
Sifting the evidence—what’s wrong with significance tests?
Jonathan A C Sterne, George Davey Smith

The findings of medical research are often met with
considerable scepticism, even when they have appar-
ently come from studies with sound methodologies that
have been subjected to appropriate statistical analysis.
This is perhaps particularly the case with respect to
epidemiological findings that suggest that some aspect
of everyday life is bad for people. Indeed, one recent
popular history, the medical journalist James Le Fanu’s
The Rise and Fall of Modern Medicine, went so far as to
suggest that the solution to medicine’s ills would be the
closure of all departments of epidemiology.1

One contributory factor is that the medical litera-
ture shows a strong tendency to accentuate the
positive; positive outcomes are more likely to be
reported than null results.2–4 By this means alone a
host of purely chance findings will be published, as by
conventional reasoning examining 20 associations will
produce one result that is “significant at P = 0.05” by
chance alone. If only positive findings are published
then they may be mistakenly considered to be of
importance rather than being the necessary chance
results produced by the application of criteria for
meaningfulness based on statistical significance. As
many studies contain long questionnaires collecting
information on hundreds of variables, and measure a
wide range of potential outcomes, several false
positive findings are virtually guaranteed. The high
volume and often contradictory nature5 of medical
research findings, however, is not only because of
publication bias. A more fundamental problem is
the widespread misunderstanding of the nature of
statistical significance.

In this paper we consider how the practice of
significance testing emerged; an arbitrary division of
results as “significant” or “non-significant” (according
to the commonly used threshold of P = 0.05) was not
the intention of the founders of statistical inference. P
values need to be much smaller than 0.05 before they
can be considered to provide strong evidence against
the null hypothesis; this implies that more powerful
studies are needed. Reporting of medical research
should continue to move from the idea that results are
significant or non-significant to the interpretation of
findings in the context of the type of study and other
available evidence. Editors of medical journals are in
an excellent position to encourage such changes, and
we conclude with proposed guidelines for reporting
and interpretation.

P values and significance testing—a brief
history
The confusion that exists in today’s practice of hypoth-
esis testing dates back to a controversy that raged
between the founders of statistical inference more than
60 years ago.6–8 The idea of significance testing was
introduced by R A Fisher. Suppose we want to evaluate
whether a new drug improves survival after myocardial
infarction. We study a group of patients treated with
the new drug and a comparable group treated with

placebo and find that mortality in the group treated
with the new drug is half that in the group treated with
placebo. This is encouraging but could it be a chance
finding? We examine the question by calculating a P
value: the probability of getting at least a twofold
difference in survival rates if the drug really has no
effect on survival.

Fisher saw the P value as an index measuring the
strength of evidence against the null hypothesis (in our
example, the hypothesis that the drug does not affect
survival rates). He advocated P < 0.05 (5% significance)
as a standard level for concluding that there is evidence
against the hypothesis tested, though not as an absolute
rule. “If P is between 0.1 and 0.9 there is certainly no rea-
son to suspect the hypothesis tested. If it is below 0.02 it
is strongly indicated that the hypothesis fails to account
for the whole of the facts. We shall not often be astray if
we draw a conventional line at 0.05. . . .”9 Importantly,
Fisher argued strongly that interpretation of the P value
was ultimately for the researcher. For example, a P value
of around 0.05 might lead to neither belief nor disbelief
in the null hypothesis but to a decision to perform
another experiment.

Dislike of the subjective interpretation inherent in
this approach led Neyman and Pearson to propose
what they called “hypothesis tests,” which were
designed to replace the subjective view of the strength
of evidence against the null hypothesis provided by the

Summary points

P values, or significance levels, measure the
strength of the evidence against the null
hypothesis; the smaller the P value, the stronger
the evidence against the null hypothesis

An arbitrary division of results, into “significant”
or “non-significant” according to the P value, was
not the intention of the founders of statistical
inference

A P value of 0.05 need not provide strong
evidence against the null hypothesis, but it is
reasonable to say that P < 0.001 does. In the
results sections of papers the precise P value
should be presented, without reference to
arbitrary thresholds

Results of medical research should not be
reported as “significant” or “non-significant” but
should be interpreted in the context of the type of
study and other available evidence. Bias or
confounding should always be considered for
findings with low P values

To stop the discrediting of medical research by
chance findings we need more powerful studies
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P value with an objective, decision based approach to
the results of experiments.10 Neyman and Pearson
argued that there were two types of error that could be
made in interpreting the results of an experiment
(table 1). Fisher’s approach concentrates on the type I
error: the probability of rejecting the null hypothesis
(that the treatment has no effect) if it is in fact true.
Neyman and Pearson were also concerned about the
type II error: the probability of accepting the null
hypothesis (and thus failing to use the new treatment)
when in fact it is false (the treatment works). By fixing,
in advance, the rates of type I and type II error, the
number of mistakes made over many different experi-
ments would be limited. These ideas will be familiar to
anyone who has performed a power calculation to find
the number of participants needed in a clinical trial; in
such calculations we aim to ensure that the study is
large enough to allow both type I and type II error
rates to be small.

In the words of Neyman and Pearson “no test based
upon a theory of probability can by itself provide any
valuable evidence of the truth or falsehood of a hypoth-
esis. But we may look at the purpose of tests from
another viewpoint. Without hoping to know whether
each separate hypothesis is true or false, we may search
for rules to govern our behaviour with regard to them, in
following which we insure that, in the long run of
experience, we shall not often be wrong.”10

Thus, in the Neyman-Pearson approach we decide
on a decision rule for interpreting the results of our
experiment in advance, and the result of our analysis is
simply the rejection or acceptance of the null hypoth-
esis. In contrast with Fisher’s more subjective
view—Fisher strongly disagreed with the Neyman-
Pearson approach11—we make no attempt to interpret
the P value to assess the strength of evidence against
the null hypothesis in an individual study.

To use the Neyman-Pearson approach we must
specify a precise alternative hypothesis. In other words
it is not enough to say that the treatment works, we
have to say by how much the treatment works—for
example, that our drug reduces mortality by 60%. The
researcher is free to change the decision rule by speci-
fying the alternative hypothesis and type I and type II
error rates, but this must be done in advance of the
experiment. Unfortunately researchers find it difficult
to live up to these ideals. With the exception of the pri-
mary question in randomised trials, they rarely have in
mind a precise value of the treatment effect under the
alternative hypothesis before they carry out their stud-
ies or specify their analyses. Instead, only the easy part
of Neyman and Pearson’s approach—that the null
hypothesis can be rejected if P < 0.05 (type I error rate
5%)—has been widely adopted. This has led to the mis-
leading impression that the Neyman-Pearson
approach is similar to Fisher’s.

In practice, and partly because of the requirements
of regulatory bodies and medical journals,12 the use of
statistics in medicine became dominated by a division
of results into significant or not significant, with little or
no consideration of the type II error rate. Two common
and potentially serious consequences of this are that
possibly clinically important differences observed in
small studies are denoted as non-significant and
ignored, while all significant findings are assumed to
result from real treatment effects.

These problems, noted long ago13 and many times
since,14–17 led to the successful campaign to augment
the presentation of statistical analyses by presenting
confidence intervals in addition to, or in place of, P
values.18–20 By focusing on the results of the individual
comparison, confidence intervals should move us away
from a mechanistic accept-reject dichotomy. For small
studies, they may remind us that our results are
consistent with both the null hypothesis and an impor-
tant beneficial, or harmful, treatment effect (and often
both). For P values of around 0.05 they also emphasise
the possibility of the effect being much smaller, or
larger, than estimated. 95% Confidence intervals, how-
ever, implicitly use the 5% cut off, and this still leads to
confusion in their interpretation if they are used simply
as a means of assessing significance (according to
whether the confidence interval includes the null
value) rather than to look at a plausible range for the
magnitude of the population difference. We suggest
that medical researchers should stop thinking of 5%
significance (P < 0.05) as having any particular
importance. One way to encourage this would be to
adopt a different standard confidence level.

Misinterpretation of P values and
significance tests
Unfortunately, P values are still commonly misunder-
stood. The most common misinterpretation is that the
P value is the probability that the null hypothesis is
true, so that a significant result means that the null
hypothesis is very unlikely to be true. Making two plau-
sible assumptions, we show the misleading nature of
this interpretation.

Firstly, we will assume that the proportion of null
hypotheses that are in fact false is 10%—that is, 90% of
hypotheses tested are incorrect. This is consistent with
the epidemiological literature: by 1985 nearly 300 risk
factors for coronary heart disease had been identified,

Table 1 Possible errors in interpretation of experiments, according to the
Neyman-Pearson approach to hypothesis testing. Error rates are proportion of times
that type I and type II errors occur in the long run

Result of experiment

The truth

Null hypothesis true
(treatment doesn’t work)

Null hypothesis false
(treatment works)

Reject null hypothesis Type I error rate Power=1−type II error rate

Accept null hypothesis Type II error rate
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and it is unlikely that more than a small fraction of these
actually increase the risk of the disease.21 Our second
assumption is that because studies are often too small
the average power ( = 1 − type II error rate) of studies
reported in medical literature is 50%. This is consistent
with published surveys of the size of trials.22–24

Suppose now that we test hypotheses in 1000 studies
and reject the null hypothesis if P < 0.05. The first
assumption means that in 100 studies the null
hypothesis is in fact false. Because the type II error rate
is 50% (second assumption) we reject the null hypothesis
in 50 of these 100 studies. For the 900 studies in which
the null hypothesis is true (that is, there is no treatment
effect) we use 5% significance levels and so reject the null
hypothesis in 45 (see table 2, adapted from Oakes25).

Of the 95 studies that result in a significant (that is,
P < 0.05) result, 45 (47%) are true null hypotheses and
so are “false alarms”; we have rejected the null hypoth-
esis when we shouldn’t have done so. There is a direct
analogy with tests used to screen populations for
diseases: if the disease (the false null hypothesis) is rare
then the specificity of screening tests must be high to
prevent the true cases of disease identified by the test
from being swamped by large numbers of false positive
tests from most of the population who do not have the
disease.26 The “positive predictive value” of a significant
(P < 0.05) statistical test can actually be low—in the
above case around 50%. The common mistake is to
assume that the positive predictive value is 95%
because the significance level is set at 0.05.

The ideas illustrated in table 2 are similar in spirit to
the bayesian approach to statistical inference, in which
we start with an a priori belief about the probability of
different possible values for the treatment effect and
modify this belief in the light of the data. Bayesian argu-
ments have been used to show that the usual P < 0.05
threshold need not constitute strong evidence against
the null hypothesis.27 28 Various authors over the years
have proposed that more widespread use of bayesian
statistics would prevent the mistaken interpretation of
P < 0.05 as showing that the null hypothesis is unlikely to
be true or even act as a panacea that would dramatically
improve the quality of medical research.26 29–32 Differ-
ences between the dominant (“classic” or “frequentist”)
and bayesian approaches to statistical inference are
summarised in box 1.

How significant is significance?
When the principles of statistical inference were
established, during the early decades of the 20th century,
science was a far smaller scale enterprise than it is today.
In the days when perhaps only a few hundred statistical
hypotheses were being tested each year, and when
calculations had to be done laboriously with mechanical
hand calculators (as in Fisher’s photograph), it seemed
reasonable that a 5% false positive rate would screen out
most of the random errors. With many thousands of
journals publishing a myriad hypothesis tests each year
and the ease of use of statistical software it is likely that
the proportion of tested hypotheses that are meaningful
(in the sense that the effect is large enough to be of
interest) has decreased, leading to a finding of P < 0.05
having low predictive value for the appropriate rejection
of the null hypothesis.

It is often perfectly possible to increase the power
of studies by increasing either the sample size or the
precision of the measurements. Table 3 shows the pre-

Table 2 Number of times we accept and reject null hypothesis, under plausible
assumptions regarding conduct of medical research (adapted from Oakes25)

Result of experiment
Null hypothesis true

(treatment doesn’t work)
Null hypothesis false

(treatment works) Total

Accept null hypothesis 855 50 905

Reject null hypothesis 45 50 95

Total 900 100 1000

Box 1: Comparison of frequentist and bayesian approaches to statistical inference

Let us assume that we want to evaluate whether a new drug improves one year survival after myocardial infarction by using data from a
placebo controlled trial. We do this by estimating the risk ratio—the risk of death in patients treated with the new drug divided by the risk of
death in the control group. If the risk ratio is 0.5 then the new drug reduces the risk of death by 50%. If the risk ratio is 1 then the drug has
no effect.

Frequentist statistics
Like Mulder and Scully in The X-Files, frequentist statisticians
believe that “the truth is out there.” We use the data to make
inferences about the true (but unknown) population value of the
risk ratio

The 95% confidence interval gives us a plausible range of values
for the population risk ratio; 95% of the times we derive such a
range it will contain the true (but unknown) population value

The P value is the probability of getting a risk ratio at least as far
from the null value of 1 as the one found in our study

Bayesian statistics
Bayesians take a subjective approach. We start with our prior
opinion about the risk ratio, expressed as a probability distribution.
We use the data to modify that opinion (we derive the posterior
probability distribution for the risk ratio based on both the data
and the prior distribution)

A 95% credible interval is one that has a 95% chance of containing
the population risk ratio

The posterior distribution can be used to derive direct probability
statements about the risk ratio—for example, the probability that
the drug increases the risk of death

If our prior opinion about the risk ratio is vague (we consider a wide range of values to be equally likely) then the results of a frequentist
analysis are similar to the results of a bayesian analysis; both are based on what statisticians call the likelihood for the data:
• The 95% confidence interval is the same as the 95% credible interval, except that the latter has the meaning often incorrectly ascribed to
a confidence interval;
• The (one sided) P value is the same as the bayesian posterior probability that the drug increases the risk of death (assuming that we
found a protective effect of the drug).

The two approaches, however, will give different results if our prior opinion is not vague, relative to the amount of information
contained in the data.
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dictive value of different P value thresholds under differ-
ent assumptions about both the power of studies and the
proportion of meaningful hypotheses. For any choice of
P value, the proportion of “significant” results that are
false positives is greatly reduced as power increases.
Table 3 suggests that unless we are very pessimistic
about the proportion of meaningful hypotheses, it is
reasonable to regard P values less than 0.001 as provid-
ing strong evidence against the null hypothesis.

One argument against changing the strength of evi-
dence regarded as conclusively showing that the null
hypothesis is false is that studies would have to be far
bigger. Surprisingly, this is not true. For illustrative
purposes it can be shown, by using standard power cal-
culations, that the maximum amount by which a study
size would have to be increased is by a factor of only 1.75
for a move from P < 0.05 to P < 0.01 and 2.82 from
P < 0.05 to P < 0.001. It is also possible, and generally
preferable, to increase power by decreasing measure-
ment error rather than by increasing sample size.33 Thus
by doing fewer but more powerful studies it is perfectly
possible to stop the discrediting of medical research. The
need for large, statistically precise studies has been
emphasised for many years by Richard Peto and

colleagues.34 The practice of medical research will not be
improved, however, if we simply substitute one arbitrary
P value threshold (0.05) with another one (0.001).

Interpreting P values: opinions, decisions,
and the role of external evidence
In many cases published medical research requires no
firm decision: it contributes incrementally to an existing
body of knowledge. In the results sections of papers the
precise P value should be presented, without reference
to some arbitrary threshold. In communicating the indi-
vidual contribution of a single study we suggest the P
value should be interpreted as illustrated in the figure. P
values in the “grey area” provide some, but not
conclusive, evidence against the null hypothesis.

It is rare that studies examine issues about which
nothing is already known. Increasing recognition of
this is reflected in the growth of formal methods of
research synthesis,35 including the presentation of
updated meta-analyses in the discussion section of
original research papers.36 Here the prior evidence is
simply the results of previous studies of the same issue.
Other forms of evidence are, of course, admissible:
findings from domains as different as animal studies
and tissue cultures on the one hand and secular trends
and ecological differences in human disease rates on
the other will all influence a final decision as to how to
act in the light of study findings.37

In many ways the general public is ahead of medi-
cal researchers in its interpretation of new “evidence.”
The reaction to “lifestyle scares” is usually cynicism,
which, for many reasons, may well be rational.38 Popu-
lar reactions can be seen to reflect a subconscious
bayesianism in which the prior belief is that what
medical researchers, and particularly epidemiologists,
produce is gobbledegook. In medical research the
periodic calls for a wholesale switch to the use of
bayesian statistical inference have been largely ignored.
A major reason is that prior belief can be difficult to
quantify. How much weight should be given to a
particular constellation of biological evidence as
against the concordance of a study finding with
international differences in disease rates, for example?

R A Fisher, the founder of statistical inference, working on a
mechanical calculator
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Table 3 Proportion of false positive significant results with three different criteria for
significance

Power of study (proportion (%) of time
we reject null hypothesis if it is false)

Percentage of “significant” results that are false positives

P=0.05 P=0.01 P=0.001

80% of ideas correct (null hypothesis false)

20 5.9 1.2 0.10

50 2.4 0.5 0.05

80 1.5 0.3 0.03

50% of ideas correct (null hypothesis false)

20 20.0 4.8 0.50

50 9.1 2.0 0.20

80 5.9 1.2 0.10

10% of ideas correct (null hypothesis false)

20 69.2 31.0 4.30

50 47.4* 15.3 1.80

80 36.0 10.1 1.10

1% of ideas correct (null hypothesis false)

20 96.1 83.2 33.10

50 90.8 66.4 16.50

80 86.1 55.3 11.00

*Corresponds to assumptions in table 2.

Strong evidence against the null hypothesis

Weak evidence against the null hypothesis

Increasing evidence against the null
hypothesis with decreasing P value

P 
va
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e

0.0001

0.01

0.1

1.0

0.001

Suggested interpretation of P values from published medical research
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Similarly, the predictive value of P < 0.05 for a
meaningful hypothesis is easy to calculate on the basis
of an assumed proportion of “meaningful” hypotheses
in the study domain, but in reality it will be impossible
to know what this proportion is. Tables 2 and 3 are,
unfortunately, for illustration only. If we try to avoid the
problem of quantification of prior evidence by making
our prior opinion extremely uncertain then the results
of a bayesian analysis become similar to those in a
standard analysis. On the other hand, it would be rea-
sonable to interpret P = 0.008 for the main effect in a
clinical trial differently to the same P value for one of
many findings from an observational study on the basis
that the proportion of meaningful hypotheses tested is
probably higher in the former case and that bias and
confounding are less likely.

What is to be done?
There are three ways of reducing the degree to which
we are being misled by the current practice of
significance testing. Firstly, table 3 shows that P < 0.05
cannot be regarded as providing conclusive, or even
strong, evidence against the null hypothesis. Secondly,
it is clear that increasing the proportion of tested
hypotheses that are meaningful would also reduce the
degree to which we are being misled. Unfortunately
this is difficult to implement; the notion that the
formulation of prior hypotheses is a guarantor against
being misled is itself misleading. If we do 100
randomised trials of useless treatments, each testing
only one hypothesis and performing only one
statistical hypothesis test, all “significant” results will be
spurious. Furthermore, it is impossible to police claims
that reported associations were examined because of
existing hypotheses. This has been satirised by Philip
Cole, who has announced that he has, via a computer
algorithm, generated every possible hypothesis in epi-
demiology so that all statistical tests are now of a priori
hypotheses.39 Thirdly, the most important need is not
to change statistical paradigms but to improve the
quality of studies by increasing sample size and
precision of measurement.

While there is no simple or single solution, it is pos-
sible to reduce the risk of being misled by the results of
hypothesis tests. This lies partly in the hands of journal
editors. Important changes in the presentation of statis-
tical analyses were achieved after guidelines insisting on

presentation of confidence intervals were introduced
during the 1980s. A similar shift in the presentation of
hypothesis tests is now required. We suggest that journal
editors require that authors of research reports follow
the guidelines outlined in box 2.
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Another comment on the role of statistical methods
D R Cox

The cartoons in Sterne and Davey Smith’s paper
describe implicitly a double threat to progress. Firstly,
there is the bombardment of an apparently nervous and
litigious public with ill based stories. This leads on to the
undermining of meticulous studies that may indeed
point towards improved health. Statistical methods, sen-
sibly and modestly used, are both some protection
against false alarms and, more importantly, an aid, via
principles of study design and analysis, to well founded
investigations and ultimately to enhanced health.

To comment here on detailed statistical issues
would be out of place. While guidelines too rigidly
enforced are potentially dangerous, the thoughtful rec-
ommendations of box 2 are consistent with main-
stream statistical thinking. That is, design to minimise
bias is crucial and the estimation of magnitudes of
effects, relative risks, or whatever, is central and best
done by limits of error, confidence or posterior limits,
or estimates and standard errors. Statistical significance
testing has a limited role, usually as a supplement to
estimates. Quantitative notions of personalistic prob-
ability may have some place, especially perhaps in the
planning stage of an investigation, but seem out of
place in the general reporting of conclusions.

The authors’ castigation of the search for subgroup
effects in largely null studies is indeed thoroughly justi-
fied. All reports of large effects confined, however, to
Aston Villa supporters over the age of 75 and living
south of Birmingham should go into the wastepaper
basket, however great the interest in that particular
subgroup, or, in less extreme cases, put into the pile of
topics for future independent investigation. More
might be made of a limited and preplanned search for
effect modifiers, what in statistical jargon rather
misleadingly tends to be called interaction. Even the
most carefully planned and implemented randomised
controlled trial with full compliance estimates only an
average effect across the population of patients giving

informed consent. The basis for extending the conclu-
sions to different populations and to individual
patients often lies primarily in scientific understanding
of the mode of action of the treatments concerned but
is reinforced by some check of the stability of any effect
found, even if such checks are relatively insensitive.

All these issues are essentially ones of public educa-
tion about the nature of scientific inquiry and the uncer-
tainties involved. As the authors note, modern statistical
thinking owes much to the statistician and geneticist R A
Fisher, in particular for two books.1 2 In the second, the
same year that Karl Popper introduced the hypotheti-
codeductive method, Fisher wrote “Every experiment
may be said to exist only to give the facts the chance of
disproving the null hypothesis.” On the 25th anniversary
of the publication of the first book, Fisher’s friend F Yates
wrote an assessment of its impact, in particular criticising
Fisher for his emphasis on significance testing.3 In one
form or another this criticism has been repeated many
times since. To distinguish several types of hypothesis
that might be tested it helps to understand the issues.4 In
the research laboratory it may be possible to set up an
experiment for which outcome can be predicted if the
understanding of an underlying process is correct. The
key issue is then consistency with that prediction. On the
other hand, in many epidemiological studies and
randomised controlled trials, with rare exceptions
(mobile phones and brain tumours, for instance), there
may be no reason for expecting the effect to be null. The
issue tends more to be whether the direction of an effect
has been reasonably firmly established and whether the
magnitude of any effect is such as to make it of public
health or clinical importance.

1 Fisher RA. Statistical methods for research workers. 1st ed. Edinburgh: Oliver
and Boyd, 1925. Reprinted by Oxford University Press.

2 Fisher RA. Design of experiments. 1st ed. Edinburgh: Oliver and Boyd,
1935. Reprinted by Oxford University Press.

3 Yates F. The 25th anniversary of statistical methods for research workers.
J Am Stat Assoc 1950;46:19-34.

4 Cox DR. Statistical significance tests. Br J Clin Pharmacol 1982;14:325-31.
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