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Randomized controlled trials are the primary source of

evidence for assessing the effectiveness of cancer screen-

ing. Thus far, trial data have mainly been analyzed using

relative risk estimates or proportional hazard models [1].

Proportional hazard models assume that screening results

in a time-independent reduction in cancer mortality. Han-

ley, Liu and coworkers have developed a model with a

time-dependent mortality reduction, see elsewhere in this

issue of the journal [2, 3]. The model assumes that the

reduction in mortality from the target cancer appears after a

delay following a screen, and eventually disappears. Mor-

tality reductions from subsequent screening rounds are

superimposed. The resulting function has a bathtub form,

and is determined by two parameters: the time between a

screen and maximum relative mortality reduction, and the

value of the maximum relative mortality reduction [2]. The

authors have applied their method to data from prostate

cancer [1], lung cancer [3], colorectal cancer [3] and breast

cancer [2], using excellent graphical illustrations (Fig-

ures 3 and 4 in [3]).

The Hanley–Liu model is more realistic than the pro-

portional hazard model. In practice, discriminating

between the two models can be difficult. Designers of

screening trials are aware of the bathtub dynamics of

mortality reduction. They mitigate the influence of the

initial phase of (near) absence of reduction by excluding

persons with an already established diagnosis of the target

cancer. A good compromise follow-up duration is the crux

for dealing with the tapering off phase at the end. Follow-

up should neither be too short when mortality reduction is

still increasing nor too long with much noise from deaths

which could not have been prevented by screening anyhow.

With these choices, most cancer deaths in screening trials

will occur in the bottom part of the bathtub, where the

constant mortality reduction of the proportional hazard

model is a good approximation to the Hanley–Liu model.

And indeed, it proved not to be possible to discriminate

between the two models in the analysis of the Danish breast

cancer data [2]. The scatter of the time-dependent relative

mortality dots in Figures 3 and 4 in [3] suggests that this

might also be the case for the lung cancer and colorectal

cancer analyses. This lack of discrimination with more

complex models might be a reason why the simple pro-

portional hazard model has persisted as the model of choice

for statistical analysis of trial data.

The time-dependent mortality reduction curve of the

Hanley–Liu model allows us to reflect on trial design issues

like screening interval, follow-up time and power analysis.

In order to provide maximal information, the interval

between subsequent screenings should be sufficiently long

to provide information about the whole trajectory of the

bathtub mortality reduction curve. A trial with 3-year

intervals will be more informative than a trial with 1-year

intervals.

Contrary to the proportional hazard model, duration of

follow-up is not crucial for the Hanley–Liu model. While

mortality after long follow-up is a source of random noise

in the proportional hazard model, it is informative in the

Hanley–Liu model for estimating the dynamics of the

mortality reduction.

The high costs of screening trials strongly depend on

their size. Because of the use of the time-dimension of the

mortality data, power calculations will undoubtedly lead to

a smaller sample size for the Hanley–Liu model than for

the proportional hazard model.

Hanley and Liu note that use of their model is hindered

by sparse data. This problem would even become worse

when important determinants like age at first invitation and

rank of the screening round would be included in the model

[2]. The appeal of Hanley and Liu to screening data owners

to collaborate is therefore timely and should be endorsed.

In addition, it could be recommended that Lexis diagrams

as used by Hanley and Liu, with number of deaths and

person years at risk in each cell [2] should routinely be

included in reports of screening trial results. The Lexis

diagram has an age- and a calendar-time axis, describes
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how cohorts progress along these axes and constitutes a

database for further epidemiologic analysis [4].

Mortality analysis of screening trials usually takes place

between 15 and 30 years after start of the trial. During this

period, some of the biological and behavioral processes

which underlie the mortality effects of cancer screening

will have changed. Underlying processes which can change

over time include incidence of cancer, the stage distribu-

tion of diagnosed cancers in the absence of screening, the

stage-specific survival of cancer with current treatment, the

sensitivity and specificity of screening tests in different

disease stages, compliance to the screening, the charac-

teristics of further diagnostics in case of an abnormal

screening test result, and the stage specific survival in

screen detected cancers, including precursor lesions. For

example participants in the Minnesota trial for colorectal

cancer screening were (healthy) volunteers, and since the

trial the FOBT has largely been replaced by quantitative

immunochemical blood tests and new cancer treatments

have become available. The proportional hazards and

Hanley–Liu models can both be characterized as modeling

the mortality response to a screening stimulus which is

delivered in the context of underlying processes. The

models have no mechanism for correcting the response for

secular changes in the underlying processes. This is a major

problem for using the results of a statistical analysis

beyond the trial context, for example for guideline

development.

Many beneficial and harmful outcomes have to be taken

into account when comparing screening policies, including

overtreatment, anxiety after positive screening tests and

complications from screening, follow-up tests and treat-

ment. See [5] for a table of outcomes for colorectal cancer

screening. Only one of the outcomes, mortality, is

addressed by the proportional hazards and Hanley–Liu

models. Mortality is arguable the most important outcome,

as cancer screening without mortality reduction is useless.

The mortality output of the Hanley–Liu model which

consists of the curve of relative mortality between

screening and control group has to be processed before it

can be used in decision making. A switch has to be made

from relative to absolute mortality, in order to avoid that

high and low cancer incidence situations would be treated

the same. Age of death should be taken into account by

calculating the expected number of life-years gained when

preventing a death. Otherwise, prevented deaths at age 50

and age 90 would be valued the same. Two further possible

actions are adjustment for time-preference by putting more

weight on nearby compared to far away life-years, and

adjustment for quality of life by calculating quality-ad-

justed life years [6].

The suggestion that the Hanley–Liu model can be used

for deriving optimal ages and frequency of screening [2] is

rather optimistic in view of the need to correct for secular

changes and to weigh many harms and benefits. It might be

better to turn to mathematical models which are developed

with their use for decision making in mind. These so-called

decision analytic models consider demography, epidemi-

ology, natural history, screening tests, treatment and other

processes, and aim to integrate available data to estimate

the health consequences of alternative screening strategies

[7]. By now, decision analytic models have been developed

in many fields of medicine. For cancer screening, a large

number of model groups collaborate in the Cancer Inter-

vention and Surveillance Modeling Network (CISNET).

The models have been described in a standardized way, see

https://cisnet.cancer.gov/resources/profiles.html. Decision

analytic models are increasingly used for informing

screening guidelines development, for example by the

United States Preventive Services Task Force [8, 9].

The scientific status of decision analytic models is

unclear. While statistical models are developed within the

firm context of probability theory and theoretical statistics

[3], relevance is the primary concern in the development of

decision analytic models. In order to increase their trust-

worthiness, general recommendations for good research

practice in decision analytic modeling have been formu-

lated [7]. For cancer screening, model quality and rele-

vance have been discussed in [10]. The quality and

credibility of decision models strongly depends on their

performance in reproducing results of screening studies.

They are considered most useful in situations where strong

primary data are available [10]. For example, parameters of

a decision analytic model for colorectal cancer screening

could be fitted to the results of three randomized trials [11].

In view of the complexity of decision analytic models,

much can be gained from collaboration between modeling

groups [12] and from multi-model studies [13].

In conclusion, statistical models and decision analytic

models are both important in cancer screening. Statistical

models are essential for analysis of trial data. Decision

analytic models are used in screening guidelines develop-

ment. Decision modelers can learn from statistical models

for improving the fitting and validation of primary data.

Statistical modelers can learn from decision analytic

models for improving the usefulness of their models for

decision making. Hanley and Liu have improved on

existing statistical models. By modeling the time dimen-

sion of the mortality reduction they improved the relevance

for decision making, especially with regard to the question

of optimal screening intervals. Decision analytic modelers

should in turn try to learn from the Hanley–Liu model for

improving the ways in which they fit their model to pri-

mary data.
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