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SUMMARY

The output process of an infinite-server queue with a Poisson process input is observed starting at
time 0 with an empty queue. It is assumed that the service time distribution is known. This article
discusses statistical inference about the input intensity. A controversial issue in the study of multiple
sclerosis is addressed as a motivation for the model and methods developed.

1. Introduction: Is Multiple Sclerosis an Infectious Disease?

In the study of epidemics the time between the receipt of infection and the appearance of
symptoms is called the incubation period. As is mentioned in Bailey (1975), it is important,
on the basis of observation of when infected individuals become symptomatic, to be able
to make inference about the infection rate. It is, of course, often not possible to observe
when individuals in a population become infected. Such is the situation in the following
application.

A controversial issue in the study of multiple sclerosis (MS) (a demyelinating disease of
the central nervous system) is whether the disease is infectious. Recently Kurtzke and
Hyllested (1986) put forward a detailed argument to support the claim that MS is spread
from one individual to another probably by means of a virus. Their belief is based on the
apparently sudden occurrence of MS in the Faroe Islands shortly after the arrival of British
troops who had been stationed there in 1941. Assuming the British troops did introduce
MS into the Faroe Islands (this is still not certain!), the model and methods of the following
sections are used to examine Kurtzke and Hyllested’s claim.

If their theory is correct, then assuming that the infection occurred according to a Poisson
process, the intensity, A(z), of the input process siiould have increased as the disease spread
from one individual to another. On the other hand, if the British troops merely introduced
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some unknown but noninfectious agent that precipitated MS among the Faroese, then the
intensity of infection may have been constant. Under both of these hypotheses the onset
rate would have increased. An attempt is made to address the issue of whether A(7) was
constant or increasing, the difficulty being that only the times of onset and not the times
of infection can be observed.

The Data The time origin was taken to be 1941. The data consist of the times (from this
origin) at which onset occurred in the 32 individuals in Group A and Group B of Table 8
of Kurtzke and Hyllested (1986). These individuals had either not been off the Faroe
Islands before onset (Group A) or had been off the islands for less than 2 years before onset
(Group B). Ties were broken by distributing those observations tied at year j, independently
and uniformly over the interval [j — 3, j + 3]. See Table 1.

It is important to note that in the following analysis it is assumed that no one had MS
(latent or symptomatic) prior to the arrival of the British troops in 1941. This assumption

Table 1
Total patient series

Ordered times

Age at onset of onset* Ordered untied
Patient # Sex (in years) (in years) times of onset Group™**

1 M 30 2 2.00 A

2 M 15 3 2.53 A

3 M 24 3 2.93 A

4 M 48 3 3.48 A

5 F 19 4 3.66 A

6 F 44 4 3.98 B

7 F 39 4 4.14 B

8 M 24 5 5.17 A

9 M 38 5 5.42 A
10 F 26 5 5.48 A
11 M 32 6 5.54 A
12 F 19 6 5.95 A
13 F 16 7 6.53 A
14 M 25 7 6.95 B
15 F 32 8 7.53 A
16 M 20 8 7.54 A
17 F 42 11 11.00 A
18 F 18 12 12.00 A
19 F 14 13 13.00 A
20 M 17 14 14.00 A
21 F 19 15 15.00 B
22 M 19 16 16.00 A
23 M 37 17 17.00 A
24 F 19 18 17.65 A
25 M 29 18 18.14 A
26 M 21 19 19.00 A
27 M 40 20 20.00 A
28 F 27 24 24.00 B
29 F 21 27 27.00 B
30 F 17 28 28.00 A
31 F 20 29 29.00 A
32 F 33 32 32.00 B

* Time origin 1941,
** A:  Individuals not off islands before onset.
B: Individuals off islands less than 2 years before onset.
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coincides with that of Kurtzke and Hyllested and is based on their careful investigation of
medical records dating back to 1900. According to these records, there had been no cases
of MS among the Faroese since 1900.

The approach taken to this problem is to regard the times of infection as occurring
according to a Poisson process, the incubation times as the service times of an infinite-
server queue, and the times of onset as the departure times from this queue. In this context,
quite general methods are developed.

In Section 2 the details of the model are presented and some tests based on this model
are given in Section 3. Section 4 considers other hypotheses for testing about input processes.
The data are analysed in Section 5, and the question of power is investigated in Section 6.
For clarity, some technical details are deferred to an Appendix.

2. The Model

Let {N(¢), t = 0} be a nonhomogeneous Poisson process with intensity function y(¢) =
o Mt — u) dF(u), where A(z) = 0 and F(¢) is a distribution function with support on
[0, o). That is, suppose that

Pr{N(t) = k} = % {j; v(x) dx} exp{—J; v(x) dx} fork=0,1,2,....

It is well known [see, e.g., Mirasol (1962)] that {N(z), 1 = 0} can be viewed as the output
process of an infinite-server queue with a Poisson process input with intensity A(¢) and
service time distribution F. Assuming only the exit times from such a queue in equilibrium
are observed, when A\(f) = A, a constant, Kendall (1964) has shown that F(u) is not
identifiable. Nevertheless, it is possible to make inference about F(¢) (Clarkson and Wolfson,
1983, 1985; Léger and Wolfson, 1987) if observation of the output begins at time ¢ = 0.
On the other hand, Brown (1970) has dealt with the estimation of F(¢), with information
on the arrival times of customers as well as their departure times, although not necessarily
matched, for an M/G/o queue in equilibrium.

It is the aim here to deal with the problem of testing hypotheses about the input intensity
A(1), based solely on the observation of the times of exit from the queue and knowledge of
F. For instance, one may wish to test for a constant input intensity versus an increasing
input intensity. Also discussed is the comparison between the input intensities of two
independent Poisson processes, again where only the output processes are observed.

Henceforth it will be supposed that: (i) Observation of the output starts at time ¢ = 0,
and (ii) there are no customers in the system at time ¢ = 0.

Let Ty, T», . . . be the observable departure times of an infinite-server queue with Poisson
input, and service time distribution F(x). Let the input intensity be A(¢). Let y(¢) and I'(¢)
denote the output intensity and mean value function, respectively, of the Poisson output
process. When A(¢) = 1, a constant, y(¢) will be denoted by v.(¢) and I'(¢) by T'.(¢).

It is desired to make inference about A(¢) based on the observable sequence {7T;};-1 .. ; to

,,,,,, where S; = I'.(T}), plays a crucial role.
It is well known [see, e.g., Karr (1986, p. 22) for a general discussion] that the sequence
{S,;} forms the occurrence times of a Poisson process. A superscript “T” (“Transformed”)
will be used to denote the intensity and mean value function, respectively, of the Poisson
process generating the sequence {S;}. The above notation is summarized, for convenience,
in Table 2.

Proposition 2.1 below is important because it allows for inference about the input process
to be transferred to inference about the process generating the sequence {S;}.
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Table 2
Intensities and mean value functions (MVFs)

Input process (intensity)

() A)y=1

Output process y(t) = [6 Nt — 1) dF (u) v(t) = F(t)

(intensity)

MVF T() = 6 [5 Ns— u) dF(u) ds Tu(t) = [6 F(x) dx
Transformed ~T(t) ve(t)

output process

(intensity)

MVF (1) @)

It is easily shown that
r'@)
T(t) = v(Le ) 2.1
T =L @0 @D

Equation (2.1) follows from

d
Y1) = 7 D(I7'(1)).

Definition 2.1 Given two intensities \,(¢) and Ax(¢), we say that A,(¢) is locally ordered
with respect to A(z) and write A;(¢) >, Ay(2) if Ai(£)/N4(2) is nondecreasing in ¢ (Keilson
and Sumita, University of Rochester, Graduate School of Management Working Paper
Series, No. 8006, 1980; 1982).

Let C, be the class of unbounded intensities such that every pair of intensities within C,
is locally ordered, i.e., A\ (z) and A,(¢) belong to C, if and only if either \(¢)/Ax(2) is
nondecreasing or A,(t)/\(¢) is nondecreasing and A;(¢) and Ax(¢) are unbounded.

Proposition 2.1 Let

Hy: \(t) = A\, a possibly unknown constant (2.2)

and
HE: ') = \. (2.3)

Let
H.: \(t) is increasing (2.4)

and
H¥*:  ~"(¢) is increasing. (2.5)

Then,

(Hy, H,) is equivalent to (H§, HY).

Proof Let Hy hold with A(z) = A, say. Then it follows immediately from equation (2.1)
that v7(¢) = \.

Conversely, let H§ hold and suppose A(¢) is continuous and increasing. Then y(f) = ¢
implies

y(TH(t)) = cy(T'7(¢)) for some constant c.



Input Inference Based on Output Observation 341

Letting I';'(¢) = s, this implies that

J(: g(u) dF(u) = cF(s), (2.6)

where g,(1) = A — u)l(u)p,5 i1s nonnegative and increasing to infinity, and (1) is the
indicator function on [0, s). Since lim,_,.. cF(s) = ¢, the limit on the left-hand side of (2.6)
must exist and be ¢. But by the monotone convergence theorem,

lim f gs(u) dF(u) = f lim gy(1) dF(u) = +o0,
S—>00 0 0 §—>00

which is impossible. Hence, A(¢) = ¢ and it follows that A(¢z) = \. Therefore H, is equivalent
to H¥. Showing that H, implies H ¥ reduces to showing that

6 Mt — w) dF(u)

RO =500 = w) dFw)

is increasing if \,(¢)/A4(2) is increasing. The proof is given in the Appendix. Conversely, if
H , does not hold, that is, if A(¢) is constant, it follows from the first part of this proposition
that y"(¢) is constant. Hence H } implies H,.

Note: We close this section with the observation that the most often used monotonic
input intensities,

A1) = ae™, a, a >0,

a—1
t
A1) = % <5> , for « > 1, 6 constant,

and
At) = v log(at + 6), for «, v, 6 > 0,

all have the property A.(¢)/Ms(¢) is increasing for o > 8 < N\ (1) < Ag(¢) for all ¢, and A (¢) is
unbounded on [0, «). Therefore, each of these classes of intensities consists of locally
ordered intensities.

3. Some Tests

In Section 2 it.was shown how the hypotheses of a constant versus an increasing input
intensity for the process {7} could be transferred to the hypotheses of a constant versus an
increasing output intensity for the process {S;}. Three of the most important test statistics
for testing for a constant versus an increasing intensity for an observed Poisson process are
discussed in Barlow et al. (1972). In that context, the Poisson process about which inference
is to be made, is actually observed. Define
n—1
L=y 2

i=1 n

known as the cumulative total-time-on-test statistic,

n—1 Si
Xy= =2 In| =),
igl n<Sn>



342 Biometrics, June 1990

and for | < k < n fixed,

_ k(Sn - Sk)
C (m— kS

Under the null hypothesis of a constant intensity, X, has a chi-square distribution with
2n — 2 degrees of freedom, Y, has an F distribution with 2k and 2(n — k) degrees of
freedom, while for n < 13 the null distribution of L, is given in Barlow et al. (1972).
As n — o, L, is asymptotically normal. One rejects the null hypothesis in favour of an
increasing intensity for large values of L,, and for small values of X, and Y. Of course, the
statistic Y, depends on k and it is not clear a priori which k to use.

Let II, denote the power of the test based on the test statistic X,,, when the alternative
hypothesis is H,: M) = A (t). It can be shown (see Corollary 1.3 in the Appendix)
that IT,, < II; whenever A .(¢) < Ag(¢) for all £ and whenever (A\g, A,) € C,. While similar
results probably hold for the test statistics L, and Y, the proofs seem difficult.

Y

4. Other Hypotheses
Using the same principles as in Section 3, one may test
Ho: \t) = A\ (1) (4.1)
vs
H. Nt) = N\s(t) forsome 83 >0andall 1 = 0, 4.2)

where A (0) = Ag(0), Ns(2)/A(2) is increasing, and Ag(7) > A (¢), for £ > 0. As before, one
finds

1 JOoNs(t — u) dF(u)
v = J6 Nt — u) dF(u)°

after making the transformation
S; = TT)),

where

I.(t) = j: A (t — a) dF(a).
It then follows from the proof of Proposition 2.1 that (H,, H,) « (H¥, H¥), where
H¥ ~%(t) = constant,
and
H¥: (1) is increasing.

The two-sample case Here the data are generated by two independent displaced Poisson
processes with “input” intensities A;(¢) and \,(¢), respectively. It is desired to test

M)

H(): )\2([)

= ¢ forall t € [0, )

\A)

M)
N

is increasing in ¢.
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The service time distribution, F, is assumed io be the same for both processes and unknown.
Keeping the same notation as we used in the previous sections,

t
vi(t) = f Nt — u) dF(u), fori=1, 2.
0
Let H¥ and H¥ be given by

v1(1)
v2(2)

HE: =k, constant for all 7 € [0, )

\S}

*. Y1)
oy

is increasing for all ¢ € [0, ).

It follows as before that (H,, H,) < (H§, H}). Consequently, without knowing F, one can
test Hy vs H, by observing only the displaced processes and by using, for example, the
results of Lee and Pirie (1981). See also Bovett and Saw (1980). Again, it is not difficult to
show that the tests are unbiased and have monotone power in the two-sample case.

5. Analysis: Is Multiple Sclerosis an Infectious Disease?

In this section we return to the question posed in the introduction, of whether the British
troops introduced an infectious agent onto the Faroe Islands, that caused the apparent
outbreak of multipie sclerosis. The infinite-server queueing model introduced in Section 2
is applied as follows:

(i) The times of arrivals of customers are represented by the times of infection
(unobserved).
(ii) The service times are represented by the incubation periods of multiple sclerosis in
different individuals.
(iii) The departure times are represented by the times of onset of MS in different
individuals (observed).

Therefore, the question about “infection rate” based on observed data about “onset rate”
and knowledge of the incubation distribution translates into a question about the arrival
intensity of customers in an infinite-server queue based on the observed departure times
and knowledge of the service time distribution.

Results Two distributions were considered for the service time (incubation period) of the
disease. These were the chi-square and the standard Weibull. In the absence of any data to
suggest an appropriate incubation period distribution, these two distributions were selected
because of their contrasting shapes. The former, though, would probably be the more
reasonable as an incubation period distribution. It was decided to select the chi-square
distributions with 6, 10, and 20 degrees of freedom, and the standard Weibull distributions
with parameters ¢ = .333, ¢ = .295, and ¢ = .257, corresponding to means of 6, 10, and 20
years, respectively. A mean of 6 years for the incubation period was used in accordance
with the estimate made by Kurtzke and Hyllested (1986), and is somewhat less than other
literature in the area has indicated. For this reason, means of 10 years and 20 years were
also selected for comparison.

The three statistics of Section 3 were used to test for a constant versus an increasing
intensity for the infection process. The numbers of data points (individuals with multiple
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sclerosis) used were chosen as follows:

1.

2.

For both the chi-square and Weibull distributions, all three tests were performed using
all 32 individuals.

For the x2 and Weibull (¢ = .333) distributions, the first 17 ordered observations were
used. Their inclusion covers the period when the onset rate appears to increase. This
corresponds to a time period of 5 years from the time the British troops first arrived on
the Faroe Islands until they left, plus a mean of 6 years from infection to onset (a total
of 11 years from 1941). One can see from Table 1 that the ordered time of onset equal
to 11 years corresponds to the 17th observation (i.e., 7(17) = 11).

. For the x distribution the first 23 observations were also considered. This corresponds

to the time period from 1941 until roughly 95% of individuals “infected” during the
occupation, will have experienced disease onset. This procedure was also done for the
Weibull distribution (¢ = .333) and it was found that all 32 individuals should be
included.

In deciding how many data points to include corresponding to incubation period

distributions with larger means (i.e., 10 years and 20 years), the same criteria were imposed.

The details of the analysis are summarized in Table 3 (for the chi-square distributions)

and Table 4 (for the standard Weibull distributions), where only the results obtained using
the test statistic X, are presented. This choice for presentation was made because the results
obtained using the statistics L, and Y} led to exactly the same conclusions.

Table 3
Results: Incubation period with a chi-square distribution
X3 X3 X3 X o X 1o x 1o X3o
Number of observations 32 23 17 32 30 21 32
Incubation distribution 6 6 6 10 10 10 20
mean (years)

X, 144.13 97.17 68.63 212.58 200.26 139.67 457.11

Table 4

Results: Incubation period with a standard Weibull distribution

Weibull parameter (c)

.333 333 .295 295 257
Number of observations 32 17 32 21 32
Incubation distribution 6 6 10 10 20
mean (years)
88.92 32.05 88.48 44.45 87.88

n

None of the test statistics shown in Tables 3 and 4 is statistically significant (P > .10).

This shows that the increase in the observed onset rate of MS on the Faroe Islands following
the arrival of the British troops in 1941 is not necessarily indicative of an infectious agent.
The data are compatible with the introduction of some noninfectious cause (as yet
unknown) which might have led to a transient increase in the observed onset rate of MS.

6.

Simulations

Because the service time distribution is presumed known in the application of this model,
the effect of its misspecification on power was studied by computer simulations.
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Also examined was the change in input intensity. The following are features of the
simulation:

1. Owing to the considerable cost involved in carrying out these simulations, no attempt
was made to be exhaustive in the choice of service time distributions, input intensities, or
sample size. Rather, the aim was to obtain a rough idea of the behaviour of the power
function under some selected but different conditions. Specifically, the chi-square and
Weibull distributions were used as service time distributions because they were used in the
analysis of the data in Section 1. Degrees of freedom and parameters for the two distribution
types were chosen in the range of those most likely to have arisen in the application of
Section 1. The negative exponential distribution was also considered because of its frequent
use as a service time distribution. A reasonable range of input intensities, of the types
introduced in Section 2, was used.

2. Various “service time-transformation” combinations were considered. In the case
where the service time distribution was chi-square, the only transformations considered
were chi-square; the Weibull and negative exponential are of such different shapes from
the chi-square that misspecification by using the latter two distributions is unlikely. On the
other hand, different exponential-Weibull combinations were considered, their general
distributional shapes being similar. Unfortunately, the costs involved in studying Weibull
(true)-exponential (transformed) combinations (numerical integration with singularities
arise) were prohibitive and for this reason no simulations were carried out. It is unlikely,
though, that results in these cases would have differed very much from those already
obtained.

3. Each simulation was carried out 400 times. This gives a 95% confidence interval for
the power, of width .08. Several simulations were carried out using a constant input
intensity and a correctly specified transformation. This was done as a check on the validity
of the simulations; in all instances values close to the nominal level of significance of 5%
were obtained.

4. In each of Tables 5 and 6 “F(true)” denotes the true service time distribution
while “F(trans)” denotes the assumed distribution, i.e., the distribution used in the
transformation.

6.1 Discussion of the Results

1. As is to be expected, in all cases the power increases as the input intensity increases.

2. When the distribution used for the transformation coincides with the true service
time distribution, the power is high in most cases. The exceptional cases occur invariably
when the input intensity is of the form log(az + &), which increases very slowly.

3. When the true service time distribution is x2, and the transformation distribution is
x5 with n > m, the power is seen to decrease (compared with the case 7 = n). Similarly,
when m > n the power increases. That this should happen is a consequence of the local
ordering of the family of chi-square distributions indexed by their parameters. See Appen-
dix, Corollary 1.3. Of course, the quite dramatic increase in power in the case m > n is
accompanied by an increase in significance level which, in selected simulations, rose to as
much as .300. When m < n the significance level decreases with the power. Considering
the comparative lack of information in carrying out the tests, the powers obtained compare
favourably with those obtained from direct observation of the input process (see Bain,
Englehardt, and Wright, 1985).

In summary, the tests are “valid,” in the sense that significance levels are less than or
equal to « when m < n, and the tests are “powerful,” in the sense of rejecting the null
hypothesis when m > n.
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Table 5
Simulation results

Input F(true) = x2, F(trans) = x;
intensity a m n Power

e 5 4 4 975

1.0 4

at™! 1.5 4

1.000

995
.823
.280
1.000
970
733
1.000
995
958

408
128
.058
763
255

log(at + €) 2 4

1960
760
373

N
N
NIRRT, AP OANPLPOR, PO PRPONPE, PO PRLPOAAR, OO POOAR, DR OCANRCODN
©©
O
(e
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Table 6
Simulation results

Input intensity «  F(trans)* Power

e .5 se™s 973
e 1 Lo=v6 1.000
e 5 o 1.000
e 1 o 1.000
at*™! 1.5 e .523
Ol[n_l 2 —é—e""/é’ 850
at™! 3 Lo=x/6 .998
O!la_l 1 5 6_'\..333 980
at™! 2 € om 1.000
Olt“_l 3 e_x,333 1000

e

1

log(at + ¢€) 2 S0 .298
log(at + ¢) 2 e .903

* F(true) for all simulations = ¢™/¢/6.

4. Several simulations were done with 20 output observations to investigate the effect
on power of reduced sample size. There was roughly a 10% reduction in power.

6.2 Conclusion

The simulations carried out, although limited, indicate that particularly when the input
intensity increases rapidly, it is possible to obtain tests with reasonably high power, even
when the transformation distribution is misspecified. When one considers that the tests are
based solely on the observed output and inference is to be made on the input, this is rather
surprising. While it is impossible to assess the true power of the tests carried out on the MS
data from the Faroe Islands, nevertheless the failure to reject a constant input intensity
seems to warrant the consideration of alternative causes for the apparent sudden outbreak
of MS after the arrival of the British troops.
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RESUME

Dans un phénoméne de file d’attente, ou ’entrée du systéme est régi selon un processus de Poisson,
et le processus en sortie génére une file d’attente avec un nombre d’événements illimité, on commence
I’observation au temps 0, avec une queue vide. On suppose que la distribution des temps, décrivant
la file d’attente en sortie, est connue. Cet article discute de la statistique d’inférence relative a I'intensité
du processus a I’entrée. Un résultat controversé de I’étude de la sclérose multiple montre 'intérét du
modeéle et des méthodes traitées.
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APPENDIX

Proof of Proposition 2.1 (H, < HY¥)

The proof follows as a corollary to the next lemma.

Lemma A.1  Let M\ () > 0, \y(t) > 0, and suppose (A, A2) € C,, so that \,(¢)/Ax(¢) is increasing as ¢
increases. Let F/ = f'(the density of F) be a member of PF, the class of Polya frequency functions of
order 2; see, e.g., Karlin (1968). Then
5 Mt — u) dF . . .
R() = {Z Alzit — Z)) dF((Lzlt)) 1S Increasing as ¢ increases.
Note: 1t is easy to show that f € PF, if and only if f(x) = 0 for all x and f(x — A)/f(x) is increasing
in x for {x: f(x) > 0} and A > 0.

Proof. Let t, > 0 be arbitrary. We show that R(¢) is increasing for all 0 < ¢ < ¢,. Define

w = Jah() for0 <<
MO {0 for t > 1,

A = CZ)\Z(Z) for 0 < <1
0 for t > 1,

where ¢, ¢, are chosen such that [§ AN¥(¢)dt=1,i=1, 2.

Then \¥ and A\¥ are probability density functions. Identify with them random variables X, and X,
respectively. On [0, %], N¥(¢)/A$(¢) is increasing for all {£: A\¥(z) > 0}, which is equivalent to the
statement that X, <, X, (X, is locally uniformly smaller than X,) (Keilson and Sumita, University of
Rochester, Graduate School of Management Working Paper Series, No. 8006, 1980; 1982).

Let Y be a random variable associated with the distribution function F, and independent of X, and
X,. Then X, + Y <, X, + Y on [0, #,] (Keilson and Sumita, 1980, 1982). The density of X; + Y is
J6 Ni(t — u) dF(u). Hence R(¢) is increasing for all £ < ¢,.

Corollary A.2
H, o H}
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Proof. In Lemma A.1 take \,(¢) = A(?), increasing and A\ (¢) = )\, constant.
Note: The class of PF, density functions contains many of the common densities.
Corollary A.3 Consider the set of hypotheses H¥ vs H¥. Let the true service time distribution Fy

have density f;, and suppose that f; and f, are two different densities used for the transformation.
Suppose further that

%_; is increasing for all {z: fy() > O} @D
and

JJ% is decreasing for all {£: fi(¢) > O}. 2
Then

(1) the power of the test based on the statistic X,, and transformation density f; is greater than or
equal to the power of the test based on the transformation density f;.

(ii) The power of the test based on the statistic X,, and transformation density f; is less than or equal
to the power of the test based on the transformation density f;.

Proof An argument similar to that used in the proof of Lemma A.1 suffices, since, according to
Saw (1975), it is enough to show that

JoMt—w)fiu)du [ [6 Mt —u)fo(u) du _ JoMt—uw)fi(u)du isincreasingin¢fori=1
NoFo(2) NoFo(t) 5Nt — u)fo(u) du’ and decreasingin ¢ for i=2.

The details are omitted. The class of densities that possess the properties (A.1) or (A.2) includes, for
example, the gamma, the normal, Weibull, and log-normal (indexed by the appropriate parameters)
(Keilson and Sumita, 1980; 1982).

Of course, since it will often happen that f; will belong to the same class as the transformation
density, it follows easily from Corollary A.3 that the test based on X, will have isotonic power with
respect to the local uniform ordering of the random variables X; associated with the densities f; in the
class. The simulations in Section 6 illustrate this feature.




