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Preamble: This material is a — necessarily brief – introduction to some statis-
tical concepts that are relevant in the interpretation of measurements (observa-
tions) made on an individual patient, and in the interpretation of the statistical
material presented in research reports.

Learning Objectives

i. {Sections 1-4} To appreciate and be able to describe, in pictures and num-
bers, [observable] patterns of variation in a characteristic or measurement
— from individual to individual, or from one measurement to another of
the same individual – and the reasons for, and consequences, of this vari-
ability; to be familiar with the summary numbers used to describe these
patterns of variation; and be able to identify which summaries are more
appropriate in which circumstances.

ii. {Section 5} To appreciate the presence of the [necessarily unobservable]
‘statistical noise’ in a statistical estimate or summary obtained from a finite
amount of data; to be able to quantify — probabilistically — the degree to
which (say) a mean level, or a proportion, observed on a single individual,
or in a sample of individuals might – just because of sampling variation –
be an under-, or an over-estimate, of the level/proportion of interest; to
understand and apply the concept of a Margin of Error, and the factors
that affect it; to use this to construct a Confidence Interval.

iii. {Sections 6-7} To apply Confidence Intervals

iv. {Section 8} To understand the concepts of, and the proper interpretation
of, P-value; test of hypothesis; statistically significant; statistical power.

v. {Section 9} To apply these concepts to published research based on data
from aggregates of individuals.

Sources covering these topics

These concepts are covered more fully in formal course in statistics; you will
also have encountered them if you have dealt with data in a research setting.
Textbooks that cover them well include
AB Hill, A short textbook of Medical Statistics, 1984 WA 950 H645s Life Sciences;

D Freedman et al., Statistics, 1998 QA276 F683 Schulich Science & Engineering

J Ingelfinger et al.1 Biostatistics in Clinical Medicine, 1994 WA 950 B6165 Life Sciences

B Dawson-Saunders et al. Basic & clinical biostatistics, 1994 WA 950 D272b Life Sciences

P Armitage et al. Statistical methods in medical research, 2002 WA 950 A733s Life Sciences

1The Clinical examples, and accompanying text, in the following are adapted from this
textbook.

B Rosner Fundamentals of biostatistics, 2006 QH 323.5 R822f Life Sciences

M Pagano et al. Principles of biostatistics, 2000 QH323.5 P34 2000 Schulich Sci. & Engineering

G van Belle et al.Biostatistics: a methodology for the health sciences, 2004 <eBook>

Why is this material so lengthy? What to concentrate on...

Statistical concepts and an appreciation for variability are important for managing
individual patients and for understanding published research.

Some of you will have taken college or undergraduate courses on statistics. Most such
courses were unfortunately not very engaging or relevant at the time. In many of them,
the tasks were to identify the formula to use, and the relevant inputs for it. Unless you
typed in the raw data, you probably didn’t get a good sense of variability; if you used
a ‘canned’ routine, the calculations did not really illustrate the concepts. Moreover,
most courses use the ‘method-then-example’ rather than the ‘here’s the case, now what
do I do?’ format that better prepares you for a problem-solving career. Moreover, you
probably found the terminology – and even the logic – a bit strange.

It would take a much larger amount of time than we have in this course to motivate
the need for statistical thinking in medicine, to fully explain the concepts, and to
understand the basis for the methods. Many of us dislike having to rely on numerical
lab results when we don’t understand the scientific basis for them, and it’s the same
with statistical results. But we don’t have the time – in one lecture and one small-
group exercise – to learn all of what is behind the methods. However, as a gesture
to those of you who would like to understand some of it, and can speed read, section
5 does go into more detail on the basis for standard errors and confidence intervals.
Likewise, unless you have a particular liking for this kind of material, you can skip
many of the technical statistical footnotes.

The key points are summarized – and when appropriate some pointers are given – at
the end of each section, and again at the very end.

Unlike what you probably did in undergraduate statistics courses, you should approach
this material in the same ‘big picture - not so many detailed calculations’ spirit that
the small group exercises are meant to convey.

A word about the two clinical examples (angina and possible hypertension) in the ear-
lier sections: clinicians generally do not use such formal explicit statistical calculations
in the management of patients. Experienced clinicians do have a very good sense of
variability, and of distributions, and so they do not go as far statistically as Ingelfinger
et al. (from whom these examples are taken) would have us believe. However, at your
stage, it is good to be explicit and to work through the statistical issues formally, even
if the exercises appear a bit contrived. Where these issues will help you is when, in
section 9, you focus on epidemiologic and medical studies involving the collective or
aggregated experience of many subjects. In these applications, the variability and im-
precision come mainly from the inter -individual differences, and even clinicians have
a lot less experience with this type of ‘research variability.’ Fortunately, the central
ideas of statistic, standard error, margin of error, confidence interval, p-value, test of
significance, etc. remain the same as those used for the clinical examples.
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1 Statistics and the Individual Patient

If the clinical course of some illness were always the same in the absence of
treatment and if treatment always had the same effect, it would be easy to de-
termine whether some new treatment was an improvement. We would need only
to prescribe the treatment to see whether the outcome was changed. A similar
approach is still possible when the course of disease is not precisely uniform,
One has to observe a sufficient number of cases of the illness and record the fre-
quency of each possible outcome in the absence of treatment, or in the presence
of a standard treatment. Then after giving the new treatment to a sufficient
number of additional cases, one can see whether and how the probabilities of
various outcomes have changed. The following example — evaluating the re-
sponse to treatment2 in a patient with angina pectoris — is used to illustrate,
and show the consequences of, the kinds of variability that may affect clinical
observations. We also show how frequency distributions are useful in the study
of clinical observations that may vary from patient to patient or from time to
time.

1.1 Background and Clinical Problem

Background

Angina pectoris (substernal chest pain typically brought on by exercise and re-
lieved by rest) is a common symptom of coronary vascular disease. Angina can
cause substantial morbidity by limiting a patient’s activity. For many years,
nitroglycerin (NTG), administered sublingually, has been used to treat angina.
Usually, NTG will relieve an attack in 1 to 3 min, and most patients find NTG
helpful for most of their attacks. NTG acts for only 5 to 15 min; it is im-
possible to prescribe this drug frequently enough to have day-long prevention
of angina. One therapeutic approach uses “long-acting” nitrate preparations,
although some authorities question their effectiveness. Patients have also been
treated with a β blocker in an effort to decrease the number of anginal attacks.

Clinical Problem 1. Does Long-Acting Nitrate Therapy Help?

Mr. Lewis is a 55-year-old man with angina. His attacks typically occur after
he has climbed half a flight of stairs or walked a quarter of a mile. He has been
having about six attacks each week.

His physician recently prescribed a nitrate preparation, isosorbide
dinitrate (ISDN). ISDN has a much longer duration of action than NTG,
which might give it substantial advantages if it is equally effective. Mr. Lewis

2This Ingelfinger e.g. was also used in earlier editions; other treatments may be available today.

called his physician later to say that he had his usual angina halfway
up his 14 stairs 1 h after taking ISDN, i.e. he climbed 6 steps without
angina. In addition, he experienced headache and palpitations (both being
known side effects of ISDN). He wondered whether he should stop the ISDN as
he has noted no change in his angina and the drug caused him bothersome side
effects.

1.2 Gathering & Interpreting Evidence from Patient

To decide whether ISDN has value for Mr. Lewis, we need some idea of how
quickly his angina attacks occur without treatment. (Note: The compar-
ison proposed here is ISDN versus nothing, not ISDN versus NTG as discussed
previously.) If Mr. Lewis or his physician kept records of his angina before
treatment started, some available information might help answer the question.
Mr. Lewis did keep a diary concerning his angina attacks. The diary reads as
follows:

August 16: angina on 10th step.
August 18: angina on 3rd step.
August 19: angina on 6th step.
August 20: climbed all 14 stairs without angina.

The diary has some 50 entries for the most recent 2 months. We summarize the
information in the frequency distribution3 shown in the ‘B’ row of Table 1.
We also converted the data on angina experience before ISDN to a histogram4

in the left portion of Fig. 1. The values are the number of steps completed with-
out angina. Thus if Mr. Lewis got angina on the first step, he completed 0 steps
without angina. If he climbed the whole flight without angina, he completed 14
steps.

Table 1 Frequency distribution of number (No.) of steps before angina
for Mr. Lewis before[B] and after[A] he started taking ISDN

No. steps → 0 1 2 3 4 5 6 7 7 9 10 11 12 13 14 total
B 0 0 2 3 5 4 9 6 4 4 3 1 1 0 8 50
A 1 0 0 1 0 2 2 3 3 2 2 1 0 1 2 20

Figure 1 has two frequency scales. The one gives the observed frequency or
count of the number of times Mr. Lewis climbed the given number of steps

3The numbers/frequencies of instances/occurrences of each possible value of the variable.
4Usually, histograms have the values (or intervals) of the variable on the horizontal, and

frequencies on the vertical, axis. Here, we use a different orientation, putting the two distri-
butions side by side.
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without angina. The other [in parentheses] gives the relative frequency, the
proportion of trials out of 50 (or out of 20). Usually, we are more interested in
the proportion because we may be — as we are here — comparing two sets of
data based on different total counts.

Relative frequencies can be used to estimate the probability of observing angina
at each step. Thus for Mr. Lewis, we estimate the unknown probability that
angina will occur just after the sixth step in the absence of treatment as 9/50
= 0.18, or 18 percent.
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Fig 1: 
No. of instances in 
which patient climbed indicated 
no. of steps  before developing angina;
each dot represents one instance

Interpreting One Observation

Looking at the data in the ‘B’ row of Table 1 or in the “Before” histogram, we see
that Mr. Lewis’s new single observation of 6 steps without angina does
not prove or disprove that the drug has some beneficial effect. Already,
though, we can make some estimate as to the possible response Mr. Lewis
will get from ISDN. His first experience shows that ISDN does not completely
prevent attacks. We do not know whether ISDN has changed the probability
of angina after the sixth or any other step. To think about this, suppose for
a moment that the probability of angina at or before the seventh step were
very low, say, 1 in 100, with ISDN. Then we would have observed a rare event
(probability, 1 percent) the very first time Mr. Lewis climbed his stairs after
starting the new medication. Faced with this single observation, suppose that we
must decide whether to believe that ISDN has reduced the probability of attacks
at or before the seventh step to 1 percent. We have arbitrarily formulated two
mutually exclusive possibilities:

Possibility 1. With ISDN, angina occurs at or before the seventh step only 1
percent of the time, and we have observed a rare event; or

Possibility 2. With ISDN, angina occurs on steps 1 to 7 just as often as without
ISDN, and we have observed a commonplace event.

If forced to choose between these extreme possibilities on the basis of this one
observation, most people would choose possibility 2. Thus even one measure-
ment has produced a tentative conclusion about the extent of improvement from
ISDN.5

Interpreting Several Observations

We can learn more, of course, if we have more than one observation.
Only very striking effects of treatment can be demonstrated with a
single observation. In Mr. Lewis’s case, one observation would be insufficient
to show a benefit even if ISDN were completely effective, because about 16
percent of the time he climbs to the top of his stairs without angina even while
taking no medication. In a given situation, the smaller the effect – gain
or loss – of some treatment, the more observations will be needed to
demonstrate that effect. The technical reason is that the variability
of a mean — or median, or any other statistic — decreases with
increasing sample size, and we measure our assurance in terms of the
variability.

Since Mr. Lewis had some unpleasant side effects from ISDN, it is a reasonable
view that he should not take the drug unless he gets a “fairly large” benefit.
What would be “fairly large” is hard to define in any precise way, but his
physician believes that if the benefit is large enough to balance the side effects,
it should be apparent after 20 or 25 observations. He instructs Mr. Lewis to
continue the medication for 3 weeks and to keep a record of the point at which
angina occurs each time he climbs the stairs.

1.3 Comparing Outcomes: summary statistics

Mr. Lewis returns with the data recorded in row ‘A’ of Table 1, which shows
both the 50 observations before treatment was started and the 20 observations
since then. The general shapes of the histograms shown in Fig. 1 do not appear
to differ a great deal. Notice that the scale of measurement for the raw
frequencies differs in the two figures, out of 50 before, out of 20
after, while that for relative frequencies remains the same. The observed
fraction (proportion) of climbs without angina has gone down from 16 percent
to 10 percent, a loss, and the median number of steps climbed before angina
is now 8, whereas before it was 7, a slight gain.

5This is an example of two competing “hypotheses” (with ISDN, the probability of getting
at least half way without angina is (1) 99% (2) 50% ) to explain the observed data.
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Median. The median is the middle value of a set of numbers when they are
ordered according to size. If the number of values is odd, it is the middle number.
If the number of values is even, it is the average of the two middle numbers.6

Examples The median of 4, 5, 5, 7, and 8 is 5. The median of 4, 5, 5, 7, 8, and
8 is 6.

Even without formal statistical analysis, it seems that Mr. Lewis has had no
marked benefit from his ISDN and the continued presence of side effects suggests
that it would be prudent to discontinue the medicine. (In a later section, we
will use a formal way to test whether two frequency distributions differ.)

A second important approach to evaluating whether ISDN is beneficial for Mr.
Lewis reviews how other patients respond to the drug. Two points are epecially
important: the proportion of patients similar to Mr. Lewis who respond and
the degree of improvement for those who do respond. If some patients are
almost completely unresponsive, while responders tend to derive large benefits,
this 2-week trial may be enough to conclude that the drug should be stopped.
If almost all patients derive some benefit, but the average improvement is small,
one might want to reconsider whether just 20 observations is enough to conclude
that continued treatment is unwise.

1.4 Key Points

• Given the natural intra-patient variability in the (untreated) course of many
diseases, conditions or risk indicators, one my need several observations of
the patient to assess the effect of a treatment / intervention.

• Frequency distributions are helpful to appreciate the pattern of variability,
and to assess effects of any change in management. Tables, graphs and
summary statistics can be used to describe them.

• The setup and probabilities used to assess “Possibility 1. vs Possibility 2.”
are a preview of the concept of a P-Value, to be discussed in section 8.

• Ingelfinger introduced the median, but didn’t say why it is sometimes pre-
ferred over the mean.7 For small amounts of data, or data values that are
already sorted by size, it is also easier to compute.

6The median is more resistant to the influence of extreme observations than the mean is,
and thus is a better indicator of the “middle” if the distribution is not symmetric.

7See footnote above.

2 Biologic, Temporal, and Measurement Varia-
tion

2.1 Importance of Variation in Interpreting Outcomes

After the unsuccessful attempt to control Mr. Lewis’s angina with ISDN, he
went without treatment. His clinical state was apparently unchanged for 5
months, at which time he told his physician that the angina had recently begun
to appear more often and on a lower step than before. His physician must now
consider three broad kinds of reasons for the change. First, Mr. Lewis may have
suffered a biologic change (his coronary disease may have worsened). Second,
Mr. Lewis’s angina may be temporarily worse for no apparent reason, just as
exercise tolerance is higher on some days than on others. Finally, Mr. Lewis
may have become a more (or less) accurate observer or reporter of his angina.

Generally, clinical observations are subject to three sources
of change, which may be called biologic, temporal, and mea-
surement variation.

In evaluating the status of Mr. Lewis, his physician was at first concerned
with whether ISDN caused a biologic variation in his anginal pattern. This
evaluation was made difficult because angina has a great deal of temporal (day-
to-day) variation and perhaps some measurement variation as well. In discussing
the trial of ISDN reported by Danahy et al.,8 we asked whether patients who
responded well to ISDN were biologically different from the poor responders in
some permanent way (interpatient variation), whether the observed variation
in response to ISDN might reflect only the day-to-day variation of patient’s
responsiveness (intrapatient variation), or whether some combination of these
was at work.

When a series of observations is made on different individuals, the variation in
responses is due to both intersubject variation (secondary to biologic, tempo-
ral, or measurement differences between the subjects) as well as intrasubject
variation (also due to biologic, temporal, and measurement variation within a
subject). To distinguish the contribution of each source to the overall variation,
a series of separate observations on separate persons will not do. One has to
study the same individuals more than one time to see whether the individual
frequency distributions are similar to each other and, hence, to the frequency
distribution for the population. For instance, obviously patients’ heights vary

8In section 4-2, omitted here. Section 4.4, also omitted here in the interests of time and
space, uses data from a crossover study of several patients to asses whether Mr. Lewis is likely
to respond to Propranolol, and if so the magnitude of his response.
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widely, and the source is intersubject variation in height. Body temperature
in patients at the outpatient clinic also varies. However, it is likely that most
of that variation is due to intrasubject variation in body temperature, since
unusual temperatures may be a symptom associated with going to the clinic.

2.2 Implications for Patient Care

A number of principles follow from recognizing that a clinical observation is
subject to biologic, temporal, and measurement variation, and that each of
these sources may be reflected in intra- as well as intersubject variability.

i. In conditions that have large temporal and/or measurement variation, ther-
apeutic efficacy or other biologic changes may be difficult to detect even
with large numbers of well-controlled observations.

ii. The “normal range,” as determined by observing many individuals, is usu-
ally greater than that determined by observing one individual many times,
unless there is little interperson variation. We often use the rather arbi-
trarily chosen range 2.5 to 97.5 percent, the central 95 percent of a sample
of values obtained from normal subjects, as the normal range of a measure-
ment. Therefore, it includes both inter-person and intra-person variability.

iii. Some patients seek their doctors’ attention when their conditions seem to
worsen. If the worsening simply represents temporal and not biologic varia-
tion in their illness, their illness is likely to improve irrespective of therapy.
(“Most things, in fact, are better by morning.”-Lewis Thomas.)9

The technical name in statistics for such changes is the “regression effect,”
meaning regression toward the mean. Thus a patient who feels spectacu-
larly well today will probably not feel as well tomorrow.

iv. The physician who observes a patient numerous times, or orders numer-
ous laboratory studies, may observe “abnormalities” that do not reflect a
biologic variation but are due to temporal/measurement variation. These,
too, are likely to be “better“ or changed soon. This is why, when you are
faced with a test result that does not seem to fit, it helps to repeat the test.

2.3 Key Points & Some Pointers

• Knowing the relative magnitudes of these various sources of variation is
key. Points i-iv in section 2.2 highlight this importance.

9Or “if you go see you doctor about it, your cold will be better in a week. If you don’t, it
will be better in seven days”.

3 Distributions

Frequency distributions, relative frequency distributions, and histograms are
convenient (and equivalent) methods of summarizing collections of multiple ob-
servations. Typically, a frequency distribution is obtained by dividing observa-
tions into 10 to 20 classes such that each observation must fall into one and only
one class. In a frequency distribution, the number of observations belonging to
each class is recorded.

The relative frequency distribution assigns to each class an
estimated probability (observed relative frequency) that an
observation will be in that class. If conditions are constant,
the larger the sample, the better the estimate. The estimated
probability of each class is easily computed as the number
of observations in that class divided by the total number of
observations.

Measures of Location

Many questions in medicine hinge on determining whether one probability dis-
tribution differs from another. Such a difference may be difficult to determine
because the distributions themselves are unknown and must be estimated with
some degree of error, also unknown. Estimated distributions can be compared in
terms of many different properties. Perhaps the most important is the “centre”
or location of the distribution, which may be defined as:

• The mean: the ordinary average of the observations, or

• The median: defined earlier, or

• The mode: the most popular (frequently occurring) value.

Measures of Spread

Another important property is the degree of “spread” or dispersion of observa-
tions about their centre. “Spread” may be defined in several ways, such as:

• The range: the difference between the largest and smallest observed values.
This should not be confused with the “normal range” discussed earlier,
although the ideas are similar. In the distribution shown below, the range
is 84− 60 = 24 mmHg.

• The interquartile range, “IQR”: the range of values remaining when the
largest 25 percent and smallest 25 percent are – temporarily – set aside.
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Sometimes these quartiles are called Q1 and Q3, and sometimes Q25 and
Q75. In the distribution shown below, the 10th smallest value is 70 – as is
the 11th; and the tenth largest is 77 – as is the 11th largest; setting these
ten smallest and ten largest aside, we now have an IQR from Q1 = 70, to
Q3 = 77 mmHg.

• The standard deviation (“SD”): a frequently used measure of spread,
especially if the distribution is roughly bell-shaped. Technically, it is the
square root of the average of the squared deviations from the mean. Thus,
for more than a few values, it requires a scientific calculator, or the STDEV
function in Excel to compute it. For most purposes, it can be estimated
visually from a frequency distribution as the average absolute deviations of
each value from the mean. Or, if the distribution is approximately Gaussian
(bell-shaped), we can use the fact that about two-thirds of the observations
lie between one standard deviation above and one standard deviation be-
low the mean (or if we have enough observations, that about 95% of the
observations lie between two standard deviations above and two standard
deviations below the mean) to obtain a rough estimate.

40 Diastolic Blood Pressure Measurements
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Since about 1/6 of the observations for a Gaussian distribution fall beyond 1
standard deviation at each end, we might count in 1/6th of the observations
from each end, get the distance between these two points, and divide by 2
as an estimate of the standard deviation. In the above example, with 40
blood pressure measurements, 1/6 is about 7. the seventh highest DBP is
78 and the seventh lowest is 66, so we estimate the standard deviation as
(78-66)/2 = 6 (by calculator, the SD is 5.5).

• The coefficient of variation (“CV”): This is used when comparing the
degree of measurement error or intra-person or inter-person variation be-

tween situations or persons with very different means or units. Examples
include the intra-assay and inter-assay and true biologic short-term vari-
ation in the measurements of Prostate Specific Antigen (PSA), when the
true (or average) value is 2.5 ng/mL vs. 10 ng/mL vs. 50 ng/mL; day to
day variation in the calorie intake, or energy expenditure, of a 5 vs. a 25
year old, or the person-to-person variation in the amount of annual out-
door activity in Canada and Australia, or the person-to-person variation in
the height (in inches) of adult females in the U.S. (SD measured in inches)
vs Canada (SD measured in cm). The variability is more easily appreci-
ated/compared if we express the SD as a percentage of the mean or as a
percentage of the known10 value.

CV =
Standard Deviation

Mean V alue
× 100% or

Standard Deviation

Known V alue
× 100% .

3.1 Key Points & Some Pointers

• Beware of the word ‘average’: during a past labour dispute – and before
salary caps – the NHL owners told us the average NHL player’s salary was
one million dollars; the players’ association, using the same data, told us
it was half a million. You should be able to tell which group was using the
median and which was using the mean. If need be, sketch the frequency
distribution. The mean is further out in the longer tail.

• Don’t fuss about the exact formula for the SD. The approx. method de-
scribed above is good enough for the purposes here.

The French term for SD is much more expressive: écart-type, typical devi-
ation. Calling it the standard deviation doesn’t enlighten us.

• Understand the CV. There are various versions, depending on the context.
It is a useful measure, especially when dealing with the individual patient.

10If a lab assays specimens with a known concentration obtained from a Standards Bureau.
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4 Biologic, temporal, and Measurement Varia-
tion - Example 2

The diagnosis and treatment of patients with high blood pressure is another
clinical situation that forces us to consider the variability and distribution of
blood pressure measurements in the individual patient. In this section we ex-
amine the blood pressure variation that might be observed in one office visit,
and the variation from one visit to the next. In the next section, the concept of
a confidence interval helps us when we try to estimate a patient’s average
(mean) blood pressure. Applying these ideas helps us to determine what
we need to observe and why, and how to detect changes in blood pressure in
response to antihypertensive therapy or other interventions.

4.1 Background and Clinical Problem

Clinical Problem 2. Moderately Elevated Blood Pressure at a Rou-
tine Physical

A company refers Mr. W.P., a 35-year-old computer programmer, to you for
a pre-employment physical. He has a family history of stroke, he smokes one
package of cigarettes a day, and his blood pressure is 130/95 mmHg.

Background

The following statements are excerpted from the recommendations of the Joint
National Committee (JNC) on the evaluation and treatment of high blood pres-
sure (Joint National Committee on Detection, Evaluation, and Treatment of
High Blood Pressure, 1992) two years before the Ingelfinger text was written.11

[The table ] provides a new classification of adult blood pressure based
on impact on risk.... All stages of hypertension are associated with
increased risk of nonfatal and fatal CVD [cardiovascular disease] events
and renal disease. The higher the blood pressure, the greater the risk.

11Last year, you saw the current recommendations; the statistical point remain unchanged.

Table: (1992) Classification of blood pressure for adults 18 years of age & older

Category Systolic (mmHg) Diastolic (mmHg)
Normal < 130 < 85
High normal 130− 139 85 − 89
Hypertension

Stage 1 (mild) 140− 159 90 − 99
Stage 2 (moderate) 160− 179 100− 109
Stage 3 (severe) 180− 209 110− 119
Stage 4 (very severe) > 210 > 120

When systolic and diastolic pressure fall into different categories,
the higher category should be selected to classify the individual’s
blood pressure status.

4.2 Variability of Blood Pressure in the Individual Patient

One’s first impulse is to decide that Mr. W.P. has a diastolic blood pressure
between 90 and 99 mmHg, placing him in the mild hypertension category. This
view may turn out to be correct, but before settling on it, let us review the
variability of blood pressure measurements.

Armitage and Rose (Clin Sci 1966, v.30, pp325-335) provide an instructive set of
data showing how diastolic blood pressure varies in the individual. The Figure
on the next page shows duplicate readings of casual diastolic blood pressure (10
subjects; 2 readings on 20 occasions). Even if we exclude the extreme right-
hand measurement for subject 10, some subjects have ranges of measurements
(largest minus smallest) of more than 30 mmHg. Therefore, Mr. W.P.’s mea-
surement of 95 could possibly be a high measurement for him, and
perhaps he averages 15 mmHg lower, which would take him out of
the hypertensive range. Or 95 might be a low measurement for him,
and his average would be, say, 10 units higher, which would take him
into the moderate category.

The message from the measurements on these 10 patients – and from ambulatory
BP monitoring (see e.g. in Ingelfinger) – is that Mr. W.P.’s diastolic blood
pressure of 95 is ambiguous. Before we proceed, we need to understand the
(im)precision of statistical estimates based on the mean of n values – including
the above data where we have just n = 1. To keep the side-issues to a minimum,
we use a simpler and more generic example to explain the key statistical
concept – a Confidence Interval – before returning to the case of Mr. W.P.
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4.3 Key Points & Some Pointers

• The pattern of variation in the data collected by Rose et al. is very in-
structive. Do you notice any digit preferences? How much do you think
the pattern would be affected if we used an automated BP machine such
as the one found in pharmacies?

• The variation, especially the intra-patient variation, in BP is much more
amenable to summarization using a mean and SD than the ‘onset of angina’
data in the earlier section. Part of this has to do with the ‘ceiling effect’
(no pun intended) with the angina data, since the patient did not continue
climbing past 14 steps. Had he, we might have see a more ‘unimodal’
distribution.

• Trying to reliably classify the patient on the basis of one BP measurement
is clearly impossible, just as it is to classify someone as an A or a B student
on the basis of a single multiple choice exam in one course, or establish a
taxi-driver’s or waiter’s income bracket on the basis of a single day’s income.

• We need to appreciate how much we can reduce the noise by averaging
several measurements, and the amount of ‘noise’ that remains. The next
section (5) does so, in probably more detail than you will need, or have
time to go through.

• For section 5, if you are short of time, focus on the pattern of variation in
the diagrams on p. 11, and the SE formula in the second column of page
11, before going on to the key sections 5.4 and 5.5. If you find the ‘chat’
in the first column of page 12 a bit too much, just focus on the diagram on
that page and the ‘mean ± some multiple of SE’ in the material below it.

• The distinction between Standard Error and Margin of Error is important,
as is how the Margin of Error involves the degree of confidence.
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5 Confidence Interval

QUANTIFYING THE (IM)PRECISION OF A STATISTICAL ESTIMATE

5.1 Statistic: sample ; Parameter: population

In clinical medicine, the focus is on the one (‘single’) patient, and on obtaining
a good (i.e. precise, reproducible) estimate of the true – but unknowable – mean
level of that patient’s behaviour or symptom or sign, or level of some biological
variable. We have seen the examples of the median or mean number of steps
before a patient develops angina, or the proportion of times the patient can
climb the entire stairs without angina, or a person’s mean systolic or diastolic
blood pressure. We could add another – mean cholesterol level or BP.12

Formal Terminology: Statisticians and statistical textbooks refer to the true
mean level or proportion – or correlation or regression coefficient – as a pa-
rameter, and often denote it by a Greek letter such as µ or π – or ρ or β.
Mathematical statisticians typically denote a generic parameter value by the
Greek letter theta (θ). It may help to remember this terminology by noting
that both the words parameter, and ‘population’ (i.e. the ‘universe’) start with
the letter p.13 This is different to the lay use, where cholesterol itself would be
a parameter, and blood pressure another. In statistics courses, the parameter
refers to something more specific: it is some unknowable property of a distribu-
tion in some universe of (say cholesterol) values, such as the mean or the 95-th
percentile, or proportion above some threshold.

Typically, the parameter value (“θ”) is unknowable, because it is not practical to
measure the level continuously or exhaustively, and thus have a perfectly precise
estimate.14 In your own life, you would probably not be willing to document
daily activities and behaviours, such as alcohol consumption, commute time,
time spent on the internet, how often you ate restaurant rather than home-
cooked meals, or drove while talking on a cell phone, etc. in order for someone
(even yourself) to obtain a precise picture of you. But you might be wiling
to go through a few “24-hour recalls” (a sample of your experience) over the
time-span of interest.

12Monitoring cholesterol levels: measurement error or true change? Glasziou PP et al. Ann
Intern Med. 2008 May 6;148(9):656-61. BP: Keenan K. et al. BMJ 2009

13If the focus is on one person, the ‘population’ analogy has less meaning; instead just think
of the true mean value for the individual, or, if measuring the speed of light, think of ‘c’ as the
true value, or if quality-controlling assays, a true cholesterol concentration in the specimens
supplied by the Standards Bureau.

14Except in a few instances such as continuous ambulatory monitoring of say BP or sugar
levels, or activity, and even then we are limited to short spans of time.

In statistical jargon, the summary value calculated from the values in a sample
is called a statistic, and is typically denoted by a Roman (Arabic) letter such as
ȳ (a mean) or p (a proportion) or r (a correlation) or b (a regression coefficient
). It may help to remember this terminology by noting that both the words
‘statistic,’ and ‘sample’ start with the letter s. [appendix note 1.]

In community medicine, the focus is on a larger target – the entire population –
and on obtaining a good (i.e. precise, reproducible) estimate of the true – but,
again for most variables, unknowable – mean level of some biological variable, or
activity, or behaviour, or the proportion (if an all-or-none, or otherwise binary,
variable). Again, these mean levels or proportions are unknowable, because it
is not practical for community medicine personnel to measure everybody, and
thus have a precise estimate.15 Thus, they depend on sample surveys. If McGill
wished to estimate how much, on average, its students spend on accommodation,
etc. it would probably have to do the same.

In the more precise sciences, one can control much more of the variability: some
of the variation in measurements is unwanted and a nuisance, and thus is called
measurement or experimental error ; this unwanted measurement component is
also present in clinical research, but is not always entirely separable from real –
and often interesting in its own right – variation within and between individuals.

No matter the universe and quantity of interest (the mean for one individual,
or for the population, or the value of a physical constant such as the speed of
light, or a chemical determination), a summary number, such as a mean or a
proportion, calculated from a small set (sample) of variable measurements or
variable individuals will – despite the benefit of basing it on several observations,
and of using scientific ways to decide which measurements or persons constitute
the sample – not equal the (unknowable) value one would have obtained had
one been able to make all of the possible measurements.

5.2 How far can an estimate from a limited amount of
observation be from the “true” quantity of interest,
e.g., how far can ȳ be from µ? p from π?

Intuitively, if all of the possible measurements are highly variable about this
true – but unknowable – mean value, one needs to average many independent
values in order to arrive at a reproducible (precise) estimate of that true value;
if they are highly concentrated about this true value, one needs to average fewer
independent values in order to arrive at a reproducible (precise) estimate of that

15Some exceptions are data collected at the census, or in annual income tax returns, or motor
vehicle registrations, or recorded in administrative databases such as RAMQ and MEDECHO,
which document every medical claim for a physician visit, or hospital admission.
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true value. Thus, e.g., if in order to estimate the average of entries per page
in the telephone book, in order to multiply it by the total number of pages to
obtain an estimate of the total number of entries in the book, I would imagine
we would not have to sample (and count the entries in) very many pages, since
the number of entries does not differ very much from page to page. But if we
wanted to estimate precisely the average length of words in the New York Times,
we might need several hundred. How many would you think we need in order to
put Mr. W.P. fairly securely into one of the DBP categories in the JNC table
above? Its a bit like GPS, and what level of technology you need to pinpoint
the location of an object to within 5Km or 5m or 5cm of its true location.

The answer depends on how far ‘off the target’ an estimate one can live with, or
how much effort and resources one is willing to spend to get an estimate closer
to the true value. Unfortunately it is not guaranteed that a larger sample size
will necessarily get you closer to the target, since by the luck of the draw it could
turn out that an estimate based on n = 4 is closer to the target than another
one based on n = 8. But the probability of being within a certain specified
distance of the target is higher with a sample of n = 8 than one based on n = 4.
So. its a matter of probabilities, not of certainty.

When we combine independent measurements, the statistical (probability)
laws governing how far a statistical estimate, such as a sample mean ȳ or a
proportion p, falls from the true value, such as the true mean µ or proportion
π, are determined by surprisingly few factors. The pattern of variation of
individual measurements may be quite non-Gaussian. However, the distribution
of the possible estimates can be remarkably close to a Gaussian distribution
(bell-curve) – centered on the true value. Thus, we can make statements about
the probability of any one estimate (the one we are going to produce) being
within a certain distance of the truth.

You might well ask: Leger and Leger, and Gallup, and other ‘measurers’ can’t
know the true value16 so how can they check whether their estimates are within
the stated distance from the true value. How can they give those “95 of our
estimates%17 are within the stated distance from the truth” guarantees?

16After all, that is why they are estimating using a sample!
17They say “19 times out of 20.”

5.3 The 2 mathematical laws that quantify how much a
sample mean or proportion can be an under- or an
over-estimate - and a hypothetical example

Just as with eclipses to check Einstein’s predictions, there are a few occasions
(e.g., at elections) when we can directly check statistical predictions. These
probabilistic guarantees derive from 2 statistical laws which apply equally to
the mean/proportion in each of the possible samples of size n. Each sample
would give a different “estimate” The hypothetical distribution of “all possible
estimates” is called the sampling distribution. The 2 laws are:

• The possible estimates would fall around the true value in a pattern that
would be close to a Gaussian (bell-shaped) distribution.

• The standard deviation of this sampling distribution would be σ/
√
n,

where σ is the standard deviation of all of the individual units in the uni-
verse (context) of interest.

We now have two standard deviations – the original one that quantifies
the variation of individual values, and now a new one (hypothetical) that
quantifies the variation of the statistic (estimate) across all possible sam-
ples of size n. Even though theoretical statisticians are quite comfortable using
the same term for both, applied scientists tend to use a different term – the
standard error (“SE”) to refer to the sampling error in the estimate.

In practice, since one usually does not know the value of σ, one cannot then
calculate the value of σ/

√
n; so, instead they first estimate σ from the sample

itself, and use this estimate, σ̂, to instead calculate

SE(estimate) = σ̂/
√
n = (SD of the n individual sample values)÷

√
n.

With a small sample size, say n < 30, the SD of the sample values may not
be close to σ. To account for this additional uncertainty/‘noise’, we need to
use a replacement for the Gaussian curve, nowadays called the t-distribution.18

Having gotten out of this catch-22, we can now move ahead.

18This replacement was worked out in a paper published 101 years ago, by a brewer/chemist
who worked for the Guinness brewery in Dublin, and who was often working with samples
as small as n = 4. His name was William Gosset, but he published under the nom-de-plume
“Student.” As you might imagine, there is a different distribution/curve for each n. The one
for n = 4 is far wider than the Gaussian one that applies for the n = ∞ that allows σ to be
perfectly estimated, whereas the one for n = 30 is only slightly wider than the Gaussian one.
For example, for the 95% range, the limits are ±3.182 for n = 4, ±2.26 for n = 10, ±2.05 for
n = 30, and ±1.96 for n =∞ (the Gaussian range).
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To see that n doesn’t necessarily have to be that large, as long as the
distribution of individual observations is not too skewed, consider the variation
in the length of (number of letters in) individual words. In a famous text,
several thousand words long, the mean, µ, is 4.02 letters; the SD, σ, is 1.88.
The distribution, in the first figure, has a long right tail.
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Length of word (no. of letters)
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Frequency

Mean = 4.02
SD     = 1.88

However, the distributions of the means of all the different possible samples of
a given size, shown in the second figure, are much closer to Gaussian. When
n = 4, the sampling distribution of all possible ȳ’s still has a slightly long right
tail, but if one uses n = 25, the sampling distribution is quite close to
Gaussian.
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of size n =  4 SE =  0.94

of size n =  9 SE =  0.63

of size n =  16 SE =  0.47

all possible samples

of size n =  25 SE =  0.38

The two diagrams above show these these laws in action. The SD for the
lengths of individual words is σ = 1.88. Note how skewed the distribution of
the lengths of individual words is, and how close to Gaussian the distribution
of possible sample means is.

An Aside...

Is this SD really an SD? Is there this little variation in head sizes?

Stephen Jay Gould’s book “The Mismeasure of Ma” discusses a table from a
1978 article by Epstein. Gould read the original article and found that “a
glance at Hooton’s original table (The American Criminal, v. 1, Harvard U.
Press, 1939) reveals that the SE column had been copied and re-labelled SD”
Then, using this SD, and the n, to compute a much smaller-than-it-should-be
SE, Epstein was able to “show” that the CI’s for mean head circumference for
people of varied vocational statuses did not overlap, and thus that there were
“statistically significant” inter-group differences.

The astute reader would have noticed that the “SDs” in the table should not
decrease with increasing n. Yes, SDs calculated from small n are less stable
than those calculated from large ones, but the SD from a smaller n is as likely
to be greater than the SD from a bigger n 1 as it is to be smaller. If SD’s were
smaller (some argue larger) in larger samples, then the SD of the diameters of
red blood cells should be different for a large adult than a smaller adult!

The last column is in fact a column of SE’s; if you back-multiply by each
√
n,

you will find that the 7 SD’s implied by the last column range from just 7.6
to 12.5, and with no obvious correlation with the n. Also, an SD of 10-12cm
(CV≈2%) makes sense (think of hat-sizes!).

Mean and standard deviation of head circumference for people of varied
vocational statuses∗.

Vocational Status N Mean (in mm) “S.D.”
Professional 25 569.9 1.9
Semiprofessional 61 566.5 1.5
Clerical 107 566.2 1.1
Trades 194 565.7 0.8
Public service 25 564.1 2.5
Skilled trades 351 562.9 0.6
Personal services 262 562.7 0.7
Laborers 647 560.7 0.3
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5.4 How do these laws help us?

Statistical laws help answer the question: how far a possible estimate
might be from the true value? i.e., how far ȳ might be from µ?, how
far p might be from π?

Our ‘mean length of words in a famous text’ example in the appendix is a
contrived one: why would we just use a sample of n = 25 or even n = 100 if we
already know the parameter of interest, namely µ = 4.02, in the full text? The
point of showing it is to convince you that the formula can also be expected to
work in situations where we use the mean or proportion in a sample to estimate
a population mean µ or a population proportion π.

Since we know µ in this contrived example, we can use the Figure to verify that
indeed (approximately) 68% of the possible estimates fall within 1 SE of µ, 80%
fall within 1.28 SE’s of µ, 95% within 1.96 SE’s of µ, etc.

In practice, we are interested in the reverse: how far might the true
value be from the estimate we actually observed in the sample ? i.e.,
how far µ might be from ȳ ? how far π might be from p ?

To estimate the average word length (“µ”) in William Harvey’s 1628 treatise
On The Motion Of The Heart And Blood In Animals, JH took a random sample
of n = 100 words from the treatise. The mean length of these 100 words was
4.56 letters, and the standard deviation of the 100 lengths was 2.40 letters.
Thus, our “point estimate” of µ is 4.56, but this may be an under- or an
over-estimate of µ. Can we work backwards and bracket (put limits on)
µ?

Here is where the ‘hypothetical’ or ‘what if’ can help us. We will ‘try out’ various
values of µ and see how ‘far’ or how ‘extreme’ – probabilistically speaking – our
4.56 is with these various trial values. We will keep (‘rule in’) those trial µ
values against which the 4.56 is not extreme, and exclude (‘rule out ’) those trial
µ values against which it is.

We will say the sample mean is ‘extreme’ if the probability of a sample mean
this far away, or further away, from µ is less than 2.5% in either direction. In a
Normal (Gaussian) distribution, this corresponds to a value that is 1.96 standard
deviations from the mean.19 Conversely, ‘not extreme’ will thus denote any value
that is less than 2 standard deviations from the mean. In our context, since
we are dealing with a statistic, i.e., a value calculated from an aggregate of
observations, we will use the more descriptive “standard error” of the statistic,
in keeping with our convention to reserve the term standard deviation for the

19This 1.96 is often rounded to 2, but here JH prefers to leave it at 1.96, since a 2 might be
mistaken for something else.

variation of individual values, i.e. the lengths of individual words in our example.

Lets start with a trial µ of say 5.4. If the (unknown) µ were indeed 5.4, then
our observed 4.56 would be an under-estimate. But is it plausible to have this
large an under-estimate?

The ‘laws’ above tell us that the probability of obtaining an estimate as low as,
or lower than the one we observed, if indeed µ were 5.4, can be calculated using
a Normal distribution centered on 5.4, and with a SE of 2.40/

√
100 = 2.40/10 =

0.24. Under this scenario, the observed value of 4.56 is 0.84 letters below the 5.4
we are currently entertaining as the mean for the entire treatise. Since 1 SE
is 0.24 letters, ‘0.84 letters below µ = 5.4,’ corresponds to an observation that
is 0.84/0.24 = 3.5 SE’s below µ = 5.4. This makes the 4.56 letters ‘extreme’
relative to this µ. Thus we need to move our trial value of µ downwards, in the
direction of the 4.56, so that the 4.56 is no longer extreme relative to it.

4.0 4.5 5.0 5.5

 
 ●

(= 4.56)
_
y

1.96 SE's
µµ

Lower

2.5%

1.96 SE's µµ

Upper

2.5%

In order to find the scenario in which the 4.56 is just at the boundary between
extreme and not, we therefore need to have 4.56 be 1.96 SE’s below µ. To do
this, we solve

µ− 4.56 = 1.96× SE,
to obtain

µ = 4.56 + 1.96× SE = 4.56 + 1.96× 0.24 = 5.03

The value of 5.03 will thus serve as the ‘upper limit’ for µ. It is written as
µupper = 5.03 or µU = 5.03 for short.

Now, it is easy to see how to get the lower limit for µ, the value against which
the observed 4.56 is just as extreme an over-estimate. We need to have 4.56 be
1.96 SE’s above µ. To do so, we solve

4.56− µ = 1.96× SE,
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i.e.

µ = 4.56− 1.96× SE = 4.56− 1.96× 0.24 = 4.09

Thus our Lower and Upper limits for µ are µL = 4.09 and µU = 5.03 letters,
respectively. The interval, or range of parameter values, between these two
limits is called a Confidence Interval for the parameter µ.

Properties of a Confidence Interval

As shown in the Fig. on p 12, these limits were constructed so that the lower
2.5% of the distribution centered at µU is excluded, along with the upper 2.5%
of the distribution centered at µL. This allows us to say that the interval within
these limits is a “95% confidence” interval. Confidence intervals (CI’s) are
often misunderstood, and so you need to appreciate exactly how a CI should
— and should not — be interpreted. One helpful way to interpret it is
to understand that 95% of all 95% confidence intervals – ‘trap’ or ‘include’
the parameter value one would obtain with an infinite sample size.20 Thus,
absent non-sampling biases, and selective disclosure/publication, sample survey
companies, and scientists who publish results based on finite samples, would be
justified in putting the claim

“On average, for every 100 “95% CI’s” we supply/publish, on average,
95 of them21 include the true parameter value.”

in their brochures. This wording emphasizes that the “95% confidence” arises
from the daily applications of the statistical procedure.

The difference between this type of claim, and the ones made by surgeons (“the
procedure is uneventful in 95% of patients like you”), or those who sell you a
product (“its works for 95% of my customers”) or give you a recipe for making
a soufflé (“almost surefire”) is that if you go for it, you will find out if you were
the 1 in 20 or the 19 in 20. But, with a 95% CI, you don’t usually get to find out
if it was successful, i.e., if it did in fact ‘trap’ or ‘include’ the parameter value.
The only exceptions are if someone subsequently measures the entire universe,
or if your and all subsequent estimates made by others are combined (in what
is known as a meta-analysis) so as to have a quite narrow confidence interval.

20I hesitate to say the ‘true’ value, because non-sampling errors, such as biases in selection
or participation of subjects, or in the measurement instruments. Unlike sampling variation,
these biases can not be reduced by taking a larger sample size. Thus, if we used the question
”Are you bilingual in Canada’s two official languages” (rather than the more ‘operational’
definition “Can you keep up a conversation in both for at least 15 minutes?”), asking this
question of everyone, e.g. at census time, would will not remove the over-statement that this
type of question invites.

21Polling companies often use “19 times out of 20” instead of 95%.

5.5 Confidence Intervals

Anatomy / Components of a Confidence Interval (“CI”)

• Isn’t it always “your answer ± something”?

In the exposition above, we took a somewhat tortuous route to arrive at what
seems like a simple formula for the CI limits for a parameter θ:

Upper and Lower Limits = estimate± some multiple of its SE

The end result raises the obvious question: “why not simply define a CI by this
formula?” The answer is that this simplistic formula does not always work. It
works fine for a Statistics Canada survey when they observe that the proportion
of ‘positives’ in a sample of n = 900 is π̂ = 0.20, and, using σ̂ = 0.4,22 calculate
the 95% CI as

0.20± 1.96× 0.4/
√

900 = 20%± 3 percentage points

But what if, in a phase II study, an experimental treatment for advanced can-
cer showed no response in n = 4 consecutive patients, so that the estimated
proportion of successes is π̂ = 0/4 = 0.00 ? Should the 95% CI for π be

0.0± 1.96× 0.0/
√

4 = 0%± 0 percentage points ?

No! Even if this treatment would help an average of 1 patient in 3, i.e., if
π = 0.33, it would not be that surprising to ‘strike out’ in the first 4: the prob-
ability of 0 successes would be 0.674 = 0.20, or 20%, not that unlikely.23 For
extreme situations, we must determine the (asymmetric) limits by separate trial-
and-error calculations for the upper, and lower limits, and using exact distri-
butions (e.g. Binomial for proportions, Poisson for rates involving person-time
denominators), rather than ill-fitting Gaussian-approximations. Thus, based on
observing 0 successes out of 4, the 95% lower limit for π is (naturally) zero,
while the ‘exact’ 95% upper limit is 60%.

22The SD of a sample of 0’s and 1’s, with 20% 1’s and 80% 0’s, is σ̂ =
√

0.8× 0.2 = 0.4.
23See Hanley JA, Lippman-Hand A. If nothing goes wrong, is everything all right? Inter-

preting zero numerators. JAMA. 1983 Apr 1;249(13):1743-5.
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What is the quantity after the ± called?

Answer: the Margin of Error.

What factors determine the magnitude of the Margin of Error?

The Margin of Error is a multiple of the Standard Error (SE), so the two de-
terminants are

i. The multiple (i.e, the number of SE’s in the table below), which in turn is
determined by the the ”degree of confidence” used. The multiples in the
first row are for large enough sample sizes that the sampling distribution
is closely approximated by a Normal (Gaussian, ‘z’) distribution; when the
sample size is smaller, somewhat larger multiples are used:

Multiples of SE for different confidence levels:

Confidence → 50% 60% 70% 80% 90% 95% 99% 99.9%
Normal(‘z’) 0.67 0.84 1.04 1.28 1.64 1.96 2.58 3.29
t, n = 30 0.68 0.85 1.06 1.31 1.70 2.05 2.76 3.66
t, n = 15 0.69 0.87 1.08 1.35 1.76 2.14 2.98 4.14
t, n = 5 0.74 0.94 1.19 1.53 2.13 2.78 4.60 8.61

ii. The SE, which in turn is proportional to σ (the variation of individual
values) and inversely proportional to

√
n (the square root of the sample

size).

Thus, if one wishes to halve the SE, and thus halve the width of the CI,
one would need to quadruple (not double!) the sample size. See the
SE’s for the sample mean of a sample of various numbers of words. The
SD of individual word lengths was 1.88; the SD for means of all possible
samples of size n = 4 was 1.88/

√
4 = 1.88/2 = 0.94; for means based on

samples of size n = 9 it was 1.88/
√

9 = 1.88/3 = 0.63; etc.

You might be tempted to narrow the CI by taking a smaller multiplier
(i.e., move to left in the table above). But, if you do, you also diminish the
level of confidence. For example, if asked to give – out of your head, without
checking with historical meteorological records – a confidence interval for the
mean temperature in July in Montreal, you could give a quite narrow one (I
might give “21.2C to 21.5 C” but I would not be very confident that this covers
the true value. On the other hand, I could always give “15C to 35 C” and I
could be virtually 100% confident that it would cover the true value. Without
increasing the amount of information one puts into the estimate, you can simply
trade more greater precision for less confidence, or vice versa.

“Error bars” in research articles

Reports routinely use error bars in graphs of their results. But in many of these,
it is not explicitly stated what the error bars are. They could be...

• ±1SE: thus – if the sampling distribution is Gaussian – it is a 67% CI.

• ±1.96SE′s: thus it is a 95% CI.

• ± some other number of SE′s, in which case it is a ??% CI.

• ±1SD, or ±1.96SD′s: if so, it describes the variability of the individual
values that went into the mean – rather than the statistical precision of the
mean itself, a quantity that involves

√
n. Since the SD is

√
n times larger

than the SE, error bars are unlikley to be some ± number of SD’s.

Advice: Always look in the legend, or methods section, to find out what the
error bars refer to. If they are nor explained, but you have some sense of the
SD, and know the n, you can often figure it out.

CI based on ±M.E. on log scale is asymmetric when back-converted.

To ensure a specified Margin of Error, how big should n be?

In our sampling of Harvey’s treatise, suppose we wished to estimate the mean
fairly precisely, with a margin of error in our 95% CI of say ±0.1 letters. To
achieve this, we would need to have an n such that

1.96× SE = 1.96× 1.88/
√
n = 0.1.

We can solve this for n to obtain

n =

{
1.96× σ

0.1

}2

.

To determine n, we also need an estimate of how large σ is . But we are not in
the position we were in our first example, where we knew – from a full electronic
source, and software that could measure all of the word lengths – that σ was
exactly 1.88. After the fact, once we have our sample of n from the treatise,
we will look at the variation in the sample to get a better estimate, σ̂, of σ.
But for now, we need to project what this is likely to be. We might want
to base our projected σ̂ on what we know – from all our past experience and
intuition – about the lengths of words. We can also use the fact that σ was
1.88 in a real text, admittedly a simpler one – from many centuries earlier. So
to be on the safe side, we might want to make a conservative projection, say
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σ = 2.5. If we use this, we calculate that we will need a random sample of
n = (1.96× 2.5/0.1)2 = 2400 words.

Why so large a sample size in this example? The reasons are two-fold

• We asked for quite a narrow margin of error: If we are dealing with an
average word length of say 4.5 letters, then the margin of error of ±0.1
letters in absolute terms represents just (0.1/4.5) × 100 = 2.2% margin of
error in relative terms.

• The word to word variation in length is substantial: the SD is approximately
2.5 letters. With respect to the average of 4.5 letters, 2.5 represents a
coefficient of (inter-individual) variation (CV) of (2.5/4.5)× 100 = 55% !

What n would it take to determine the mean height of female students at McGill
to within a margin of error of ±1% in a 95% CI?

Here we are dealing with maybe a SD of approx 7cm and a mean of say 165cm,
i.e., a coefficient of (inter-individual) variation (CV) of (7/165)× 100 ≈ 4.25%

Thus a sample of just n = 100 would give a (relative) SE of 4.25% ÷
√

100 =
0.425%, and so the Margin of Error in a 95% CI would be ±1.96 × 0.425 =
±0.83%.

The reason we need fewer than 100 in this situation is the narrow coefficient of
(inter-individual) variation (CV) of human heights to begin with.

Q: What is your estimate of the coefficient of (inter-individual) variation (CV)
of human weights in the 18-25 age range?

In some circumstances, we need considerable precision.24

24What sample size would be needed to determine the unemployment rate so that the margin
of error in a 95% CI is ± 0.2 percentage points?
± 0.2 percentage points, when converted to a proportion, is ±0.002. We are dealing with

’0/1’ data (person is employed/unemployed) where the mean is approx. 0.06, and so the
interindividual variation in these 0’s and 1’s is approx. σ =

√
0.06× 0.94 = 0.24. Thus the

required sample size, if we were to take a simple random sample, is

n = (1.96× 0.24/0.002)2 ≈ 53, 000 persons!

StatsCan narrows the margins of error, especially those for changes in the unemployment rate,
by using more sophisticated surveys that follow sampled persons over several months.

5.6 Key Points & Some Pointers

• Section 5.5 is the most important one.

• The precision of a sample mean is a function of the variation from obser-
vation to observation, and of the number of observations.

• Your statistics courses probably emphasized statistical ‘tests’ and P-values
more than CI’s. That’s a pity: CI’s are more useful, since they provide a
measure of precision around the estimate. And, you have a better chance
of correctly explaining them to your in-laws than you have of explaining a
P-value. And over the years, more journals are starting to insist on CI’s.

• The diagram on p12 makes it easy to start to describe the basis for a CI:
start by worrying that your point estimate is an over-estimate; then worry
that it is an under-estimate.

• For the exam, you should know that the SE of a sample mean or propor-
tion is larger if the individual observations are highly variable, and that it
involves the square root of the sample size, not the sample size itself.

• For the exam, you will not be expected to remember the various percentiles
of the various t-distributions, but it might be good to remember the ±1.96
(or even just ± 2) for the 95% limits in a Gaussian (“Normal”) distribution.
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6 Back to Mr. W.P. [from Section 4]

TO WHICH CATEGORY DOES HIS AVERAGE DBP BELONG?

Recall that in his pre-employment physical, Mr. W.P.’s blood pressure was
130/95 mmHg. Suppose that in 5 new measurements, each one taken on a
different occasion, the diastolic pressures were 99, 98, 101, 95, and 90. Thus
their average is 96.6 (SD 4.3); this gives a SE of 4.3/

√
5 = 1.9 With n = 5, we

need to go out 2.78 SE’s in each direction to have a 95% CI. Thus

95% CI for µDBP : 91.3 to 101.9

These limits would put his mean rather firmly above 90-into the mild hyperten-
sive range. Had the measurements been 89, 102, 97, 87 and 95 (mean 94, SD
6.1), the CI would have been a more equivocal 86.4 to 101.6. In such a case, a
more extensive series would be needed to narrow the interval.25

7 Confidence Interval for Difference of 2 Means

Clinical Problem 3. Did Diuretic Therapy Lower the Blood Pressure?

A 50-year-old asymptomatic woman, Mrs. O.M., comes for a routine physi-
cal examination and you discover a blood pressure of 150 mmHg systolic and
105 mmHg diastolic. You start her on 50 mg of hydrochlorothiazide daily (a
frequently used diuretic, antihypertensive drug), and 1 month later, her blood
pressure is 140 mmHg systolic and 95 mmHg diastolic. She complains that
she thinks the new medicine has made her slightly weak and she wants to stop
taking it. Before you urge her to continue with the hydrochlorothiazide, you
should be sure that it has lowered her blood pressure. Do the blood pressure
measurements noted above convince you that the medicine has in fact lowered
her blood pressure, or is there a reasonable chance that the observed difference
in blood pressure might have occurred without therapy?

As we have seen, blood pressures are variable and we may well need measure-
ments from more than one occasion to get a solid basis for decisions. In the
case of Mrs. O.M., we have 2 diastolic measurements from each of npre = 4
pretreatment visits with average values: 102, 105, 110, and 103. On npost = 3
recent visits since beginning the treatments, her averages have been: 95, 93, and
97. We want to use these two sets of measurements to assess the improvement.

25It may not always be possible – even with a quite large n – to have the interval fall
unequivocally into a single 10-mmHg or 20-mmHg band – for example, if µ were truly 89.5, it
would take a very large sample size to have a high probability that the CI did not overlap 90.

CI for the difference between 2 means

The difference between the two sample means is

ȳpre − ȳpost =
102 + 105 + 110 + 103

4
− 95 + 93 + 97

3
− = 105− 95 = 10

Since there are now two sources of imprecision, the imprecision in the difference
of two independently established means is greater than each one alone. Fortu-
nately, the SE for the difference (or sum!) of two random quantities is not the
sum (or difference) of the two SE’s. Instead, SE’s “add in quadrature”, just
like the rule for the length of the longest side of a right-anged triangle:

SEsum 6= SE1 + SE2 ; SEdiff. 6= SE1 − SE2 .

(SEsum)2 = (SE1)2 + (SE2)2 ; (SEdiff.)2 = (SE1)2 + (SE2)2 .

SEsum =
√

(SE1)2 + (SE2)2 ; SEdiff. =
√

(SE1)2 + (SE2)2 .

Thus, the standard error of the difference of two sample means is

SE of {ȳ1 − ȳ2} =
√

(SE of ȳ1)2 + (SE of ȳ1)2 .

Thus, in the case of one µ, when the sample sizes are large enough, the 95% CI
for µ1 − µ2 is of the same “answer ± multiple of SE” form, i.e.,

{ȳ1 − ȳ2} ± 1.96× SE of {ȳ1 − ȳ2} .

In our example, the sample sizes are just 4 and 3, and so we need to use ± some-
what more than 1.96 times the SE. The calculations are a bit more complicated,
and so one one would normally use a statistical package, or Excel, to obtain the
CI. However, a rough sketch is given here for those who don’t like to use ‘black-
box’ calculations.26 The estimate of σ from these data is σ̂ ≈ 3mmHg,27 so the
SE’s for the two means are 3/

√
4 and 3/

√
3 respectively. Thus,

SE for {ȳ1 − ȳ2} ≈
√

(3/
√

4)2 + (3/
√

3)2 ≈ 2.3 .

26In order to estimate σ, we take the square root of a weighted average of the squared SD’s in
each of the two samples, insert it into the last equation above to get the SE for the difference.
We also use as a multiplier of the SE. These calculations apply when it can be assumed that
the SD in ‘universe’ 1 is the same as it is in ‘universe 2.’ Matters become more complicated
if one doesn’t feel comfortable with this assumption. Fortunately, when the two n’s are large,
say 30 or more in total, the multiples from the Normal Table (1.96 for 95% confidence, etc)
are accurate enough.

27If interested, see a statistics text under the index ‘pooled estimate of variance’.
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This is a bit more technical that can be covered in a single lecture, but, in
order to estimate σ, we had to compute the 3 independent28 variations around
ȳpre = 105, and the 2 independent variations around ȳpost = 95, so our estimate
is based on 3 + 2 =5 “degrees of freedom”29 Since this is a very small number, we
can’t take 1.96 as our multiple. Instead, the table for Student’s ‘t’ distribution,
with 5 degrees of freedom, tells us that the multiple needs to be 2.57. Thus,
the 95% CI for {µpre − µpost} is approximately

10± 2.57× SE for {µpre − µpost} = 10± 2.57× 2.3 = 10± 5.9 = 4.1 to 15.9 .

We notice that 0 is not in the interval. This means that we are confident
that Mrs. O.M.’s mean diastolic blood pressure is lower. The change is not
readily accounted for by sampling variation. Because we are reasonably confi-
dent that the hydrochlorothiazide has reduced her pressure, we might urge her
to continue it. Her weakness may be unrelated to the drug, and it may disap-
pear. [The wording and conclusions in this last paragraph are Ingelfinger’s, not
JH’s.]

The initial evaluation of a patient is often complicated by the fact that obser-
vations vary from minute to minute and day to day. The greater the potential
for variation, the more the need for performing many observations over time to
establish the patient’s average condition.

28With 1 observation, one cannot assess variation. With 2, the two deviations from the
mean add to zero, so effectively we have only 1 ‘independent’ deviation; with 3, we have 2 –
since all 3 must sum to zero; etc. Each independent assessment is one ‘degree of freedom.’

29We have 5 ‘independent assessments’ of the variation, 3 from the 4 ‘pre’ observations ,
and 2 from the 3 ‘post’ observations.

7.1 Key Points & Some Pointers

• Its déjà vu all over again, once you get the generic pattern. All that changes
is that the SE for a difference of two independent estimates has 2 compo-
nents, one for each estimate.

• Don’t try to remember the exact formula for the SE of a difference, since
it will usually be computed by a statistical package. But do appreciate
that if you subtract one independent estimate from another, the SE of the
difference will be larger than the SE of each of the two estimates.

• It is better to calculate a single CI for the difference, rather than to compute
2 CI’s and worry about their overlap. Two 95%’s don’t translate into the
single 95% CI you need: the 2 CIs can overlap slightly even though the
difference is statistically significant.

• Don’t fuss about the technicalities when the 2 sample sizes are small, and
one has to use the t- distribution, and the concept of degrees of freedom.
In the application in small-group exercise Q2 (ii), the relevant items have
already been calculated for you so you can complete the hand-calculation.
These technicalities were included in footnotes 26 and 27 above because
those of you who have taken a statistics will remember it (even if not why)
and will ask why we don’t mention it.
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8 P-Values and Statistical ‘Tests’

8.1 “P-Value”

Defn. A probability concerning the observed data, calculated under a Null
Hypothesis assumption, i.e., assuming that the only factor operating is
sampling or measurement variation.

Use To assess the evidence provided by the sample data in relation to a
pre-specified claim or ‘hypothesis’ concerning some parameter(s) or data-
generating process.

Basis As with a confidence interval, it makes use of the concept of a distribution.

THE   NULL
HYPOTHESIS

"Find out who set up
this experiment. It
seems that half of the
patients were given a
placebo, and the other
half were given a
different placebo"

American Scientist 1982; 70:25.

Example 1 – from Design of Experiments, by R.A. Fisher

 

 

Lady claims she can tell which was poured first...

MILK

MILK

 

 

4 4
4
4

0
4 0

4

B L I N D   T E S T

Lady Says

The “Null Hypothesis” (Hnull) states that she can not tell them apart.30

The “Alternative” Hypothesis (Halt) is that she can (can you think of an-
other?). We rank the possible test results according to the degree of ev-
idence against the null hypothesis. The “P-value” is the probability,
calculated under the null hypothesis, of observing a result as extreme
as, or more extreme than, the one that was obtained/observed. In this
case, the observed result is the most extreme, and so the P-value (cf next page)
is

Pvalue = Prob[correctly identifying all 4, IF merely guessing] = 1/70 = 0.014.

The interpretation of such data is often couched in a rather simplistic way, as
if these data alone should decide: i.e. if Pvalue < 0.05, we ‘reject’ Hnull; if
Pvalue > 0.05, we don’t (or worse still, we ‘accept’ Hnull). Try to avoid such
simplistic ‘conclusions’.

30Under this assumption, the blind test is equivalent to being asked to guess which 4 of
the following 8 Gaelic words are the correctly spelled ones. You are told that 4 are correctly
spelled and 4 are not.

1 2 3 4 5 6 7 8
madra olscoil cathiar tanga doras cluicha féar bóthar
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Possible
Results

Probability of
each Possible Result,
 
IF JUST GUESSING

(i.e. under Null H)
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3 1

31

●
1 / 70

4 0

40

Example 2 – [Preston-Jones vs. Preston-Jones, English House of Lords, 1949]

A divorce case in which the sole evidence of adultery was that a baby was born
almost 50 weeks after the husband had gone abroad on military service. The
appeal failed. To quote the court...

The appeal judges agreed that the limit of credibility had to be drawn
somewhere, but on medical evidence 349 (days) while improbable, was
scientifically possible.

25 30 35 40 45 50

0
5

10
15

20
25

30

Number of Weeks

 

% lasting
the indicated 
no. of weeks

Pregnancy Duration:

17,000 cases > 27 weeks

(Source: Guttmacher)

The P-value is calculated under the “Null” assumption that the husband was

the father, and is thus the ‘tail area’ or probability correspond to an observation
of ‘50 or more weeks’ in the above distribution.

Effectively, one is asking: What percent of the reference distribution
does the observed value exceed? The same system is used to report how
extreme a lab value is – we are told where this value is located in the distribution
of values from a healthy (reference) population.

In the reporting of statistical tests, it is common to define ‘extreme’ as either
‘hyper’ or ‘hypo’ and this to consider the ‘alternative hypothesis’ as 2-sided.

8.2 P-Value via the Normal (Gaussian) distribution.

The first example used a specialized mathematical distribution as the ‘refer-
ence’ (null) distribution while the second used an empirical population-based
one. When judging the extremeness of a sample mean or proportion (or a dif-
ference between 2 sample means or proportions) calculated from an amount
of information that is sufficient for the Central Limit Theorem to apply, one
can use the Gaussian distribution to readily obtain the P-value. One simply
calculate how many standard errors of the statistic, SEstatistic, the statistic is
from where the null hypothesis states the true value should be. This “number
of SE’s” is in this situation referred to as a ‘Zvalue.’

Zvalue =
statistic− its expected value under Hnull

SEstatistic
.

The P-value can then be obtained by determining what percent of the values in
a Normal distribution are as extreme or more extreme than this Zvalue.

If the sample size is small enough that the value of the SEstatistic, is itself
subject to some uncertainty, one would instead refer the “number of SE’s” to a
more appropriate reference distribution, such as Student’s t- distribution.
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8.3 The fallacy of the Transposed Conditional: the Pros-
ecutor’s Fallacy: What the P-value is NOT

The P-value is often mistaken for something very different.31

The P-value is a probability concerning data, conditional on –
i.e. given – the Null Hypothesis being true.

Naive (and not so naive) end-users sometimes interpret the
P-value as the probability that the Null Hypothesis is true,
conditional on – i.e. given – the data.

Only very naive physicians mix up the complement of specificity (i.e.
the probability of a ‘positive’ test result when in fact the patient does
not have the disease in question) with the positive predictive value
(i.e. the probability that a patient who has had a ‘positive’ test
result does have the disease in question).

Statistical tests are often coded as ‘positive’ or ‘negative’ (or ‘sta-
tistically significant’ or not) according to whether the results are
extreme or not with respect to a reference (null) distribution. Med-
ical tests are also often coded as ‘positive’ or ‘negative’ according to
whether the results are extreme or not with respect to a reference
(healthy) distribution. But a test result is just one piece of data, and
needs to be considered along with all the rest of the evidence before
coming to a ‘conclusion.’ Likewise with statistical tests: the P-value
as just one more piece of evidence, hardly enough to ‘conclude’ any-
thing. The probability that the DNA from the blood of a randomly
selected (innocent) person would match that from the blood on the
crime-scene glove was P=10−17. Do not equate this Prob[data | in-
nocent] with its transpose: writing “data” as shorthand for “this or
more extreme data”, we need to be aware that

Pvalue = Prob[ data | H0] 6= Prob[ H0 | data].

The article “ Are All Significant P Values Created Equal? The Analogy Between
Diagnostic Tests and Clinical Research” by WS Browner & et al. in JAMA
1987;257:2459-2463 exploits the analogies between medical and statistical tests,
and warns us not to transpose these two fundamentally different concepts.

31The larger text on this page is meant to convey the importance of this warning.

The prosecutor’s fallacy: Who’s the DNA fingerprinting pointing at?

New Scientist, 29 Jan. 1994, 51-52. David Pringle

Pringle describes the successful appeal of a rape case where the pri-
mary evidence was DNA fingerprinting. In this case the statistician
Peter Donnelly opened a new area of debate. He remarked that

forensic evidence answers the question “What is
the probability that the defendant’s DNA profile
matches that of the crime sample, assuming that
the defendant is innocent?”

while the jury must try to answer the question
“What is the probability that the defendant is in-
nocent, assuming that the DNA profiles of the de-
fendant and the crime sample match?”

Donnelly suggested to the Lord Chief Justice and his fellow judges
that they imagine themselves playing a game of poker with the Arch-
bishop of Canterbury. If the Archbishop were to deal himself a royal
flush on the first hand, one might suspect him of cheating. Assum-
ing that he is an honest card player (and shuffled eleven times) the
chance of this happening is about 1 in 70,000.

But if the judges were asked whether the Archbishop were honest,
given that he had just dealt a royal flush, they would be likely to
place the chance a bit higher than 1 in 70,000. The error in mixing
up these two probabilities is called the “the prosecutor’s fallacy,”
and it is suggested that newspapers regularly make this error.

Apparently, Donnelly’s testimony convinced the three judges that
the case before them involved an example of this and they ordered
a retrial.

from Vol 3.02 of Chance News.
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8.4 Relationship between P-value and CI

If you read the description of how a confidence Interval (CI) is formally derived,
you will see that there is an intimate connection between P-values and CI’s.

3.5 4.0 4.5 5.0 5.5 6.0

 

 

●
1.96 SE's

P = 0.025

1.96 SE's

µµ
Null

NULL

NULL

●
1.96 SE's

P < 0.025

1.96 SE's

µµ
Null

● Observed Statistic

If, as in the upper e.g. in the graph, the upper limit of the 95% CI just touches
the null value, then the 2- (1-) sided) P-value is 0.05 (0.025). If, as in the lower
e.g., the upper limit excludes the null value, then the 2- (1-) sided) P-value is
less than 0.05 (0.025). If (e.g not shown) the CI includes the null value, then
the 2-sided P-value is greater than 0.05, and thus the observed statistic is “not
statistically significantly different” from the hypothesized null value.

8.5 Key Points & Some Pointers

• P-values & ‘significance tests’ are widely misunderstood & misused. Very
large or very small n’s can influence what is ‘statistically significant’. Use
CI’s instead. Pre study power calculations (the chance that results will be
‘significant’, as a function of the true underlying difference) can help, but
post-study, i.e., after the data have spoken, a CI is much more relevant.

9 Statistical Inference: beyond the individual

“Statistical Inference” techniques (CI’s, P-values, ...) are the same whether the
focus is on the individual patient, as in the earlier e.g.’s, or on a larger universe
as in the e.g.’s below. The only differences are what the parameters (µ, π, . . . )
stand for, and the fact that the main source of variability will probably be
inter -individual variation. Because this variation can be considerable, n’s tend
to be larger, unless – as in the starch blocker e.g., – we can reduce it by careful
lab-work and by matching on the large extraneous and unwanted sources of
variation. In addition, if – as in the breast-feeding e.g., – the ‘outcome’ is
measured on a (yes/no, all-or-none) scale, then the coefficient of inter-individual
variation is larger than if a more refined quantitative scale is used.

Example 1 Do infant formula samples shorten the duration of breastfeeding?
– [Bergevin Y, Dougherty C, Kramer MS. Lancet. 1983 May 21;1(8334):1148-51.]

Randomized Clinical Trial (RCT) which withheld free formula samples [given
by baby-food companies to breast-feeding mothers leaving Montreal General
Hospital with their newborn infants] from a random half of those studied.

Mothers
At 1 month given not given Total

sample sample Conclusion...
Still Breast 175 182 357

feeding (77% ) (84% ) (80.4%) P=0.07. So, ...
the difference is

Not Breast 52 35 87 “Not Statistically
feeding Significant” at 0.05 level
Total 227 217 444

−25 −20 −15 −10 −5 0 5

Difference in % Breastfeeding at 1 month

 

●95% CI  −−−> 

+ 0.6 %−14.1 %
−6.8 %

NO MATTER WHETHER THE P-VALUE IS “STATISTICALLY SIGNIFI-
CANT” OR NOT, ALWAYS LOOK AT THE LOCATION AND WIDTH OF
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THE CONFIDENCE INTERVAL. IT GIVES YOU A BETTER AND MORE
COMPLETE INDICATION OF THE MAGNITUDE OF THE EFFECT AND
OF THE PRECISION WITH WHICH IT WAS MEASURED.

THIS IS AN EXAMPLE OF AN INCONCLUSIVE NEGATIVE STUDY,
SINCE IT HAS INSUFFICIENT PRECISION (“RESOLVING POWER”)
TO DISTINGUISH BETWEEN TWO IMPORTANT POSSIBILITIES
– NO HARM, AND WHAT AUTHOROTIES WOULD CONSIDER A
SUBSTANTIAL HARM: A REDUCTION OF 10 PERCENTAGE
POINTS IN BREASTFEEDING RATES .

“STATISTICALLY SIGNIFICANT“ AND “CLINICALLY-” (OR
“PUBLIC HEALTH-”) SIGNIFICANT ARE DIFFERENT CONCEPTS.

Example 2 Starch blockers – their effect on calorie absorption from a high-
starch meal. Bo-Linn GW. et al New Eng J Med. 307(23):1413-6, 1982 Dec 2

Abstract: It has been known for more than 25 years that certain plant foods,
such as kidney beans and wheat, contain a substance that inhibits the activity
of salivary and pancreatic amylase. More recently, this antiamylase has been
purified and marketed for use in weight control under the generic name “starch
blockers.” Although this approach to weight control is highly popular, it has
never been shown whether starch-blocker tablets actually reduce the absorption
of calories from starch.

Using a one-day calorie-balance technique and a high starch (100 g) meal
(spaghetti, tomato sauce, and bread), we measured the excretion of fecal calo-
ries after n = 5 normal subjects in a cross-over trial had taken either placebo or
starch-blocker tablets. If the starch-blocker tablets had prevented the digestion
of starch, fecal calorie excretion should have increased by 400 kcal.

However, fecal calorie excretion was the same on the two test days (mean ±
S.E.M., 80 ± 4 as compared with 78 ± 2).

We conclude that starch blocker tablets do not inhibit the digestion and absorp-
tion of starch calories in human beings.

−100 0 100 200 300 400 500

Kcal Blocked

 

● < −− 95% CI
Company's Claim

EFFECT IS MINISCULE (AND ESTIMATE QUITE PRECISE)
AND VERY FAR FROM COMPANY'S CLAIM !!! 

EFFECT IS MINISCULE (AND ESTIMATE QUITE PRECISE)
AND VERY FAR FROM COMPANY’S CLAIM !!!

10 OVERALL SUMMARY

• The difference sources of variation have important implications in patient
management.

• Descriptive statistics should be descriptive, and should suit the pattern of
variation.

• Confidence intervals are preferable to P-values, since they are expressed in
terms of the (comparative) parameter of interest; they allow us to judge
the magnitude and its precision, and help us in ‘ruling in / out’ certain
parameter values.

• A ‘statistically significant’ difference does not necessarily imply a clinically
important difference.

• A ‘not-statistically-significant’ difference does not necessarily imply that
we have ruled out a clinically important difference.

• Precise estimates allow us to distinguish between that which – if it were
true – would be important and that which – if it were true – would not.
Sample size is an important determinant of precision.

• A lab value that is in the upper 1% of the reference distribution (of values
derived from people without any known diseases/conditions ) does not mean
that there is a 1% chance that the person in whom it was measured does not
have some disease/condition; i.e., it doesn’t mean than the a 99% chance
that the person in whom it was measured does have some disease/condition.

• Likewise, a P-value is NOT the probability that the null hypothesis is true.

• The fact that
Prob[the data | Healthy] is small

does not necessarily mean that

Prob[Healthy | the data] is small

• Ultimately, P-values, CIs and other evidence from a study need to be com-
bined with other information bearing on the parameter or process.

• We should not treat any one study as the last word on the topic.

• We need to worry about distortions of a non-sampling kind that are not
minimized by having a large ‘n.’ A larger sample size will not reduce
systematic differences in a comparison.
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11 Small-group Exercises

Q1: Serum Thyroxine (T4) levels

In evaluating their method for determining serum thyroxine (T4) Murphy and
colleagues (1966) measured T4 in more than 1000 patients. Table A shows
the frequency distribution of serum T4 in three series of patients, each series
containing some patients judged to be hypothyroid, some euthyroid, and some
hyperthyroid on clinical grounds.

Table A. Frequency distribution of T4 in three patient series by type
of thyroid disease (male and female patients combined)

T4 Series 1 Series 2 Series 3
↓ Hypo Eu Hyper Hypo Eu Hyper Hypo Eu Hyper

> 16 2 6 1
15.1-16 3 2 0
14.1-15 0 1 1 1
13.1-14 1 1 2 2
12.1-13 2 0 5 1
11.1-12 2 3 2 0
10.1-11 1 6 3 0
9.1-10 10 29 9 1
8.1- 9 21 75 15
7.1- 8 20 153 6
6.1- 7 42 200 37
5.1- 6 37 172 36
4.1- 5 31 121 34
3.1- 4 3 12 10 21 8
2.1- 3 1 1 14 4 3
1.1- 2 3 1 13 1 7
0 - 1 11 2

Mean T4 2.6 6.3 13.8 2.1 6.5 14.4 1.7 6.5 13.4

T4 = thyroxine; hypo = hypothyroid; eu = euthyroid; hyper = hyperthyroid.
From Murphy et al., J Clin Endocrinol, 26:247-256, 1966.

i. Construct probability histograms for hypo-, eu-, and hyperthyroid patients
using the data from Series 2.

ii. What would you choose as the normal range? Why?

iii. Within the normal range there is considerable variation, both intraperson
and interperson. The Figure below shows the variation in plasma T4 in
an individual subject observed on repeated occasions. How much of the
normal range is explained by the intrasubject variability as seen in this

patient? Answer by first visually estimating the standard deviation of (i)
the values for the one individual subject and (ii) the values in Series 2,
and then comparing them. (Note that the data from this figure represent a
sampling over a 36-h period. Seasonal variation in serum T4 level has also
been reported.).

Baseline values of thyroxine (T4) in male subject 205 during 36 h. [from
Azukizawa et al. (1970) J Clin Endocrinol Metab, 43, 533-542.]

iv. You have a patient who is the sister of a woman with Graves disease and
hyperthyroidism. You suspect that your patient may be more likely than
usual to develop a similar illness. Her serum T4 determined 1 year ago was
5 µg per 100 mL. On a recent office visit it was 10µg per l00mL. Does this
change indicate that this patient is developing hyperthyroidism? Why or
why not?

Q2: BP

The goal of treating patients with hypertension is to prevent morbidity and
mortality associated with high blood pressure. The Canadian Hyperten-
sion Education Project (CHEP) 2008 Guidelines recommend that in general,
blood pressure should be lowered to less than 140/90 mmHg and in those
with diabetes or chronic kidney disease, to less than 130/80 mmHg. (See
http://www.hypertension.ca/chep/resource-centre/publications/ if you wish to
have more details on guidelines for the diagnosis and management of hyperten-
sion).

i. Mr. W.P. is started on treatment. He has the following diastolic blood
pressures at his next 4 visits: 86, 92, 82, 84.

(a) The standard deviation of these 4 diastolic measurements is 4.3 mmHg.
From these, one can compute the 95 percent confidence limits for his
mean diastolic blood pressure using the multiple of 3.18 from the t dis-
tribution (The larger multiple – 3.18 rather than the more commonly
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used 1.96 – is to compensate for the fact that the 4.3 is estimated from
just 4 observations). The 95 percent confidence interval is

86 + 92 + 82 + 84
4

± 3.18× 4.3√
4
.

Complete the calculation and interpret the confidence interval.
(b) How many BP measurements would be needed to halve the width of

the 95% confidence interval? [Ignore the fact that the multiple would
be closer to 1.96, and that the calculated standard deviation would not
remain at 4.3 – it could go higher or lower ]

ii. You follow Mr. WP. and his diastolic blood pressure is consistently above
90 mmHg. His pulse on 3 visits is 80, 85, and 75. You prescribe propranolol
(an antihypertensive agent which also slows the pulse). On the next 5
visits, his diastolic blood pressure is unchanged, but his pulse is 70, 65, 75,
60, and 65.

(a) In order to compute the 95 percent confidence limits for the change
in Mr. WP.’s pulse, we use a weighed average of the SD of the n = 3
pulse measures pre propranolol (approx. 5) and the SD of the n = 5
post propranolol (approx. 5.7), to get an SD of ≈ 5.5. Since this
SD estimate is based on only 2 + 4 = 6 ‘degrees of freedom’ i.e. 6
‘independent assessments of variation’, we need to use a t- multiple of
2.47 (rather than 1.96) for the 95% CI. Using p.16 of the notes as a
template, we can calculate the 95% CI for the change in Mr. WP.’s
pulse as

70 + 65 + 75 + 60 + 65
5

− 80 + 85 + 75
3

± 2.57× 5.5×
√

1
5

+
1
3
.

Complete the calculation and interpret the confidence interval.
(b) Do you think the reason his blood pressure has not responded is that

he has not taken the propranolol, or that the dose prescribed was not
effective? Why? What if the difference had been 5 beats/min?

(c) Intuitively, inside the square root sign, why is the 1
5 added to the 1

3 ,
thereby making the margin of error for the difference larger than the
margin of error for each component of the difference?

iii. A patient with a sphygmomanometer at home reports to you that she mea-
sured her diastolic blood pressure once a day for the last 8 days, that the
pressure varied, and the average was 85 mmHg. You check her diastolic
blood pressure and observe a value of 95 mmHg. Ingelfinger asked you

Compute the probability of observing such a large difference (10),
given no true difference (H0). Assume a gaussian distribution
with σ = 6 mmHg. What do you suspect?

Here are the calculations, where Z stands for an observation from a Normal
(Gaussian) distribution with mean 0 and SD 1:

Prob[≥ 10|H0] = Prob

[
Z ≥ 95− 85√

62

8 + 62

1

]
= Prob

[
Z ≥ 10

6.4

]
= Prob[Z ≥ 1.6].

The probability, obtained by looking up what percentage of the Normal
distribution is more than 1.6 SD’s above the mean, is thus approximately
5%. What do you suspect?
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Q3: Male circumcision and risk of HIV-1 and other sexually trans-
mitted infections

The table below “Relative risk (RR) of HIV-1 and other STIs in circumcised and
uncircumcised men” is from the article “Male circumcision and risk of HIV-1
and other sexually transmitted infections in India” by Reynolds SJ et al, Lancet
2004;363:1039-40 (we will be using this article in more depth for the last small
group session). This was a prospective study of 2298 HIV-uninfected men at-
tending sexually transmitted infection clinics in India. Only those seronegative
for each infection at baseline were included in the prospective analysis, with the
exception of gonorrhoea.

RESEARCH LETTERS

support a biological rather than behavioural explanation for
this effect.

Effective HIV prevention strategies, including STI
treatment and prevention, are urgently needed to combat the
current HIV pandemic. Our results suggest that the foreskin
has an important role in the biology of sexual transmission of
HIV. These findings highlight the importance of developing
compounds which block the entry of HIV at the cellular level,
in addition to current prevention strategies. Where culturally
acceptable, clinical trials should be a public health priority to
assess the safety and effectiveness of male circumcision for the
prevention of HIV transmission.
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We compared sociodemographic and behavioural risk
factors between circumcised and uncircumcised men (table 1).
Most circumcised men identified themselves as Muslim
(62·1%) and most uncircumcised men identified themselves as
Hindu (85·8%). Uncircumcised men were more likely to have
a genital ulcer at baseline (30·6% vs 22·0%, p=0·0163) and at
follow-up visits (6·7% vs 3·0% of visits, p=0·0024). Other
characteristics were remarkably similar between circumcised
and uncircumcised men.

Rates of incident HIV-1, syphilis, HSV-2, and gonococcal
urethritis were compared between circumcised and
uncircumcised men (table 2). After adjusting for socio-
demographic and behavioural risk factors in the proportional
hazards model, circumcision had no significant protective
effect on incident HSV-2, syphilis, or gonococcal urethritis.
Circumcision was strongly protective against HIV-1
acquisition, with a 6·7-fold reduction in risk of HIV-1 infection
among circumcised men. Adjusting for development of genital
ulcer disease during follow-up did not significantly affect the
relative risks for incident HIV-1. When non-Muslim men were
assessed separately, the protective effect was not significant
(adjusted relative risk 0·27; 95% CI 0·07–1·10; p=0·0682).

These data confirm previous findings that male
circumcision reduces the risk of HIV-1 acquisition. This
analysis expands on earlier studies by including laboratory-
defined incident STIs as outcomes in the analysis, as well as by
including risk behaviour to control for other potential
differences between circumcised and uncircumcised men. A
unique and important finding from this study was a highly
significant and specific protective effect of male circumcision
on the risk of HIV-1 acquisition. Our data failed to show a
significant protective effect of circumcision on the risk of the
other STIs. These epidemiological data lend support to the
hypothesis that male circumcision protects against HIV-1
infection primarily due to removal of the foreskin, which
contains a high density of HIV-1-specific cellular targets,
including CD4+ T-lymphocytes and Langerhans cells, which
are easily accessible to the virus through the thin layer of
keratin overlying the inner mucosa. Different modes of entry
into the genital tract may explain the lack of protection
observed for the other STIs in this study (eg, Neisseria
gonorrhoeae predominantly infects the urethral mucosa).

Religious affiliation and associated behavioural risks have
been suggested as major potential confounders in assessments
of the association between circumcision and risk of HIV
acquisition, and remain possible limitations of this study
because of the observational nature and potential for residual
confounding. Although, as in previous studies, circumcision
status was strongly linked to religious affiliation in India, the
specificity of the observed protective effect on HIV-1 and the
absence of evidence of difference in sexual behavioural risk
factors between circumcised and non-circumcised populations
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n* Cases Person-years Rate (cases per Unadjusted RR (95% CI) p Adjusted† RR (95% CI) p
100 person-years)

HIV-1
Uncircumcised 2107 165 3012·6 5·5 1·00 (reference) <0·0001 1·00 (reference) 0·0089
Circumcised 191 2 285·3 0·7 0·13 (0·02–0·47) 0·15 (0·04–0·62)

HSV-2
Uncircumcised 1274 178 1628·6 10·9 1·00 (reference) 0·6961 1·00 (reference) 0·7658
Circumcised 125 14 144·1 9·7 0·89 (0·48–1·53) 0·91 (0·51–1·64)

Syphilis
Uncircumcised 1767 128 2383·5 5·4 1·00 (reference) 0·3995 1·00 (reference) 0·2022
Circumcised 160 9 225·4 4·0 0·74 (0·33–1·46) 0·63 (0·31–1·28)

Gonorrhoea
Uncircumcised 2107 110 2991·2 3·7 1·00 (reference) 0·2919 1·00 (reference) 0·5444
Circumcised 191 7 286·9 2·4 0·66 (0·26–1·41) 0·78 (0·35–1·75)

*Only those seronegative for each infection at baseline were included in the prospective analysis, with the exception of gonorrhoea. †Adjusted relative risk estimates from
Cox proportional hazards regression models with covariates: Hindu/non-Hindu religion, level of education, living with family; and time-dependent covariates: calendar year,
age group, marital status, multiple sex partners, number of female sex-worker partners (none, one, two to nine, or ten or more), condom use, tattoos, and medical injections. 

Table 2: Relative risk (RR) of HIV-1 and other STIs in circumcised and uncircumcised men

For personal use. Only reproduce with permission from The Lancet.

i. How do you interpret the 95% CI for the RR for HIV-1 in plain language?

ii. How much confidence do you have in this RR estimate of 0.13?

iii. Interpret the CI for the RR for Syphilis.

iv. What other factors besides male circumcision could explain the estimates?

v. What do the p-values (in the ‘p’ column) add?
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