










BIOS601: Notes, C&H. Ch 14 (Standardized Rates). November 20, 2012.

14 Confounding and Standardization

14.1 Confounding

Experimental vs. non-experimental

JH prefers this implied distinction to the ‘experimental’ vs. ‘observational’
that many authors use. After all, all studies (even randomized trials) make
observations. The word ‘observational’ might also be confused with the term
‘observed only’ for those in the ‘no treatment’ arm of a treated vs. not treated
comparison – even if that comparison is formed experimentally. The word ex-
periment (check any dictionary) refers to ‘a distortion deliberately introduced
in order to learn about its e↵ects’

Miettinen glossary: experiment: a study in which a determinant is inten-
tionally perturbed for reasons none other than the goals of the study itself.”

C&H’s depiction of the epidemiologist as a ‘passive observer’ also focuses on
this key ‘intentional vs not’ distinction.

Extreme examples of confounding

Rather that rely on made-up examples, it is also good to have real ones, and
even extreme ones, to make the point. JH likes the extreme one Does Smoking
Improve Survival? in the Expansion Modules in the website for the Moore and
McCabe Statistics text [also given in the 1st chapter of Rothman’s 2002 intro-
ductory text, with finer age-categories] Twenty-year survival status for 1314
women categorized by age and smoking habits at the time of the original sur-
vey. http://www.whfreeman.com/statistics/ips/eesee4/eesees4.htm.

JH’s other favourite (again of extreme confounding) is the apparent gender-
bias in admissions to the graduate schools at Berkeley (cf. “Sex Bias in
Graduate Admissions: Data from Berkeley”, an article by P. J. Bickel et al.
in Science 7 February 1975: Vol. 187. no. 4175, pp. 398 - 404. [faculty-
specific data are also in worked example of M-H technique in JH’s notes for
‘Chapter 9 epi’ of course 607.] Most confounding is less extreme than in these
two examples.

JH has a third example (a story told as a joke), which involves the taboo
subjects of sex, religion and politics – topics that we are told we should not
bring up in polite conversation, but which he is willing to tell anyway.

Confounding by age (Fig 14.1)

The key is that the crude comparison is distorted by age: the ‘exposed vs.
unexposed’ comparison is really a comparison of ‘somewhat younger exposed’
vs. ‘somewhat older exposed’. The diagram below explains confounding with

fewer numbers: the comparison of the more- (‘A’) vs. less- (‘a’) exposed is
distorted or confounded: the ‘pan’ that supports A is – by itself – heavier (by
an amount C � c) than the one that supports a.
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14.2 Correction for confounding

C&H o↵er two options for minimizing confounding. The first is the ‘classical’
one of holding constant all factors except the one of interest. If one has the
option, one can do this by ‘blocking’, or matching, on these extraneous factors
ahead of time (if one has that option; in the analysis one then combines the
results of the within-statum (within-block) contrasts, under the assumption
that each of these is an estimate of the same (common) parameter value. The
second is the use – when possible – of randomization to make the compared
groups more equal from the outset, and not just on measured, but also on
unmeasured confounders.

C&H present direct standardization as though it were an alternative way of
combining the results of the within-statum (within-block) contrasts. But in
fact, as is described in the next section of these notes, it can sometimes be
regarded as a weighted average of these stratum-specific contrasts.

1



BIOS601: Notes, C&H. Ch 14 (Standardized Rates). November 20, 2012.

14.3 Standardized Rates

The key is the use of the same set of weights W1, . . . ,WK

to form the weighted
average (w.a.) �̂0,w.a.

=
P

k

W

k

�̂0,k of the K stratum-specific rates observed

in the unexposed (0), and �̂1,w.a.

=
P

k

W

k

�̂1,k of the stratum-specific rates
observed in the exposed(1).

One can also see the di↵erence of these two standardized (weighted averages
of the stratum-specific) rates as a weighted average of the stratum-specific
rate di↵erences, since
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Although JH does not advocate calculating a weighted average of ratios (pre-
ferring, as Mantel does to take a single ratio of sums), one can – provided
all of the ratios are finite – also write the ratio of these two standardized
(weighted average of the) rates as a (di↵erent) weighted average of the K

stratum-specific rate ratios [�̂1,k/�̂0,k]:
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In this re-expression, the ratio of the two standardized rates is a weighted av-
erage of the observed stratum-specific rate ratios, with weights W 0

k

= W

k

�̂0,k.

Correction via ‘regression-models’ vs. ‘standardization’ (JH)

Increasingly, corrections for confounding are carried out using generalized
linear model versions of what in the simplest case is classically called ‘analysis
of covariance’. These glm’s (and others such as Cox regression) are described
in C&H chapters 22 and beyond. However, before we get there, it is good to
appreciate the basic di↵erence between the type of standardization described
in section 14.3, and these regression models.

One way to think of the di↵erence is via an example where we would like to
create an unbiased (i.e., a fair) comparison between two groups of students,
one that had experienced experimental condition “1” (e.g., distance learning)
and the other under experimental condition “0’ (e.g., face-to-face in class
contact with the teacher on-site). Let’s denote the two conditions by the
subscripts 1 and 0. Suppose that it was unavoidable that one of the classes
was on average older than (and thus at an advantage relative to) the other.

Correction by standardization

We could think of two ways to reduce (eliminate) the age-di↵erence, and arrive
at an unbiased estimate of the true di↵erence (�) in the means – assumed to be
constant across ages. The first is to stratify the students intoK age-bands and
take (the same) weighed average of the within-age-band mean scores for each
group, to arrive at ȳ1,w.a.

=
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ȳ1,k and ȳ0,w.a.
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ȳ0,k respectively.
As discussed above, the di↵erence of these two standardized means is also a
weighed average of the within-age-band di↵erences in the mean scores, i.e.,

X

k

W

k

{ȳ1,k � ȳ0,k}.

One can think of this as the numerical equivalent of artificially ‘evening up’
the two teams/classes: it is as though one forced some of the distance students
to take the face-to-face version, and vice versa, so that the two classes had
the same age-composition (W1, . . . ,WK

).

Say that the age distributions in those who had intended to take the course
were:

age-band: 20-25 25-30 30-35

no. who applied to be ‘distance’ students: 20 33 46
no. who applied to be ‘on-site’ students: 50 35 14
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Then one possibility would be to – if it were possible – ‘transfer some students
from one to the other format’ so that the age distributions in the classes were:

age-band: 20-25 25-30 30-35

no. of ‘distance’ students: 35 34 30
no. of ‘on-site’ students: 35 34 30

If actual transfers were not possible, one could still ‘mathematically ’ move
some students from one to the other format. In other words, one would leave
the students in the class they applied for, and use the observed results to
create results for two synthetic classes with the same age-distribution in each.
Suppose the actual results in the 20, 33 and 46 who took the distance class,
and the 50, 35 and 14 who took the on-site class were:

age-band: 20-25 25-30 30-35

means for actual ‘distance’ students: ȳ

d,1 ȳ

d,2 ȳ

d,3

means for actual ‘on-site’ students: ȳ

o,1 ȳ

o,2 ȳ

o,3

From these we could create results for two synthetic or hypothetical classes,
with the same age-distribution, say {35, 34, 30} in each, just as above:

mean for ‘synthetic’ class

‘distance’: (35⇥ ȳ

d,1 + 34⇥ ȳ

d,2 + 30⇥ ȳ

d,3)/99
‘on-site’: (35⇥ ȳ

o,1 + 34⇥ ȳ

o,2 + 30⇥ ȳ

o,3)/99,

and compare these two weighted averages.

Since these 2 ‘classes’ are synthetic or hypothetical, the choice of weights is
not restricted by the same constraints we had in the situation we we actually
transferred students from one to the other class. Thus, we could just as well
have, say {33, 33, 33} – or {43, 33, 23} – in each of the two synthetic classes.

Correction by a regression model

The other way out of this confounding by age is via a regression model. It
requires a somewhat stronger assumption than a ‘constant (or common) across
ages �’: its also requires that we use a model that links the mean response
at each age to age. The most commonly used model is a basic analysis-of-
covariance model, with parallel lines for the distance (d=1) and on-site (d=0)
classes:

E[y|age, d] = µ

y|age,d = �0 + �

age

⇥ age+ �

d

⇥ d.

In our example, the average ages in the distance and on-site classes are 28.8
and 25.7 respectively, a di↵erence of 3.1 years, and so we can obtain an ad-
justed di↵erence by subtracting a correction factor from the crude di↵erence.

This correction is the product of the d
�

age

and the 3.1 years. The crude and
adjusted di↵erence are therefore:

mean of: y age

actual ‘distance’ students: y

d

age

d

actual ‘on-site’ students: y

o

age

o

(crude) di↵erence: y

d

- y
o

3.1 years

adjusted di↵erence: (y
d

- y
o

)� d
�

age

⇥ 3.1

One can see from this that the magnitude of the correction is a function of
how strong the e↵ect of age is and how di↵erent the average age is in the
compared groups.

In the (synthetic) standardization approach, conceptually one alters the com-

position of the two compared groups – it is as though one adds distance
subjects to, or takes away some distance subjects from, the 3 age-strata of
the distance arm, and likewise adds on-site subjects to, or takes away some
on-site subjects from, the age-strata of the on-site arm. This way one cre-
ates two ‘pseudo-samples’, to use a term used by Robins in causal inference
to describe the samples formed by inverse probability of treatment weighting
(IPTW). Oner can also think of the adding and taking away of students as
giving di↵erent weights to the contributions of students in di↵erent age-bands.
For example, in the distance class, the result of each student in the youngest
age-band is up-weighted and given a weight of 35/20; likewise the results of
each student in the middle age-band is slightly up-weighted and given a weight
of 34/33, while the result of those in the oldest age-band is down-weighted
and given a weight of 30/46. the corresponding up/down-weightings for the
results of each student in the on-site class are 35/50, 35/34 and 30/14 in the
youngest, middle and oldest age-bands respectively.

To see why Robins calls it IPTW, consider the first age-band, where of the
70 students, 20 took the distance course and 50 the on-line one. So the
probability that a student in this band took the distance course is 20/70 and
that (s)he took the on-line one is 50/70. The inverses of these probabilities
are 70/20 and 70/50, double the 35/20 and 35/50 used above, and the same if
we scale the IPTW’s so that our pseudo-sample is the same size as our actual
sample.

In the regression approach, conceptually one takes the group means of the two
entire samples of subjects and then adjusts their scores to those of persons of
the mean age.
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Supplementary Exercise 14.1 Sharper and Fairer Comparisons:
.
E↵ect of sexual activity on the longevity of male fruitflies

[Limit analysis to fruitflies with 1 partner/2 days .. the e↵ect is obvious in
those with 8]

Aside: When we first analyzed this dataset, student PE, now on McGill
faculty, argued that thorax size cannot be used as a predictor or explanatory
variable since fruitflies who die young may not be fully grown, i.e., it is also an
“intermediate” variable. Later, student NK (now on faculty elsewhere) had
studied entomology and assured us that fruitflies do not grow longer after
birth; i.e., thorax length is not time- (age)-dependent!

i. Use lm in R to calculate the di↵erence in mean longevity (mean days
lived) of sexually active flies (index category) relative to sexually inactive
flies (reference category), ignoring other covariates. Is this di↵erence (i)
substantial? (ii) statistically significant at the conventional ↵ = 0.05
level?

ii. Again ignoring other covariates, calculate the overall mortality rate (no.
deaths / 100 fruitfly-days lived – e↵ectively, apart from the scaling by 100,
the reciprocal of mean longevity) for each of the two compared categories.

iii. How di↵erent are the mean thorax lengths of the active and inactive flies?
Is this di↵erence “statistically” significant? Is it substantial? Is statistical
significance a non-issue here anyway? Explain.

iv. (Independently of which flies were subsequently assigned to an ac-
tive/inactive partner) divide up the thorax range into 3 (roughly equal-
sized) strata: small, medium and large. Compute the mortality rates
(no. deaths / fruitfly-days) for the resulting 6 cells. Then, using the
overall proportions of flies in each stratum as the same 3 weights for
both, compute standardized mortality rates for the active and inactive
groups.

v. Using these same strata, compute the mean longevity for each of the 6
cells. Then, again using the overall proportions of flies in each stratum
as the 3 weights, compute a standardized mean longevity for each of the
two compared groups.

vi. If – other things being equal – flies 0.01 mm larger live on average 1 day
longer, how much of a longevity “advantage” would the active flies have
from the outset as a result of their larger average thorax size? On this

basis, how much lower would the mean longevity of active than inactive
flies be if it were “adjusted” for the di↵erence in thorax size?

vii. Instead of using the “out of the air” value of 1day/0.01mm, use multiple
regression to simultaneously estimate the additional mean days/mm and
the decrease in days associated with (due to) activity i.e., fit the model:

E[longevity | thorax, activity] = �0+�

thorax

⇥thorax+�

active

⇥ active.

viii. Verify that if you correct/adjust the comparison as in (vi) but using the
fitted �

thorax

from (vii) instead of the ‘out of the air‘ 0.01, and using the
the thorax di↵erence in (iii), you arrive at the �

active

obtained in (vii).
Hint: cf schematic diagram in JH notes on confounding.

ix. Use the correction for confounding in the Women and Math study (see
the last few pages of JH’s notes appended to the end of the Science
article) to explain – in just a few sentence, and in English rather than
in ‘Statistical-ese’ – to your father in law how ‘adjustment by regression’
works.

x. In the mother’s-milk and IQ study, Lucas et al use multiple regression
to correct for several IQ determinants that are ‘imbalanced’ between the
‘Mother’s milk’ and ‘No-mothers-milk’ groups. To understand how it
works, extend the ‘Adjusted Contrast’ equation on page 2 of JH’s Notes
on Confounding: Reducing it by Regression (the same ones at the end
of the Women and Math article) so that it accommodates imbalances in
several variables (hint: think of X as a vector rather than a scalar variate).
This time, using Tables I, II and IV, explain the (now multivariable)
correction/adjustment to your grandparents – who strongly believe that
the mother’s milk - IQ link is causal. Use Tables I, II and IV.

xi. {A ‘sharper ’ comparison} The p-value for the activity contrast in (vii)
is smaller (and the associated CI narrower) than the corresponding one
in (i). One reason is that the larger adjusted estimate of the e↵ect (the
numerator of the t-test on adjusted di↵erence); another is the smaller SE
of the estimated e↵ect (the denominator of t-test).
Why is the SE of the estimated longevity di↵erence from analysis (vii)
smaller?
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