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Abstract: In many experiments data are collected over time or space, on a number

of subjects or sites. In medical experiments, for example, it is often of interest to

know if the introduction of an intervention, such as the administration of a drug,

affects the distribution of a certain variable recorded several times over the course

of the trial. In such investigations, each patient generates a sequence of data which

may or may not contain a change in distribution at some point in time. Different

subjects within a given population may react differently to the intervention. Each

sequence can be viewed as a sample path from a stochastic process. The main aim

of this paper is to show how the ensemble of sample paths may be used to make

inference about the distribution of the times or locations of change.
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1. Introduction

Often in a medical experiment, data on a number of subjects are collected
on several occasions during the trial. If a drug is introduced during the trial
that may affect the distribution of the variable under study, then the following
questions are of main interest:
1. What proportion of the target population would respond to the intervention?
2. What is the distribution of the magnitude of the effect among those who do

respond?
3. Among responders, what is the distribution of time to response?

The latter question is especially relevant if a delay of unknown or variable
duration is expected from the time the drug is administered to the time it takes
effect, such as may be the case in a trial of a new drug designed to lower cholesterol
or blood pressure. Standard methods, such as a repeated measures analysis of
variance, are not suited to answering these questions. For example, in a clinical
trial, there is rarely an attempt to classify individual patients into “responders”
or “non-responders”; instead one looks for significant mean differences between
treatment groups. In addition, it is usually required that the time of change be
specified in advance, coinciding with the commencement of the intervention and
assumed identical for all subjects. Often, little is known about the reaction time
which may vary from subject to subject. By not taking into account a delay to
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response, the mean treatment effect may be diluted, thus leading to a considerable
loss of power. Valid interpretations of reported mean effects are only possible
after estimating the proportion of positive responders in the population as well as
the distribution of these delays. This paper presents a multi-path change-point
model and illustrates how it can be used to address these issues. The model also
facilitates the comparison of baseline measurements to post-intervention values
within each individual, eliminating the need to explicitly model the effects of
baseline means.

The model below is also applicable to different areas such as soil science and
geology. Soil profiles change with increasing depth and frequently these changes
occur quite abruptly because of the way sedimentary beds were laid down. Soil
profiles are not only important in providing a geological history of a region but
also directly affect the rate at which water is absorbed and retained, and are
a crucial component of petrology and mineral exploration. Data collected at
different sites and at several depths per site may be used to fit the type of model
described in Section 2 and hence to address the questions of interest briefly
referred to above.

We motivate the model by outlining two examples where the methodology
can be effectively employed. One example consists of Poisson data and the other
of Normal data. After details of the model are provided in Section 2, these exam-
ples are revisited and analysed in Section 4. Section 3 describes the inferential
procedures and the final section contains further discussion.

1.1. Health effects of urea formaldehyde foam insulation

Urea-formaldehyde foam insulation (UFFI) was installed in many homes in
Canada until it was banned by the Federal Government on December 18, 1980.
The decision to ban UFFI was largely based on preliminary results mostly from
studies on rats (Albert et al. (1982)) that alluded to its toxic effects. Following
reports in the press, residents began to complain to their physicians of symptoms
purportedly related to UFFI, resulting in heated debate over whether or not these
concerns were justified. One possible objective indicator of the danger posed by
UFFI would be an increase in the rate at which household occupants visit a
doctor after installation compared with before. Of course, even if there is an
increase, one would not necessarily expect an instant reaction to the substance,
as the vapor slowly seeps out from between the walls of a home and into the
ambient air. Furthermore, it is suspected that not everyone would react, with
certain people being hypersensitive, others having no reaction, and the rest being
only mildly reactive.

In Section 4, tri-monthly data on the number of visits to a doctor for one year
before and after installation of the foam in the homes of 285 persons in Quebec,
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Canada (L’Abbé (1984)) are analyzed via the change-point model introduced in
Section 2. Of interest here is whether there is evidence for an increase in the visit
rate after installation, and if so, the proportion of exposed subjects who would
experience an increase. Also of importance are the magnitude of the increase
and the length of time after installation that it occurs.

1.2. The effect of calcium on blood pressure measurement

A double-blinded placebo controlled randomized trial evaluating the effects
of calcium supplementation on blood pressure measurements of normotensive
men aged 19 to 52 is reported by Lyle et al. (1987). The drug (tablets containing
500 mg of elemental calcium) group consisted of 37 subjects, with 38 subjects
randomized to a control group (placebo tablets). Blood pressure readings on
all patients were taken a total of 10 times, 4 weekly readings during a baseline
period, and 6 readings, one every two weeks, after randomization. A repeated
measures analysis of variance showed statistically significant mean decreases in
blood pressure in the calcium group of 2 to 3 mm Hg, which are less than the
5 mm Hg differences usually required for clinical significance. However, delays
in the onset of treatment effects could have diluted the mean decreases. This is
because the mechanism by which calcium may lower blood pressure is not known,
so that it is plausible that blood pressure decline does not occur immediately
but rather the concentration of calcium in the body slowly increases, and the
metabolism adjusts to the new levels. Also, the mean responses are difficult to
interpret, since it is possible that nonresponders may have contributed to the
overall means, and that the effects in some subjects may be higher and in the
clinically interesting range.

A multi-path change-point analysis is pertinent here, since not all patients
may respond, and the reaction times may be different among those who do react.
As will be shown below, the analysis proposed allows for comparisons of the pro-
portions who experience a decrease in blood pressure in each group (which will
likely be small in the placebo group), as well as the time to reaction and mag-
nitude of the decrease in those who respond. Information concerning minimally
clinically interesting differences can also be incorporated into the analysis in the
form of a prior distribution, so that individuals changing less than this amount
are counted as nonresponders.

2. The Model

Assume that there are data in the form of an M × N array

X =




X11 X12 · · · X1τ1 X1τ1+1 · · · X1N

X21 X22 · · · X2τ2 X2τ2+1 · · · X2N
...

...
...

...
...

...
XM1 XM2 · · · XMτM

XMτM+1
· · · XMN




. (1)
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Each sequence, Xi1, . . . ,XiN , represents observations over time from the ith sub-
ject, i = 1, . . . ,M . A change-point is said to have occurred at Ti = τi in sequence
or row i,i = 1, . . . ,M , and 1 ≤ τi ≤ N − 1, if Xi1, . . . ,Xiτi , are identically
distributed with common distribution Fi1 , which is different from the common
distribution, Fi2 of Xiτi+1, . . . ,XiN . If Ti = N , then no change has occurred
in row i. The distribution of the points of change, τi, and unknown parame-
ters of the distributions Fik , i = 1, . . . ,M, k = 1, 2, are to be estimated from
the data matrix (1). When there are multiple paths or sequences, we shall re-
fer to a “multi-path”change-point problem, to distinguish it from the classical
“single-path” problem when M = 1.

It is assumed that the times of change, Ti, in each row or sequence are them-
selves independent and identically distributed in a given population, following a
distribution g(t) = Pr{Ti = t}, i = 1, . . . ,M, t = 1, . . . , N, which is to be esti-
mated. If g(N) > 0, then it is possible that there is no change in some rows. The
introduction of g(·) does not necessarily mean that each subject in the population
has exactly the same change-point. It is emphasized that it represents the prob-
abilities for the location of the change point for a randomly selected individual
in the population.

The case M = 1 has received considerable attention in the literature. Among
early approaches, Hinkley (1970) and Hinkley and Hinkley (1970) found the
asymptotic distribution (as N −→ ∞ and (N − τ) −→ ∞) of the maximum
likelihood estimator in the case of Normal and binomial data, respectively. Yao
(1987, 1990) and many others have also more recently investigated maximum
likelihood change-point inference. Pettitt (1979) offered a non-parametric solu-
tion to test for a change-point, while Smith (1975) takes a Bayesian approach.
More recently, Carlin, Gelfand and Smith (1992) have used the Gibbs sampler to
find marginal posterior distributions in a hierarchical single-path change-point
model. As we have seen above, introducing M ≥ 2 considerably broadens the
applicability of change-point models.

The multi-path extension introduces several interesting theoretical questions.
While it has been shown by Hinkley (1970) that the single-path maximum likeli-
hood estimator of the change-point is not consistent, the nonparametric estimator
of g(·) has been shown in Joseph and Wolfson (1993) and Joseph, Vandal and
Wolfson (1996) to be consistent under certain conditions in the multi-path case.
Further, two powerful statistical techniques that have not been effectively em-
ployed (although, see Hinkley and Schechtman (1987) for a conditional bootstrap
approach) in the single-path context are the bootstrap (Efron (1979, 1982)) and
empirical Bayes methods (Robbins (1964)). It has been shown in Joseph and
Wolfson (1992) that both of these techniques may be utilized in the multi-path
context.
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From a practical point of view, the implementation of a multi-path change-
point model offers substantial challenges. Assuming only one unknown parameter
from each Fik , a Bayesian approach involves the calculation of posterior distri-
butions of 2×M + N inter-related parameters. Similarly, finding the maximum
likelihood estimators even in problems of moderate dimension requires a consid-
erable and often infeasible number of computations. However, recent advances in
statistical computing algorithms such as the EM algorithm (Dempster, Laird and
Rubin (1977)) or data augmentation (Tanner and Wong (1987)) and the closely
related Gibbs sampler (Geman and Geman (1984), Gelfand and Smith (1990)
Gelfand et al. (1990)) have, to a considerable extent, alleviated these difficulties.

2.1. Alternative modelling strategies

In the sequel, it is assumed that Xij , j = 1, . . . , N are independent for each
fixed i = 1, . . . ,M . In certain examples, including some of those described in
Section 1, it can be argued that within sequence observations may be correlated,
and should be modelled accordingly (Joseph, Vandal and Wolfson (1996)). How-
ever, if the measurements are sufficiently separated in time or space or represent
long term averages or rates, the correlation may be weak. In such cases an as-
sumption of independence may provide a much simpler framework within which
to carry out a change-point analysis without seriously compromising the results.
If a Bayesian time series approach is required, one can adapt the methods of Mar-
riot et al. (1992) to the change-point situation, where again the Gibbs sampler
may be employed to estimate the parameters of the model. Nevertheless, even
the simplest such models would necessitate an increase in the number of param-
eters to estimate. With short data sequences, it may be difficult or impossible
to reliably estimate all of the unknown parameters, particularly since there may
be different time series parameters before and after any change-points, and since
these time series parameters may differ from patient to patient. For the same
reason, it would be difficult to test whether a time series model is supported by
the data, or whether a simpler model that assumes independence is sufficient.
This view is supported by Henderson (1986) who suggests that ignoring weak
correlations may have little effect on estimating change-points.

Change-point models assume abrupt changes in parameter values, while it
may be more realistic in some situations to assume gradual changes. For exam-
ple, one may investigate a tri-linear regression model with two change-points,
indicating the beginning and end of a transition period. A single change-point
model is simpler to implement, and again, it may not be feasible to reliably esti-
mate all parameters of a tri-linear regression model for data sets with a limited
number of observations per sequence. The simpler approach taken in this paper
is conservative, in the sense that estimated pre- and post-treatment mean differ-
ences may be attenuated if the true change is gradual. This phenomenon will
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occur whenever measurements are taken during the period of gradual change, but
falsely included in either the pre-or post-treatment mean estimate. The change-
point will be estimated to occur at the time point that best divides the data into
two sets each with apparently identically distributed variables. Whether such a
change will be found will depend on specific features of the data, such as the
magnitude and the rate of change, and how many observations there are for each
subject. Growth curves could also be used, but in order to answer the specific
questions listed in Section 1, one would need to estimate where the derivative of
the curve changes. This is a complex problem, and again reliable estimates may
require much more data than does our simpler model.

On the other hand, more parsimonious models could also be proposed. For
example, rather than allowing subject specific parameters for the before and
after change-point distributions F1 and F2, one could assume a random effects
model with a common distribution for the parameters associated with different
subjects. In cases with a high degree of homogeneity so that the specification
of this distribution can be reasonably made, this approach may be preferable;
as is well known a reduction in mean square error is the benefit from being able
to “borrow strength” from all the paths. However, the great between subject
variability with respect to the before-and-after-change parameters in the two
data sets under discussion in Section 4, suggest that these parameters are not
identically distributed. Even if they are identically distributed the benefit of
a reduction in mean-square error, when the between subject variance is large,
could hide within subject changes in the parameters. This would happen if these
changes are smaller than the between subject differences and do not occur for all
subjects; shrinkage towards the prior mean averages out those paths with changes
and those without. Consequently, random effects models were not considered for
these parameters.

It is more reasonable, nevertheless, to use a random effects model for the
change-point, since the concern here is not with before and after effects that
could be hidden by “shrinkage”. One may initially choose to model the change-
point distribution g. For example, a “tent-shape” for g may be assumed if it is
suspected that there is a change-point location that is most likely, with points
further from this location having progressively decreasing probability. However, if
there is a strong possibility that some sequences have no change-points, no simple
shape may be sufficient to adequately represent g. We have therefore chosen
to modify the random effects model by imposing a hierarchical model on the
change-point distribution; as is well known such models are more robust against
misspecification of the prior. Another simplification that may be appropriate
in some situations is to consider a single common change-point for all subjects.
This model was investigated by Joseph and Wolfson (1992), where it was called
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a “fixed-τ” change-point model. Again, if some subjects may change while other
may not, fixed-τ models are ruled out.

Bayesian hypothesis testing for a change-point could also be performed. For
example, a prior distribution on g that assigns half the probability to g(N) and
the rest uniformly distributed across g(i), i = 1, 2, . . . , N − 1, seems appropriate,
since half of the prior probability would be placed on the null hypothesis of no
change. The posterior probabilities for g(N) would then indicate whether the
data support a change-point.

Throughout this paper, f(·) will be used to generically denote a probability
density or probability function, and F (·) will denote a cumulative distribution
function. The random variables to which these distributions refer will be clear
from their arguments and the context in which they appear. Where concreteness
is desirable, motivated by the first example in Section 4, the Fik are assumed to be
Poisson. The techniques easily carry over to many other distributions including
the Normal, which is used for the second example. Müller (1991) demonstrates
that Gibbs sampling can be combined with a Metropolis algorithm to generalize
applicability of the techniques to virtually any distribution.

3. Estimation of Parameters via the Gibbs Sampler

The likelihood for the model described in Section 2 is given by

f(x|θ
˜1, θ˜2, π˜

) =
M∏
i=1

N∑
h=1

{ h∏
j=1

f1(xij |θ
˜1)

}{ N∏
j=h+1

f2(xij|θ
˜2)

}
πh, (2)

where θ
˜1 and θ

˜2, possibly vector valued, are the parameters of the densities
f1 and f2 respectively, and π

˜
= (π1, . . . , πN ), where πi = Pr{Ti = τi}, i =

1, . . . , N . Inference using this likelihood is difficult since it takes the form of a
mixture. However, conditional on knowledge of “latent data” (Tanner and Wong
(1987)) τi, i = 1, . . . ,M , the change-points in each data sequence, the likelihood
simplifies to

f(x|θ
˜1, θ˜2, τ1, . . . , τM ) =

M∏
i=1

{ τi∏
j=1

f1(xij |θ
˜1)

}{ N∏
i=τi+1

f2(xij |θ
˜2)

}
. (3)

When xij follows a Poisson distribution, the parameters in the model are:
1. θ

˜1 =λ
˜1 =(λ11, . . . , λM1) and θ

˜2 =λ
˜2 =(λ12, . . . , λM2), vectors of the means of

the Poisson distributions before and after the change-point in each row
2. π

˜
= (π1, . . . , πN ), the multinomial probabilities that a change occurs at posi-

tion i in each row, i = 1, . . . ,M
3. τ

˜
= (τ1, . . . , τM ), the unobserved latent data representing the change-points

in each row.
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The uncertainty in these parameter values is reflected in the choice of their
prior distributions. For simplicity, one may choose conjugate prior distributions,
although non-conjugate priors can also be accommodated (Müller (1991)). Since
the Gamma distributions are conjugate priors for a Poisson random variable,
and the Dirichlet distributions form a conjugate family for the parameters of a
multinomial random variable (see, for example, DeGroot (1970), Chapter 9), the
priors in the case that the Xij follow Poisson distributions could be given as

f(λik) =
1

Γ(aik)b
aik
ik

λaik−1
ik exp

(
−λik

bik

)
, i = 1, . . . ,M, k = 1, 2 (4)

and

f(π1, . . . , πN ) =
Γ(α0)∏N
l=1 Γ(αl)

N∏
i=1

παi−1
i , (5)

where α0 =
∑N

i=1 αi, αi > 0, i = 1, . . . , N , and where the aik’s, bik’s, and αi’s
are chosen according to the available prior information.

Implementation of the Gibbs sampler to find the marginal posterior distribu-
tions requires the specification of the full conditional distribution of the parame-
ters, i.e., the conditional distribution of each parameter given the values of all of
the other parameters. These are specified below, following standard procedures
for conjugate analyses by DeGroot (1970). Note that the full conditional distri-
bution of each parameter does not always depend on all of the other parameters,
which leads to some further simplifications:

f(λi1|X, τi) ∼ Gamma
(
ai1 +

τi∑
j=1

xij, (τi +
1
bi1

)−1
)

(6)

f(λi2|X, τi) ∼ Gamma
(
ai2 +

N∑
j=τi+1

xij , (N − τi +
1
b i2

)−1
)

(7)

Pr{τi = t|λ
˜1, λ˜2, π˜

, x)

=

{ ∏t
j=1

(λi1)xij exp(−λi1)
xij !

}{ ∏N
j=t+1

(λi2)xij exp(−λi2)
xij !

}
πt

∑N
k=1

{ ∏k
j=1

(λi1)xij exp(−λi1)
xij !

}{ ∏N
j=k+1

(λi2)xij exp(−λi2)
xij !

}
πk

(8)

f(π
˜
|τ
˜
) ∼ Dirichlet(α

˜
′), (9)

where α′
k, the kth element of α

˜
′ is given by αk +

∑M
i=1 I{τi=k}, and where I{y} is

the indicator function for the set {y}.
The Gibbs sampler algorithm proceeds as follows: Starting from arbitrary

initial values, a random sample is drawn from each full conditional distribution
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(6)-(9) in turn. The parameters drawn from previous iterations are used in the
conditional distribution for subsequent iterations. A cycle is completed when
each conditional distribution has been sampled from, and the cycle is repeated
a large number of times. The random variables thus generated at the end of
each full cycle can be regarded as a random sample from the correct joint pos-
terior distribution, and hence any subset of them as a random sample from the
corresponding marginal posterior distribution.

The approach taken here is summarized by the steps given below:
1. Four independent Gibbs sequences of identical length were generated from dif-

ferent starting values using different seeds for the random number generators.
2. Selected summary statistics (typically the means of all marginal posterior dis-

tributions for the change-point locations and selected percentiles for a random
sample of parameters of the other posterior distributions) were plotted against
iteration number to monitor convergence for all four runs.

3. If convergence seemed likely, as evidenced by stabilization of the above quanti-
ties after a certain number of iterations, marginal posterior density estimates
were generated by the Rao-Blackwell method, as proposed by Gelfand and
Smith (1990). Plots of these densities were constructed and overlaid to check
for any differences, using the “thick felt-tip pen test” as suggested by Gelfand
and Smith (1990). Convergence was assumed only if all marginal densities
were identical for all practical purposes. In particular, each marginal pos-
terior change-point location mean probability had to be within 0.01 of the
overall mean probability from the four runs, to be declared convergent. If
convergence had not been attained, steps 1 and 2 were repeated wherein the
Gibbs sample was run for a larger number of iterations.
More details are provided in the next section when methods deviated from

those given above.

4. Examples

In this section the methods are applied to the two data sets introduced in
Section 1. For brevity we present only a portion of the available output from
each example, highlighting the benefits that can be derived from a multi-path
change-point analysis.

The output from the Gibbs sampler can be used in a variety of ways:
1. The marginal posterior density of any component of the parameters of Fi1 or

Fi2 can be approximated. For example, in the case that Fi1 is Poisson, the
marginal posterior density of the Poisson parameter λi1 can be approximated
as a Rao-Blackwell average of Gamma densities of the form (6).
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2. Summary statistics of the above posterior marginal densities such as the
marginal means or medians of λi2 − λi1 may be easily computed and graphi-
cally displayed.

3. The output produced from equation (9) for π
˜

is a sample from a Dirichlet
distribution in N dimensions. Since this distribution is difficult to visualize,
summary statistics are important.

(a) Bar graphs of the means of the marginal Dirichlet posterior distributions
can be constructed.

(b) Posterior marginal densities for selected change-point probabilities may be
plotted. They display the variability about the above Dirichlet means, and
are calculated here as a Rao-Blackwell mixture of Beta densities over the
set of random samples generated by the Gibbs algorithm.

4. Each subject in each iteration may have τi < N , or τi = N . Another inter-
esting statistic is then {# times τi<N}

# iterations . This approximates the subject specific
probability of change.

4.1. Urea formaldehyde foam insulation

Data consisting of the number of physician visits by M = 285 patients were
collected in tri-monthly intervals over a two year period, resulting in N = 8 obser-
vations per patient. Four of these observations were taken before the installation
of UFFI, the rest, afterwards.

A Poisson distribution was assumed for the counts of visits in each three
month period. The Poisson parameters, which represent the visit rates before
and after installation of UFFI, were not assumed equal from sequence to sequence.
In other words, different persons were allowed to have different underlying visit
rates, both prior to and after the installation.

Fifteen of these patients had at least one and up to three missing data values.
A straightforward extension of the methods presented in Section 3 is to impute
the missing values in addition to estimating the usual parameters of the model.
This requires one additional step to the algorithm, where before calculation of
(8), any missing data points xij are filled in by sampling from the current estimate
of f(xij|τi, λi1, λi2).

The parameters for the Dirichlet prior were α1 = α2 = α3 = 0, α4 = α5 =
· · · = α8 = 1, i.e., a uniform prior over all possible times of change after the
installation of UFFI. The sum of Dirichlet prior parameters, here equal to five,
can be viewed as a measure of certainty in the prior distribution, with higher
values indicating more confidence. The ratio of this sum to the same sum plus
the number of sequences, M , provides a guide to the proportion of information
in the posterior distribution obtained from the prior. Here, 5/(285 + 5) = 0.017
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indicates that almost all of the posterior change-point distribution arises from
the data. For the visit rates, Gamma(α = 1, β = 15) distributions were selected
as approximately locally uniform priors, covering the range of average visit rates
across all participants. This distribution in fact slopes down gently from its
maximum at zero, which gives slightly higher weight to lower values of the visit
rate, which matches what was expected.

Runs of 10, 000 random variables per unknown parameter were performed,
the last 3, 000 of which were used for inference and density estimation. Figure
1 contains a bar graph of the posterior marginal means of the components of
π
˜
. The mean probability of no change is estimated to be 0.53, and for those

participants that do change, it occurs approximately equally at three, six, nine
and twelve months after installation. Of course, an increase in the visit rate is not
necessarily due to UFFI, and there may be minor effects that do not precipitate
a visit to a doctor, or more serious effects that surface only after one year of
exposure.
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Figure 1. Means of the marginal Dirichlet posterior distributions for the
location of the change-point for the UFFI data. Tri-monthly period number
8 indicates no change.

The marginal distribution for the probability of no change (8th tri-monthly
period) and the probability of a change at the 4th tri-monthly period are given
in Figure 2. They are useful for assessing the uncertainty in the point estimates
given in Figure 1. In this case, for example, most of the mass of the probability
of no change is concentrated in the interval from 0.43 to 0.63.
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Figure 2. Posterior probability densities for the fourth and eighth (no change)
tri-monthly periods, for the UFFI data.
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Figure 3. Posterior distribution of the pre and post change Poisson parame-
ters for the visit rate for participant number 246.

A sample graph showing the difference in the posterior visit rates for partici-
pant #246, who does appear to experience a change in visit rate (patient specific
probability of a change = 0.90), is shown in Figure 3. This picture was typical
for participants with clear changes. The algorithm produces similar graphics for
all participants, or, more concisely for large data sets, summary measures of the
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differences across all M sequences, such as means, variances, histograms or box-
plots. The above quantify the qualitative results of other research, which suggest
that the effects of UFFI appear to be small, and may only occur in a proportion
of occupants of homes with the material (L’Abbé 1984). The above analysis pro-
vides an estimate of this proportion, and the distribution of the magnitudes of
the changes.

4.2. Calcium and blood pressure

Lyle et al. (1987) reported a double-blind randomized controlled trial com-
paring the effects of calcium supplementation with placebo on the blood pressures
of men aged 19 to 52. Four baseline weekly blood pressure readings and six bi-
weekly readings during treatment resulted in N = 10 measurements, on M1 = 37
calcium patients and M2 = 38 control patients.

Seated systolic blood pressure measurements are discussed here in detail,
although supine and diastolic pressures were also recorded. A Dirichlet prior
with α1 = α2 = α3 = 0 and α4 = α6 = α8 = · · · = α16 = 0.1 was used for the
change-point distribution in each group. Normal/Gamma priors with equal pre-
and post-change means equal to 115 mm Hg were used for prior distributions on
the blood pressures. The mean of the prior variance was taken to be 25.

Runs of length 10, 000 random variables were produced for each parameter,
with 7, 000 retained for inference. The posterior marginal means of the probabil-
ity of change at each time period after baseline is given in Figure 4, and boxplots
of the mean differences in (after-before) blood pressures are presented in Figure
5. The posterior probability of no change in blood pressure is estimated to be
about 0.71 and 0.87 in the calcium and placebo groups respectively. Of the 29%
in the calcium group who do appear to experience an effect, 17% appear to change
within the first two weeks of administration. Figure 5 suggests that virtually all
calcium subjects who change, experience a decrease in blood pressure, with close
to half in the clinical range. The figure also suggests a possible placebo effect
of only slightly lesser magnitude. Nevertheless, the overall mean decrease was
2 mm Hg larger in the calcium compared to placebo. It is also interesting to
estimate P = Pr{πNC

< πNP
}, which represents the probability that subjects

on calcium (C) supplementation are more likely to change than placebo subjects
(P ). This probability can be estimated using a Mann-Whitney-type statistic,
P̂ = (

∑m
i=1

∑m
j=1 I{πNCi

<πNPj
})/m2, where m = 7, 000 is the total number of

Gibbs iterates generated, πNCi
and πNPj

represent the generated values for πN in
the two groups, i, j = 1, . . . ,m, and I{y} is the indicator function for the set y.
Here P̂ = 0.82 indicates a relatively high probability that a randomly selected in-
dividual on calcium will be more likely to change than a similarly chosen subject
given a placebo.
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Figure 4. Means of the marginal Dirichlet posterior distributions for the
location of the change-point for both calcium and placebo groups for the
blood pressure data. Week 16 indicates no change.
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Figure 5. Boxplots of the mean blood pressure differences (after-before) for
the calcium and placebo groups for the blood pressure data.

These results agree with the repeated measures analysis of Lyle et al. (1987),
which found a small but statistically significant average decrease in seated systolic
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blood pressure in the calcium group compared to the placebo. The multi-path
change-point analysis presented here provides additional information concerning
the proportion of responders, and the distribution of the before and after blood
pressures in each group, as well as information concerning the timing of the effect.

An induced change of 5 mm Hg is a commonly required minimum for a
treatment to lower blood pressure to be considered clinically meaningful. An
identical analysis to that described above was run, with the exception that the
mean of the prior distribution for the post-change blood pressures for each patient
was increased by 5 mm Hg. In this way, patients experiencing only small changes
would be considered as non-responders in the analysis. The marginal posterior
probability of no change increased to 0.79 in the calcium group, and 0.94 in the
placebo group.

5. Discussion

Multi-path change-point methods could be used along with standard meth-
ods of analysing repeated measures panel data. They offer estimates of the
proportion of subjects in a given population who respond to the treatment, as
well as the magnitude of and time delay to the change.

Throughout the analyses presented here, non-informative prior distributions
were used for the change-point parameters, and nearly non-informative prior
distributions (in the sense that the distributions were approximately flat over
the range of likely values) were used for all other parameters. Of course, one of
the principle advantages of a Bayesian approach is the opportunity to formally
incorporate prior information into the inferential procedure. In many situations,
reporting posterior distributions arising from a range of prior distributions is
desirable (Hughes 1993).

The methods may be extended in many directions. When the data from the
ith subject are allowed to be dependent, it is possible to account for seasonal
variation. Similar methods may also be applied to changes in hazard parameters
in a survival analysis, extending the work of Zelterman et al. (1994) and Liang,
Self and Liu (1990). Work on different structures for prior information, such as
dependences between the multinomial probabilities and the Poisson rates would
be interesting. Also in the present formulation, the data sequences need not
arise from the same family of distributions, as only a common distribution for
the change-point is assumed. If different subgroups of a population are expected
to possibly have different change-point distributions, then they may be analysed
separately.

Fortran software is available that implements the methods in this paper.
Send the email message “send mpcpp from general” or “send mpcpn from gen-
eral” to StatLib@lib.stat.cmu.edu to receive the software for Poisson and normal
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data, respectively. Running this software on a Sun SPARCstation ELC, gener-
ating 10,000 iterations from the Gibbs sampler algorithm took approximately 10
minutes.
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