
Generalized Additive 
Models



The GLM is:
g( µ) = ß0 + ß1x1 + ß2x2 + ... + ßkxk

The generalization to the GAM is:

g(µ) = ß0 + f1(x1) + f2(x2) + ... + fk(xk)

where the functions fi(xi) are arbitrary 
functions defined by the data.

The Model



Simple Additive Models

Y =  ß0 + f1(x1) + f2(x2) + ... + fk(xk) + e

e is independent of xi and E(e) = 0
Y is continuous
var(Y) = sigma2, for all observations 
(homoscedasticity)
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Assumptions

Statistical independence of observations

Variance function is specified correctly

Correct link function

Specific observations do not influence fit
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Smoothers Available in Splus

Loess (locally weighted regression)

Splines (regression, cubic, natural)

•

•



Properties of Smoothers

Most smoothers are local, in the sense 
that they use adjacent data points 
(neighbourhoods) to estimate "predicted" 
values for each data point

One must balance bias with precision  
The choice of how much smoothing to 
do is key in this decision process

•

•
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This is no different than when you 
specify different parametric forms for 
an explanatory variable, in that one is 
trying to specify the correct functional 
form.

NB: A linear variable is equivalent to 
an infinitely smoothed function!

•

•



The functions fi(xk) can be very general and 
can include:

splines or LOESS
interactions such as lo(x1,x2) can be fit and 
these produce smooth two-dimensional 
surfaces in three dimensions
parametric forms, such as E(Y) = ß0 + ßx, 
where x can be continuous, ordinal, nominal
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Estimation in GAMs

Estimation is through a combination of backfitting and 
iteratively reweighted least squares

The method is not maximum likelihood but is based on 
similar types of principals.

The functions fi and ßk are determined empirically 
according to the data and the assumed model.

The deviance is calculated from the model, just as in 
GLMs.

•

•
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Fitting

Usual linear model is fit with least squares and there is an 
exact solution (no iterations).

Backfitting algorithm used for GAMs, and it requires >1 
iteration.

•

•



Backfitting Algorithm

Y = ß0 + f1(x1) + f2(x2) + ... + fk(xk) + e

1)   Set ß0 = mean(Y)

2)   Initialize fj(xj) = fj(xj)0

3)   Iterate and cycle over the k variables 

      fj = Sj(Y - ß0 - Σk=j fk | xj)
      until the fj do not change



Goodness-of-fit

Deviance is defined in the same way as in GLMs.

The comparison of nested GAMs by substracting 

deviances does not necessarily follow a χ2 distribution, 
even asymptotically.

However, one can use the chi-square distribution as sort of 
a reference for assessing fits.

•

•

•



However, approximately, E(Deviance) ~ residual df * phi.

For nested models, E(D1, D2) ~ df1 - df2, implying that the χ2 
distribution on df1 - df2 degrees of freedom can be used.

In practice, we use instead a penalized version of the 
deviance for comparing both nested and non-nested models.

The penalty is proportional to the number of df used.

•

•

•

•



Aikaike Information Criterion

AIC = Deviance + 2 * dfmodel * phi

This statistic accounts for the number of degrees of freedom used 
by the smoothers.  Usually, a lower AIC implies that the model fits 
better than another.

There is no specific statistical test associated with comparing AICs.

NB: must have the same number of observations in the two 
models.

•

•

•

•



Confidence Intervals

Pointwise standard errors of the functions fj are also calculated.

Calculation of the confidence interval between two values of x is 
more difficult.  For example, the 95% CI for the odds ratio between 
x=x1 and x=x2 in a model logit(y) = ß0 + f(x) must be obtained using 
the bootstrap.

•

•



Generalized Additive Model

> preg4.gam.1 _ gam(YVAR~lo(AGE)+lo(EDUCTN)+lo(AGE.FST)+lo(MG13.FIR)+lo(M18TO21.)
+FAM.HIST+MG34.ALC+MG23.MAL,preg4,family=binomial,subset=(AGE>50),
na.action=na.omit,x=T,y=T)

> summary(preg4.gam.1)

Call: gam(formula = YVAR ~ lo(AGE) + lo(EDUCTN) + lo(AGE.FST) +
….

Deviance Residuals:
Min 1Q Median 3Q Max

-2.192961 -0.9900211 0.4602939 0.9577022 2.138613

(Dispersion Parameter for Binomial family taken to be 1 )

Null Deviance: 1007.108 on 726 degrees of freedom

Residual Deviance: 837.6898 on 704.0405 degrees of freedom

Number of Local Scoring Iterations: 4

DF for Terms and Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Chi)
(Intercept) 1

lo(AGE) 1 2.4 2.53375 0.3475057
lo(EDUCTN) 1 2.3 4.85548 0.1171361

lo(AGE.FST) 1 2.9 4.53878 0.1975979
lo(MG13.FIR) 1 2.8 2.56048 0.4273571
lo(M18TO21.) 1 2.6 26.30268 0.0000045

FAM.HIST 1
MG34.ALC 2
MG23.MAL 1

Npar Chisq : Score test 
to evaluate the nonlinear 
contribution to the 
nonparametric functions.

Age at menarche

Age at menopause



Adjusted GAM Model



Ordinate ~ log(odds scale)                  log(0) = α + f(x)
                at x = 10,   f(x) ~ 0.5
                at x = 17,   f(x) ~ 0.1

∆f(x) ~ -0.6  =>   odds ratio ~ e-0.6 ~ 0.55

Age at Menarche

Linear Model :  log(0) = α + βx
      β = -0.84, x = 7

                           OR ~ e-0.84*7 ~ 0.55



Age at 1st birth

Loess (span = 50%)



Age at Menopause



Education (in years)



Age at 1st pregnancy

Age at Menarche

Age at Menopause

Previous Breast 
Disease


