage of the
special features of such studies. The purpose of this paper is to develop a general theory
for planning early detection clinical trials.

Randomised clinical trials which evaluate the benefit of early detection programmes for
chronic diseases ordinarily assign participants into two groups, a study group and a
control group. The study group is offered a number of periodic examinations which utilise
early detection techniques, while the control group receives its usual medical care. Both
groups are followed beyond the time of the last scheduled examination for disease specific
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Mortality Modeling of Early Detection Programs

Sandra J. Lee∗ and Marvin Zelen

Harvard School of Public Health and the Dana-Farber Cancer Institute,
Boston, Massachusetts 02115, U.S.A.
∗email: lee.sandra@jimmy.harvard.edu

Summary. Consider a group of subjects who are offered an opportunity to receive a sequence of periodic
special examinations for the purpose of diagnosing a chronic disease earlier relative to usual care. The
mortality for the early detection group is to be compared with a group receiving usual care. Benefit is
reflected in a potential reduction in mortality. This article develops a general probability model that can
be used to predict cumulative mortality for each of these groups. The elements of the model assume (i) a
four-state progressive disease model in which a subject may be in a disease-free state (or a disease state that
cannot be detected), preclinical disease state (capable of being diagnosed by a special exam), clinical state
(diagnosis by usual care), and a death state; (ii) age-dependent transitions into the states; (iii) age-dependent
examination sensitivity; (iv) age-dependent sojourn time in each state; and (v) the distribution of disease
stages on diagnosis conditional on modality of detection. The model may be used to (i) compare mortality
rates for different screening schedules; (ii) explore potential benefit of subpopulations; and (iii) compare
relative reductions in disease-specific mortality due to advances and dissemination of both treatment and
early detection screening programs.
Key words: Breast cancer; Clinical trials; Early detection of disease; Probability models; Stochastic
modeling.

1. Introduction

There is a growing interest in public health programs tar-
geted at diagnosing chronic diseases earlier. This is especially
true in cancer where there are expanding public health pro-
grams to diagnose breast, cervical, colorectal, ovarian, and
prostate cancers. The goal is to diagnose disease in an earlier
stage relative to the disease stage at diagnosis under usual
care. The expectation is that disease-specific mortality will
be reduced when the disease is diagnosed in a more favor-
able prognostic stage. In addition, there is the possibility that
beneficial treatment may be enhanced. These considerations
have led to the initiation of randomized trials to evaluate
the diagnostic methods for the early detection of disease.
There have been randomized screening trials for the early
detection of breast, colorectal, ovarian, prostate, and lung
cancer.

These screening trials are difficult to implement compared
to therapeutic trials. They require a very large number of sub-
jects, as the basic eligibility requirement is that subjects are
disease free. However, only a relatively small proportion of
subjects will ultimately be diagnosed with the disease. Sub-
jects without disease carry no information of the benefits as-
sociated with the earlier detection of disease. Compliance is
a major issue. Long-term follow-up in the neighborhood of
10–15 years is necessary in order to have a sufficient number
of disease-related deaths to compare mortalities. Yet without
empirical evidence of the magnitude of benefit, it would be
difficult to initiate widespread early detection public health
programs. For example, there is a controversy about the age

for women to begin having mammographic examinations to
detect breast cancer. Current trials have not consistently sup-
ported significant benefits for younger women. However, both
the American Cancer Society (ACS) and the National Can-
cer Institute (NCI) recommend that women aged 40–49 be
screened; ACS recommends annual screening (for women at
average risk) and NCI every 1 to 2 years. Decisions on the age
to begin screening and the frequency of exams carry signifi-
cant costs.

Randomized screening clinical trials are important in as-
sessing the benefit of screening. In addition, mathematical
models may be used to help answer questions for which em-
pirical evidence is scanty or unattainable. For example, mod-
els may be used to compare different schedules of screening
for public health programs. Screening schedules in which spe-
cial examinations are given to a population are characterized
by (i) the age to begin special examinations, (ii) the number
of examinations, and (iii) the spacing between examinations.
The number of permutations of these variables is so large
that it is not feasible to carry out clinical trials to determine
optimal examination schedules. Another issue is whether sub-
populations defined by age benefit from screening. As noted
above, there is a great deal of controversy about the benefit of
using mammography to diagnose breast cancer in women un-
der the age of 50 years. The incidence of breast cancer is low
for this age group. Consequently a clinical trial would require
very large numbers of participants, initially free of disease,
in order to have reliable estimates of mortality. Such a trial
would be costly and difficult to implement.

386 C⃝ 2008, The International Biometric Society
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A single Hazard Ratio is Appropriate if Reduction is
VIRTUALLY IMMEDIATE & ...

• SUSTAINED

• Adult circumcision quickly reduces the risk of getting HIV
by about 50%; reduced rate is lifelong.

• Polio, HPV, ... Once there is full immunity, vaccine
protection lasts for decades.

or if we ...

• STOP COUNTING AS SOON AS PROTECTION STOPS

• Blood thinners

• beta blockers



Reduction is CONSIDERABLY DELAYED following ...

PROSTATE CANCER SCREENING



Screening & Prostate-Ca Mortality in Randomized European Study ’92-’08 (“ERSPC” nejm2009.04)

8.8 years mean F.U., 214 & 326 deaths: HAZARD RATIO: 0.80

“PSA-based screening reduced rate of [pr. ca.] death by 20%. ”



RE-ANALYSIS OF ERSPC DATA
using

year-specific prostate cancer mortality ratios



Year-specific mortality ratios

67%
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Time-Distribution of Deaths was ‘FRONT-LOADED’

very staggered entry;

many more man-years & deaths at front than at back end
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‘POPULATION-TIME’ Plot
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COLON CANCER



FOBT screening for colon cancer – Minnesota Trial 1976-2008



FOBT screening for colon cancer – Minnesota Trial 1976-2008



Long-Term Mortality after Colorectal-Cancer Screening

n engl j med 369;12 nejm.org september 19, 2013 1109

adjusted relative-risk estimates for death from 
colorectal cancer for the annual-screening and 
biennial-screening groups were 0.65 (95% CI, 
0.52 to 0.80) and 0.76 (95% CI, 0.61 to 0.95), 
respectively.

Annual or biennial screening with fecal occult-
blood testing had no apparent effect on all-cause 
mortality. The relative risk of death from any 
cause was 1.00 (95% CI, 0.99 to 1.01) with an-
nual screening, 0.99 (95% CI, 0.98 to 1.01) with 
biennial screening, and 1.00 (95% CI, 0.98 to 
1.01) with annual and biennial screening com-
bined (Fig. 2 and Table 1). No effect was seen on 
deaths from causes other than colorectal cancer; 
the relative risk of death from causes unrelated to 
colorectal cancer was 1.00 (95% CI, 0.99 to 1.02) 
with annual screening, 1.00 (95% CI, 0.98 to 1.01) 
with biennial screening, and 1.00 (95% CI, 0.99 
to 1.01) with annual and biennial screening com-
bined (Fig. S5 in the Supplementary Appendix). 
The causes of death are provided in Table S1 in 
the Supplementary Appendix.

SUBGROUP ANALYSES
Figure 3 shows the numbers of participants who 
underwent randomization, the numbers of those 
who died from colorectal cancer, and the relative 
risks for the subgroups of age and sex, according 
to each study group and the combined screening 
groups. Graphs of cumulative colorectal-cancer 
mortality and corresponding relative risks for the 
subgroups are shown in Figures S6 and S7 in the 
Supplementary Appendix. The reduction in 
colorectal-cancer mortality was larger for men 
than for women in both screening groups and in 
the two groups combined; the relative risk of 
death from colorectal cancer was 0.61 (95% CI, 
0.47 to 0.80) for men vs. 0.75 (95% CI, 0.57 to 
0.97) for women in the annual-screening group, 
0.63 (95% CI, 0.48 to 0.82) vs. 0.92 (95% CI, 0.72 
to 1.18) in the biennial-screening group, and 0.62 
(95% CI, 0.50 to 0.78) vs. 0.83 (95% CI, 0.67 to 
1.04) in the combined screening groups. The in-
teraction between sex and screening, as mea-
sured by the ratio of the relative risk for men to 
that for women, was significant in the biennial-
screening group (P = 0.04 for interaction) but not 
in the annual-screening group or the two groups 
combined (P = 0.30 and P = 0.06, respectively, for 
interaction).

The relative risks of death from colorectal 
cancer among participants who were less than 
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Figure 1. Cumulative Colorectal-Cancer Mortality.

Cumulative colorectal-cancer mortality was assessed on the basis of Kaplan–
Meier estimates, evaluated at monthly time points. Point estimates and 95% 
confidence intervals at 30 years are also shown.
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Figure 2. Cumulative All-Cause Mortality.

Cumulative all-cause mortality was assessed on the basis of Kaplan–Meier 
estimates, evaluated at monthly time points. Point estimates and 95% con-
fidence intervals at 30 years are also shown.
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Figure 1. Rep. Alexander Pirnie, R-NY, draws the first capsule in the lottery drawing held on Dec. 1, 1969. The capsule contained
the date, Sept. 14.

The last capsule drawn contained the date December 31. It was estimated by the Pentagon that men with draft
numbers in the last third, numbers 200 to 366, would escape the draft entirely. In fact, no man with a draft
number higher than 195 was called to duty.

The fairness of the draft lottery was immediately debated. Critics contended that the process was not truly
random. A New York Times article quoted a White House source as saying "discussions that the lottery was not
random are purely speculative." In that same New York Times article, Senator Edward Kennedy was quoted as
asking the National Sciences the "apparent lack of randomness" in the selection.

The Data

The data is publicly available on the internet. One source is the Data and Story Library. The draft lottery data is
located at the following URL:

http://lib.stat.cmu.edu/DASL/Datafiles/DraftLottery.html

If you have not imported data into R from external sources, you might want to first work through the activity
Importing Data in R.

One technique, as explained in Importing Data in R, suggests copying the data into a plain text file. Open a
simple text editor (e.g., Notepad on Windows or Textedit on the Mac). Copy and paste the lottery data from the
above URL, including headers (but not the descriptive information above the headers), and save the file as
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In the activity Boxplots in R we learned how to use R's boxplot command to produce a boxplot of a data set. To
examine the "fairness" of the Selective Service's draft lottery, we will produce "side-by-side" boxplots for each
month of the year. That is, we will produce 12 boxplots, one for each month of the year, each containing an
analysis of the associated draft numbers for that month. The following command will produce these "side-by-
side" boxplots shown in Figure 4.

> boxplot(Draft_No. ~ Month, data=lottery)

Figure 4. Side-by-side boxplots of draft numbers for each month.

Because the data in Month is categorical (you can see this by typing lottery$Month), the model formula
Draft_No. ~ Month causes the boxplot command to group the numerical data in Draft_No. according to the
categories in Month. Therefore, the command boxplot(Draft_No. ~ Month, data=lottery) creates 12 boxplots,
one for each month. For example, the boxplot for April (see Apr in Figure 4) contains an analysis for only those
draft numbers that were assigned to birth-dates in April. Similar comments are in order for the remaining
months.

Unfortunately, the months are sorted in alphabetical order (the default behavior). It would be more appropriate
if they were sorted in chronological order, January first, February second, etc. One solution would be to boxplot
the draft numbers versus the month number.

> boxplot(Draft_No. ~ Mo.Number, data=lottery)

This command produces the side-by-side boxplots shown in Figure 5.
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Figure 2. A scatterplot of Draft_No. versus Day_of_year.

One could also "attach" the dataframe lottery (see Dataframes in R). When we "attach" a dataframe, we can
access the columns without using the dollar notation. Thus, we can plot Draft_No. versus Day_of_year with
the following commands.

> attach(lottery)
> plot(Day_of_year,Draft_No.)

It is good practice to "detach" the dataframe when finished.

> detach(lottery)

Readers should check that these commands produce a scatterplot identical to that shown in Figure 2.

Efficient Use of Dataframes

R's plot command, coupled with a "model formula," it the most efficient way to produce a scatterplot. Without
further explanation, enter the following code. Note: Remember that ~ is a "tilde", not a minus sign, and is
located to the immediate left of the 1 key on the second row from the top of your keyboard.

> plot(Draft_No. ~ Day_of_year, data=lottery)

This command will produce the scatterplot shown in Figure 3. Note that it is identical to the scatterplot shown
in Figure 2.
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Figure 6. Side-by-side boxplots of draft numbers sorted by month.

Interpretation of Results

The image in Figure 6 is perfect. The months are now sorted in chronological order. But now, what does the
image of side-by-side boxplots tell us?

Remember, the heavy horizontal bar in each box is the median of the data set. The median draft number for the
month of December is very disconcerting. Remember, the lower the draft number, the more likely you would be
inducted to serve in Vietnam. Why does the month of December have a median that is significantly lower than
most of the other months. It seems that the men with birthdays in December are being unfairly selected. Indeed,
with the exception of October, the last remaining months of the year all have medians that are significantly
lower than the medians of the previous months. Something strange is going on!

One story offers a hint of an explanation. It seems that the capsules containing birthdays for January were
placed in a shoe-box, thoroughly mixed, then poured into the glass container shown in Figure 1. Then the same
procedure was followed for the capsules containing birthdays in February, stirring them thoroughly in a shoe-
box, then pouring them into the glass container. This same procedure was followed for the remaining months.
December was the last month processed, or so the story goes.

However, this is quite disturbing. If capsules were selected from the top of the glass container, they were more
likely to be a December birthday. According to the story, the person making the draws did not always reach
deep into the pile of capsules. This may be one explanation for why so many December birthdays were selected
early in the process and assigned low draft numbers (which correlates to a higher chance of being drafted).

This story may be an oversimplification. Readers are encouraged to explore the reasons for why this process
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Time-split versus time-lumped Rate Ratios
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were staggered, the timing of the screens (each denoted by an ‘S’) is only approximate.



Liu Model: A Fitted to Data; B Projected i.e., no interruption. 6 & 11 Rounds
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Figure 5–4: Panel A: Empirical and fitted mortality reductions based on the yearly
numbers of colorectal cancer deaths in the two screening arms of the Minnesota
Colorectal Cancer Screening Study, with the 4-year hiatus. The size of each dot is
proportional to the information contribution of the empirical year-specific mortality
ratio. Because the hiatus was in calendar-time rather than follow-up time, and entries
were staggered, the timing of the screens, each denoted by an S, is only approximate.
Panel B: Projection of yearly mortality reductions in colorectal cancer that would
be generated by 15 years of uninterrupted annual and biennial fecal occult blood
screening. The grey area represents time-specific 95% confidence bands under the
biennial screening regimen.
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STATISTICAL MODEL

leading to

BATHTUB-SHAPED HAZARD-RATIO FUNCTION



Time-pattern of mortality deficits (HRs) if NO screening: age 50 onwards
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MODEL for time-pattern of mortality deficits (HRs) if • round
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MODEL for 1-D HR pattern if • • • • • • • • • • rounds
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