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A method is presented to plan the required sample size
when estimating regression-based reference limits
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Abstract

Background and Objective: Reference limits are widely used in anthropometry, the behavioral sciences, medicine, and clinical chem-
istry. They describe the distribution of a quantitative variable in a healthy population, and are often a smooth function of age or another
determinant. Thus, instead of estimating reference limits separately for several age groups, it is more economical and parsimonious to use
regression methods to estimate reference limits as a function of age. Although the variability of regression-based reference limits has been
addressed previously, the available methods to determine the sample sizes needed to estimate them are neither transparent nor user-friendly.

Methods: We propose a simple and intuitive formula using margins of error, to project the sample sizes required to achieve a given
degree of precision, for different sampling strategies.

Results: We present two examples for the calculation of the sample size required to estimate a specific reference limit using various age
distributions.

Conclusion: We provide a simple formula to calculate the sample size needed to estimate a specific reference limit to a specified degree
of precision. The structure of the formula can easily accommodate different age-sampling strategies. � 2007 Elsevier Inc. All rights
reserved.
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1. Introduction

Reference limits are widely used in anthropometry, the
behavioral sciences, medicine, and clinical chemistry. Just
like the mean or the median, these parameters are used to
describe the distribution of a characteristic, measured on
a continuous scale, in a healthy population. The 100p% ref-
erence limit, where 0 < p < 1, is the value below which
100p% of the values fall. For example, the median is equiv-
alent to the 50% reference limit. Reference limits are also
called reference values, percentiles, or quantiles. The terms
reference limits and reference values are mostly used in the
life sciences, and percentile and quantile in the statistical
literature. In this paper, we have chosen to use the term ref-
erence limit.

The reference limit should be distinguished from the
100(1�b)% reference range, where 0 < b < 1, and which
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corresponds to the interval between two predetermined ref-
erence limits centered around the median and encompass-
ing 100(1�b)% of all values.

Suppose we have a continuum of distributions indexed
by a covariate. For example, assume that we are studying
blood pressure (BP) in a group of adults with different
ages. We might be interested in the BP distribution, more
particularly in the 5% reference limit of the BP distribu-
tion for various ages. How many adults should we sample
in order to have a precise estimate of this reference limit?
One way that this question can be answered is by apply-
ing linear regression techniques to estimate the reference
limit as a function of age. Sample size issues for regression-
based reference limits have been discussed in the literature;
however, the proposed estimation techniques are neither
complete nor transparent enough. We present a simple for-
mula for the minimum sample size required to estimate a
regression-based reference limit, given a specific margin
of error. We illustrate its practicality through simple
examples, assuming several age distributions. Once the
sampling strategy has been selected, we show that the sam-
ple size formula can be easily adapted to estimate the re-
quired sample size at the desired reference limit and
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covariate value. Mathematical details are provided in the
Appendix.

2. Background

We first discuss some of the methods available for the
estimation of a reference limit and its precision as a function
of an underlying covariate. A first simple method involves
categorizing the covariate, such as age, into a small number
of groups, and estimating the reference limit within each
age group separately. Within each age group, one can apply
nonparametric or parametric methods to estimate the
reference limit, calculate its precision and the required sam-
ple size. Nonparametric approaches have been studied
extensively [1e4]. Because they involve order statistics
and thus ranking the observations, the confidence intervals
for the reference limits are data driven and thus ‘‘after-
the-fact’’. For that reason, they do not allow us, when plan-
ning the study, to project how wide the confidence interval
will be. If one is willing to make distributional assump-
tions, parametric methods are more flexible, and allow
one to evaluate the sample size for a fixed degree of (rela-
tive) precision ahead of time. We assume that the variable
of interest Y follows a normal distribution at any given
age. Then given the random variable Y has a cumulative
distribution function FY, that is, Y|FY ( y), the 100p% ref-
erence limit is Qp, the value below which 100p% of the
Y values fall:

FY

�
Qp

�
5 p;0 < p < 1:

For a random sample of size n, the sample mean and
sample standard deviation are given by y and s, respec-
tively. Then, the parametric estimator of Qp, the 100p%
reference limit, is yþ zps, where zp is the standard normal
deviate corresponding to p. From the variance of this es-
timator, one can then project the sample size requirements
for each group and sum these over the age groups to ob-
tain the overall sample size. Once within-group reference
limits are estimated, it is possible to join them across
groups, but the resulting curve is usually rough and often
nonmonotonic. An alternative smoothing approach con-
sists in calculating reference limits in overlapping age
groups [5].

Although these methods can be easily implemented,
they do not take advantage of the smooth structure of the
age-specific distributions. To take this characteristic into
account, we can apply linear regression techniques, assum-
ing the linearity and normality assumptions can be fulfilled
(the latter possibly after an appropriate transformation of
the data) to estimate the reference limit as a function of
the covariate distribution. Sample size issues for such
regression-based reference limits have been considered,
however, the proposed methods are neither complete nor
transparent enough for statisticians, and much less so for
nonstatistical end-users [6e8].
3. Methods

Our objective is to provide a simple formula for the min-
imum sample size required to estimate a regression-based
reference limit, given a specific margin of error. We assume
that the mean value of the response variable of interest (e.g.,
BP) varies linearly with the covariate (e.g., age), and that
the response values are approximately normally distributed
about this mean. In addition, the variability of the response
values is assumed to remain constant across all values of
the covariate. Finally, the following sample size formulas
are based on large sample results and should be applied
in large enough data sets only. Given the large sample sizes
typically envisaged, the large sample behavior is likely to
be appropriate.

When calculating the sample size required to estimate
a regression-based reference limit, we need to specify sev-
eral parameters:

1. The 100p% reference limit of interest and the corre-
sponding standard normal deviate, zp. Recall that zp

is the value below which 100p% of the standard nor-
mal distribution lies. For example, if we are interested
in the 95% reference limit, the standard normal devi-
ate is z0.95 5 1.645 (one sided).

2. The 100(1�a)% confidence interval for the reference
limit of interest, and its corresponding standard nor-
mal deviate, z1�ða=2Þ, where 0 ! a ! 1. For example,
if we want the two-sided 95% confidence interval,
then a 5 0.05 and z1�ða=2Þ5z0:97551:96.

3. The 100(1�b)% reference range, which encompasses
100(1�b)% of the y values (e.g. BP) as well as its
corresponding standard normal deviate, z1�ðb=2Þ,
where 0 ! b ! 1. For example, if we want the
100(1�b)% 5 95% reference range, then b 5 0.05
and z1�ðb=2Þ5z0:97551:96.

4. The relative margin of error D. It is defined as the ra-
tio of the width of the 100(1�a)% confidence interval
for the reference limit to the width of the 100(1�b)%
reference range [9,10]. This means that we want
a sample size large enough so that the width of the
100(1�a)% confidence interval for our reference
limit is small when compared to the width of the
100(1�b)% reference range (we usually take
a 5 b). For example, suppose that in a given sample,
95% of the systolic BPs at age 30 are between
100 mmHg and 140 mmHg, then the 95% reference
range has a span of 40 mmHg. Then, if we want
a margin of error of D 5 10%, we should measure
the 100p% reference limit such that its confidence in-
terval has a width less than 4 mmHg, that is, 10% of
the span of 40 mmHg.

5. The design of the study, that is, the distribution of
the covariate (e.g., age) in the sample investigated,
which will also impact the computation of the
sample size.
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Once we have specified the above parameters, we can
estimate the sample size. Assume, first, that we choose
our sample so that the covariate follows a uniform distribu-
tion. It can be shown after some mathematical derivations
(see Appendix), that the minimum sample size, n, required
to estimate the 100(1�a)% confidence interval for the
100p% reference limit, with a margin of error of D, when
compared to the 100(1�b)% reference range, is given by:

n >
z2

1�a
2

�
4þ z2

p

2

�
z2

1�b
2

D2
: ð1Þ

Equation (1) can also be modified to suit other sampling
strategies (see Appendix). Instead of a uniform age distri-
bution, one might take one-third of the sample at one age
extreme, one-third at the midpoint, and one-third at the
other age extreme. In this study design, the sample size re-
quirement becomes:

n >

z2
1�a

2

�5

2
þ

z2
p

2

�
z2

1�b
2

D2 : ð2Þ

Similarly, we can also expect that the age distribution in
the sample will follow a normal distribution. If we assume
that the range of X is approximately 4 times the standard
deviation of X, then we show that the sample size require-
ment becomes:

n >
z2

1�a
2

�
5þ z2

p

2

�
z2

1�b
2

D2
: ð3Þ

Note that equations (1)e(3) were all derived under the
‘‘worst-case’’ scenario, that is, assuming that we are inter-
ested in estimating the reference limit at the extreme end
of age, where the variability is highest, and thus the largest
sample size is needed. If on the other hand, one is interested
in the 100p% reference limit at the average age value, then
the sample size formula is reduced as follows, whatever the
age distribution:

n >
z2

1�a
2

�
1þ z2

p

2

�
z2

1�b
2

D2
: ð4Þ

Additional mathematical details are provided in the Ap-
pendix. In particular, we provide an insight into why the
equations (1)e(3) are very similar and differ only by the
first factor in the parenthesis, which equals 4, 5=2, or 5,
depending on the design of the study.

4. Results

As an illustration, suppose that we are interested in esti-
mating a specific BP reference limit as a function of age.
Specifically, we wish to produce a 95% confidence interval
(z1�ða=2Þ51:96) for the 95% BP reference limit
(zp 5 1.645), with a relative margin of error of 10%
(D 5 10%) when compared with the 95% reference range
(z1�ðb=2Þ51:96). If age is uniformly distributed in the sam-
ple, then applying equation (1):

n >
1:962

�
4þ 1:6452

2

�
1:962� 0:102

5 536;

i.e., we would need at least 536 observations to obtain this
precise an estimate of the 95% BP reference limit at any
place in the age range.

If on the other hand, one is interested in the 100p% ref-
erence limit only at the average age value, or in a homoge-
neous population not indexed by a covariate, then we apply
equation (4), and obtain a sample size of at least 236 obser-
vations for the same settings as above.

As a second example, consider a study investigating
heights in young children. Suppose we are interested in es-
timating the 80% reference limit (zp 5 0.845) with a 95%
confidence interval (z1�ða=2Þ51:96). We also want a relative
margin of error of 10% (D 5 10%) when compared with the
95% reference range (z1�ðb=2Þ51:96), that is if 95% of
heights at 5 years of age are between 100 cm and
120 cmda span of 20 cmdthen we should try to measure
the 80% reference limit with a total width less than 2 cm,
that is, 10% of the span of 20. Applying equations
(1)e(3), we have estimated the sample size in Table 1,
for several age distributions (uniform, normal, or equally
distributed in three groups at the midpoint and extreme
ranges). The sample size is smallest when using three age
subgroups (286 subjects) and largest in the case of normally
distributed ages (536 subjects). If on the other hand, one is
interested in the 80% reference limit at the average age
value, then using equation (4), 136 observations are re-
quired, whatever the age distribution.

5. Discussion

Sample size issues for regression-based limits have been
considered [6e8], but the proposed methods are neither
flexible nor complete. Royston provided the standard error
(from which the required sample size can be deduced) for
a reference limit, but only at the mean value x of the
covariate [6]. However, the author did not consider other
values along the covariate range where the uncertainty in

Table 1

Minimum sample size (n ) required to estimate the 80% reference limit

depending on the age distribution of those sampled

Age distribution Formula n

Uniform 1 436

1=3 at each end, 1=3 at the midpoint 2 286

Normal distribution (rangeXz4sX) 3 536
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the estimated limit is greater. Virtanen et al. considered the
complete covariate range but the method was overly
complex and not transparent [7]. Specifically, the authors
suggested that one should ensure that the value
v51=nþ ðx0 � xÞ2=

P
iðxi � xÞ2 did not exceed 0.1 at the

minimum and maximum covariate values, where x0 is the
value of the covariate at which we want to compute the ref-
erence limit. Then if this condition is satisfied, the authors
concluded that reference limits with sufficiently narrow
confidence intervals could be produced by regression anal-
ysis with a sample size of about 70. Note that this approach
does not allow the user to plan for a desired level of preci-
sion nor to specify where along the covariate range he/she
is interested in. Moreover, it seems counterintuitive that
a sample size of 70 will allow one to estimate extreme
reference limits precisely. Finally, Elveback and Taylor
reviewed the variability of the point estimator of the
reference limit but did not address precision or sample size
requirements [8].

Previous formulas did not allow the end-user to take spe-
cific requirements into account, such as the anticipated
level of precision or at which value of the covariate the ref-
erence limit is calculated. Our approach is more flexible as
it allows the user to compute the minimum sample size af-
ter specifying the desired level of precision and the sam-
pling strategy. In addition, we have provided formulas for
specific distributions of the covariate (uniform, normal, or
three groups), but other distributions are easily accommo-
dated by adjusting the intermediate equations detailed in
the Appendix.

If there is some nonlinearity in the covariate, such as for
example a quadratic relationship, the formula can also be
accommodated by adjusting the point estimator of the ref-
erence limit of interest (see equation (5), Appendix).

Similarly, one may also need to allow for heteroscedas-
ticity of the variable of interest across the covariate, such as
when dealing with growth curves. In this case, regression
techniques can be used to model the standard deviation as
a function of the mean, and our formula can still be used
as a rough guide for sample size planning.

Finally, it is important to notice that the variation s to be
used in planning (see Appendix) includes both the true in-
terindividual variability and the variability of the measuring
instruments used; measurement tools with differing preci-
sions will provide different sample size estimates.

6. Conclusion

We provide a simple method to calculate the sample size
needed to estimate a regression-based reference limit with
a specific degree of precision. The sample sizes provided
are estimated at the extreme range of the covariate where
the variability is the most important, but the formula can
be easily adapted to estimate reference limits at other loca-
tions of the covariate, such as at the mean value of the
covariate, as illustrated. Finally, our formula can also be
reversed, and solved for the relative margin of error or
the confidence limit if the sample size is already fixed.
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Appendix

Mathematical derivations

In this section, we review the intermediate steps neces-
sary to produce our sample size formula, as given by equa-
tion (1). Let X denote the covariate of interest, such as age.
Assume that at any given value x0 of age, the mean value of
interest, such as BP, is an approximate linear function of X,
and the individual BP values are normally distributed
around this mean (the latter eventually after a suitable
transformation) with constant variance:

Y
��x0|N

�
b0 þ b1x0;s

2
�
:

The 100p% reference limit for Y at this specific age point
x0 is given by:

Q0 5 b0 þ b1x0þ zps

5 m0þ zps

where zp is the standard normal deviate corresponding to
the 100p% reference limit of interest.

Given n selected individuals with data points {(xi, yi),
i 5 1,., n}, a point estimator for the 100p% reference
limit is given by:

Q̂0 5 m̂0 þ zpsY jX ð5Þ

where m̂05b̂0 þ b̂1x0, b̂0, and b̂1 are obtained by least-
squares estimation of the regression coefficients b0 and
b1, and sYjX is the observed root mean square error. Note
that sYjX is not perfectly unbiased for s, but with the large
sample size envisaged, it can be used as a close-to-unbiased
estimator for s, with an approximate variance of s2=2n
(with more than 60 observations, sYjX is almost unbiased
for s [9]). Therefore, Q̂0 is a close-to-unbiased estimator
for Q0.

We first assume that in the sample the covariate X is uni-
formly distributed over its range rangeX, and therefore its
variance is:



614 C.A. Bellera, J.A. Hanley / Journal of Clinical Epidemiology 60 (2007) 610e615
s2
X 5
ðxmax � xminÞ2

12

5
range2

X

12
:

Next, to be conservative, we compute the variance of the
estimator at one of the extreme ends of rangeX. This is the
‘‘worst-case’’ scenario, since of course, the variance will be
greatest at the extreme values of the covariate. In this
special case, x0 5 xmin or x0 5 xmax, and therefore
jx0 � xj5rangeX=2. Finally, exploiting the independence
of m̂0 and sYjX in the case of normality, the variance of
the estimator is given by:

var
�
Q̂0

�
5 var

�
m̂0þ zpsY jX

�
5 var

�
m̂0

�
þ var

�
zpsY jX

�
zs2

 
1

n
þ ðx0� xÞ2P

ðxi� xÞ2

!
þ
�

s2

2n

�
z2

p

5 s2

 
1

n
þ ðx0� xÞ2

ns2
X

þ
z2

p

2n

!

5
s2

n

�
4þ

z2
p

2

�
ð6Þ

The width of the 100(1�a)% confidence interval for the
100p% reference limit at the extreme of age is therefore:

2z1�a
2
s

ffiffiffiffiffiffiffiffiffiffiffi
4þ z2

p

2

q
ffiffiffi
n
p ð7Þ

Assume we want a relative error of D, defined as the ra-
tio of the width of the 100(1�a)% confidence interval for
the reference limit to the width of the 100(1�b)% reference
range. The width of the 100(1�b)% reference range is
given by:

2z1�b
2
s ð8Þ

Thus, if we want the ratio of (7) to (8) to be smaller than
the relative error D, we require

z1�a
2

ffiffiffiffiffiffiffiffiffiffiffi
4þ z2

p

2

q
z1�b

2

ffiffiffi
n
p < D

that is:

n >
z2

1�a
2

�
4þ z2

p

2

�
z2

1�b
2

D2

It is instructive to work through other sampling strate-
gies. For example, one might take one-third of the sample
at one age extreme, one-third at the midpoint, and one-third
at the other age extreme. In this study design, we have:
X
i

ðxi� xÞ2 5
n

3
ðxmin� xÞ2þn

3
ðx� xÞ2þn

3
ðxmax � xÞ2

5
n

3

�
1

4
range2

X þ 0þ 1

4
range2

X

�

5 n
range2

X

6

If we then modify equation (6) accordingly, we have
varðQ̂0Þ5s2=nð5=2þ z2

p=2Þ, and therefore

n > z2
1�a=2

�
5=2þ z2

p=2
�.

z2
1�b=2D2:

We can also consider the case where the covariate fol-
lows a normal distribution: X|N with variance s2

X. In such
case, if we assume that the range of the covariate X is ap-
proximately 4sX, then s2

Xzrange2
X=16. Going back to

equation (6), the variance of the estimator is then given by:

var
�
Q̂0

�
5 s2

 
1

n
þ ðx0� xÞ2P

ðxi� xÞ2

!
þ
�

s2

2n

�
z2

p

5 s2

�
1

n
þ 4

n
þ

z2
p

2n

�

5
s2

n

�
5þ

z2
p

2

�

Thus, the minimum sample size is given by:

n >
z2

1�a
2

�
5þ z2

p

2

�
z2

1�b
2

D2
:

We can be more conservative, and assume that the ap-
proximate range of the covariate is rangeX 5 Xs instead
of Xs. In this setting, the minimum sample size requirement
becomes:

n >
z2

1�a
2

�
10þ z2

p

2

�
z2

1�b
2

D2
:

Finally, note that we have provided sample size formulas
by computing the variance of our estimator at the extreme
value for the covariate. If on the other hand, one is inter-
ested in the 100p% reference limit at the average value x
of the covariate, one can easily see that the term
ðx0 � xÞ2 in equation (6) vanishes and the sample size re-
quirement becomes:

n >
z2

1�a
2

�
1þ z2

p

2

�
z2

1�b
2

D2
ð9Þ

whatever the covariate distribution. Requirement (9) corre-
sponds to the formula given by Royston [6], and to the
usual formulas presented for the ‘‘single-age’’ case [9].
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For the designs investigated, the sample size require-
ment can be summarized by the following formula:

n >
z2

1�a
2

�
factorþ z2

p

2

�
z2

1�b
2

D2
ð10Þ

where the variable factor depends on the sampling strategy,
as summarized in Table 2. We observe that, of the three
sampling strategies, selecting a normal distribution for the
covariate provides the largest sample size (largest factor),
whereas the three-subgroup strategy requires the smallest
sample.

Table 2

Values of factor according to the sampling strategy (see equation 10)

Distribution of the covariate Factor

1=3 at each end, 1=3 at the midpoint 5=2

Uniform 4

Normal distribution assuming rangeXz4sX 5

Normal distribution assuming rangeXz6sX 10
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