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A Bayesian approach to simultaneously
adjusting for verification and reference standard
bias in diagnostic test studies
Ying Lu,a Nandini Dendukuri,b,c∗† Ian Schillerd and Lawrence Josephe,f

Verification bias arises in diagnostic test evaluation studies when the results from a first test are verified by a reference test
only in a non-representative subsample of the original study subjects. This occurs, for example, when inclusion probabilities
for the subsample depend on first-stage results and/or on a covariate related to disease status. Reference standard bias arises
when the reference test itself has imperfect sensitivity and specificity, but this information is ignored in the analysis. Reference
standard bias typically results in underestimation of the sensitivity and specificity of the test under evaluation, since subjects
that are correctly diagnosed by the test can be considered as misdiagnosed owing to the imperfections in the reference standard.
In this paper, we describe a Bayesian approach for simultaneously addressing both verification and reference standard bias.
Our models consider two types of verification bias, first when subjects are selected for verification based on initial test results
alone, and then when selection is based on initial test results and a covariate. We also present a model that adjusts for a third
potential bias that arises when tests are analyzed assuming conditional independence between tests, but some dependence exists
between the initial test and the reference test. We examine the properties of our models using simulated data, and then apply
them to a study of a screening test for dementia, providing bias-adjusted estimates of the sensitivity and specificity. Copyright
© 2010 John Wiley & Sons, Ltd.
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1. Introduction

Verification bias is a frequent concern in studies designed to estimate the properties of diagnostic tests. Suppose that
such a study is to be carried out in two stages, a first stage where the diagnostic test being evaluated is given to all
participants, and a second stage where a reference test with known properties is given, but only to a subset of subjects
from the first stage. This situation may occur, for example, when the second-stage test is expensive or invasive, and
so its use is to be minimized. If the subsample is randomly selected from the initial sample there will usually be no
verification bias. However, if the second-phase sampling probabilities depend either on the diagnostic test results from
the first phase and/or on a covariate which may be related to the subject’s true disease status, then bias may occur.

To illustrate the problem, consider a study where data were collected to evaluate a screening test for dementia among
subjects aged 65 years or older [1, 2]. The study followed the two-stage design illustrated in Table I. In Stage I all
patients were evaluated by The Community Screening Instrument for Dementia [3]. To create this table, we simplified
the original data set, wherein patients with a ‘Very Poor’ or ‘Poor’ rating were grouped together into the screen positive
category, whereas those rated ‘Intermediate’ or ‘Good’ formed the screen negative category. This reflects clinical reality,
where a diagnosis must be made for each subject for purposes of treatment or further follow-up. Patients were selected
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Table I. Data from Rodenberg and Zhou (2000) on 2212 patients screened for dementia. The screening test was The
Community Screening Instrument for Dementia, and the reference clinical diagnosis was based on the Cambridge
Mental Disorders of the Elderly Examination and the Consortium to Establish a Registry for Alzheimer’s Disease.

Greater than 75 years old Less than 75 years old

Stage Screening test + Screening test − Screening test + Screening test −
Stage I Total 255 650 174 1133

Unverified by reference test 99 578 78 1106
Verified by reference test 156 72 96 27

Stage II Reference test + 54 1 10 0
Reference test − 102 71 86 27

for Stage II of the study based on their performance on the screening test, with a screen positive subject more likely to
be selected for further testing than a screen negative subject, and on the covariate age, with older subjects more likely to
be selected. The reference standard clinical diagnosis of dementia was made following an interview and clinical exam,
in part based on the Cambridge Mental Disorders of the Elderly Examination and on a structured cognitive evaluation
from the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD).

Previous analyses of these data [2] assumed the reference clinical diagnosis to be a gold standard test, with sensitivity
and specificity both equalling 100 per cent. There is much evidence in the literature, however, that the clinical diagnosis
of dementia is far from perfect. For example, a recent review of studies comparing clinical diagnosis to postmortem
neuropathology reported that the sensitivity of clinical diagnosis ranged from 39 to 98 per cent, while the specificity
ranged from 33 to 100 per cent. Similar results have also been reported in other studies [4, 5]. Since it is well known
that not adjusting for an imperfect reference test can very strongly bias estimates of sensitivity and specificity even in
the absence of verification bias [6], it is important to adjust for this additional factor. To our knowledge, no model has
been developed that simultaneously adjusts for verification bias and the lack of a gold standard reference test.

Verification bias was first described over two decades ago, and various solutions have appeared in the literature,
mainly from a frequentist point of view [7--9]. While these methods are useful, they are subject to serious limitations.
For example, one typically must assume that the second-stage test is either a perfect gold standard or has exactly known
test properties [10], neither assumption being realistic in the vast majority of situations. This is because if one tries to
incorporate all uncertainties into the model, including unknown properties for the reference standard test, then the model
becomes non-identifiable, there being more parameters to estimate than there are degrees of freedom in the data.

Recently, two articles addressed the problem using Bayesian approaches [11, 12], but both models assumed that the
reference test was a perfect gold standard. Further, they proposed models where the verification probabilities depend on
the results of both the test under evaluation and the reference test, in addition to covariates. Martinez et al. [11] used an
empirical Bayes approach where the prior distribution was determined in part by maximum likelihood estimates obtained
from a frequentist solution. Buzoianu and Kadane’s model [12] used a missing data approach to impute unobserved
reference test results for the unverified subjects with prior distributions based on expert opinion. The model described in
this paper reduces to that of Buzoianu and Kadane if the second-stage test is assumed to be a perfect reference standard
and verification bias is ignorable.

In this paper, we model the sensitivity and specificity of the reference test as additional unknown parameters. Further,
we allow the verification probabilities to depend only on variables known at Stage I, depending on the reference test only
indirectly, via a covariate. A Bayesian approach is used for inference, and as has often been suggested in the diagnostic
testing literature [6, 13--15], posterior inferences are obtained by placing informative prior distributions on a minimum
number of parameters.

In Section 2 we describe the most basic situation where the verification probability is a function of the result of the
first-stage screening test only, deferring discussion of adding a covariate to the model to Section 3. Whether there is a
covariate or not, we allow the reference test to be imperfect, and simultaneously estimate all unknown parameters. In
Section 4 we investigate the performance of our methods in simulated data sets to illustrate the effect of various design
variables and the prior distribution on the estimated parameters. We return to the problem of estimating the properties of
our screening test for dementia in Section 5. We use this example to compare estimates derived from models assuming
conditional independence between tests or not. We provide some concluding remarks in Section 6.

2. A Bayesian approach to correcting for verification bias

Suppose that a study is designed to estimate the properties of a diagnostic test (T1) for a certain disease or condi-
tion, and that this test is to be compared with another possibly imperfect reference test (T2). At a first stage, T1 is
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Table II. A two-stage design for diagnostic test evaluation.

Stage of the study T1 =1 T1 =0

Stage I Total t1 t0
Unverified on T2 u1 u0
Verified on T2 t1 −u1 t0 −u0

Stage II T2 =1 d11 d01
T2 =0 d10 d00

One observes t1 and t0 positive and negative subjects on test T1 at Stage I, but only t1 −u1 and t0 −u0 positive
and negative T1 subjects, respectively, are selected to be further evaluated by test T2 at Stage II of the design.
The data dij, i , j =0,1 represent the numbers of subjects who test positive (1) or negative (0) on each of the
two tests.

applied to a random sample of subjects from the target population. Subsequently, a random sample of these subjects
is verified by T2, with the sampling probabilities possibly dependent on the results of T1. Let V denote a verification
indicator such that V =1 if the subject is verified by T2, and V = 0 otherwise. Unless the selection probabilities for
second-stage subject verification do not depend on T1, i.e. P(V =1|T1)= P(V =1), then there is the possibility of
verification bias.

Let p11 be the probability of testing positive on T1, and assume that the probability of verification for each subject
depends only on their results on T1. Let pV 1 be the probability of being verified among individuals who are positive
on T1, and pV 0 be the probability of being verified among individuals who are negative on T1. Let p21 denote the
probability of being positive on T2 given T1 is positive and the subject is selected for verification. Similarly, let p20
denote the probability of testing positive on T2 given T1 is negative and the subject is selected for verification. The
statistical model may be summarized using a hierarchical notation as

T1 ∼ Bernoulli (p11),

V |T1 = j ∼ Bernoulli (pV j ), j =0,1 and

T2|V =1,T1 = j ∼ Bernoulli(p2 j ), j =0,1.

The observed data can be summarized as described in Table II. Let the number of subjects testing positive (T1 =1) or
negative (T1 =0) on the first test be given by t1 and t0, respectively. The t j subjects, j =0,1, can be further subdivided
into d j1 who were verified and tested positive on T2, d j0 who were verified and tested negative on T2, and u j who were
not verified, so that d j1 +d j0 +u j = t j .

The full likelihood function can be written as the product of the likelihood contribution at each stage, giving

L(p11, pV 1, pV 0, p21, p20|t1, t0,u1,u0,d11,d10,d01,d00)

∝ pt1
11(1− p11)t0 ×{p(d11+d10)

V 1 (1− pV 1)u1 × p(d01+d00)
V 0 (1− pV 0)u0}×{pd11

21 (1− p21)d10 × pd01
20 (1− p20)d00}. (1)

The probabilities of testing positive or negative on each test at Stage I and Stage II can be expressed as functions
of the prevalence of the condition of interest (�), and the properties (sensitivity Si and specificity Ci ) of each test i ,
i =1,2. For the Stage I sample we have

p11 = P(T1 =1) = P(D =1)P(T1 =1|D =1)+ P(D =0)P(T1 =1|D =0)

= �S1 +(1−�)(1−C1),

where D is a binary variable denoting the true (unobserved, or latent) disease status.
We assume that at the second-stage subjects are selected at random from within subsets denoted by T1 = 1

and T1 =0. Since subjects at the second stage were selected randomly, P(T2 =1|T1 =1,V =1)= P(T2 =1|T1 =
1) and P(T2 =1|T1 =0,V =1)= P(T2 =1|T1 =0). This implies that the Stage II sample provides unbiased esti-
mates of the predictive values P(T2 =1|T1) even in the presence of verification bias, which can affect other
parameters.

We first assume that T1 and T2 are conditionally independent given the true disease status, but later remove this
assumption to model possible dependence between T1 and T2. Conditional independence implies

p21 = P(T2 =1|T1 =1)
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= P(T2 =1, D =1|T1 =1)+ P(T2 =1, D =0|T1 =1)

= P(T2 =1|D =1)P(D =1|T1 =1)+ P(T2 =1|D =0)P(D =0|T1 =1)

= S2
�S1

�S1 +(1−�)(1−C1)
+(1−C2)

(1−�)(1−C1)

�S1 +(1−�)(1−C1)
. (2)

Similarly,

p20 = P(T2 =1|T1 =0)= S2
�(1−S1)

�(1−S1)+(1−�)C1
+(1−C2)

(1−�)C1

�(1−S1)+(1−�)C1
. (3)

Most of the literature to date [7, 9, 11, 12] assumes that T2 is a gold standard test with S2 =C2 =1. Then equations
(2) and (3) reduce to

p21 = P(T2 =1|T1 =1)= �S1

�S1 +(1−�)(1−C1)
and (4)

p20 = P(T2 =1|T1 =0)= �(1−S1)

�(1−S1)+(1−�)C1
,

respectively. However, one could argue that this assumption almost never holds in practice, as few if any diagnostic tests
are error-free, and even theoretically perfect tests are rendered imperfect by human error in application and administration.
Accurate estimation and full correction for verification bias therefore depend on taking these imperfections into account.

The amount of prior information required for reasonable estimation is determined in large part by the number of
degrees of freedom in the observed data. At Stage I we observe the number of positive results on T1, a binomial random
variable contributing 1 degree of freedom. At the verification stage we observe two binomial variables contributing 1
degree of freedom each. Finally, at Stage II, within each of the groups of individuals who are positive or negative on
T1 we observe the number of positive results on T2. Thus we observe results of two further binomial variables each
adding 1 degree of freedom, for a total of 5. However, since the parameters of interest (�, S1,C1, S2,C2) are involved
in Stages I and II only, the two degrees of freedom from the verification stage do not contribute useable information
towards estimating these parameters, hence the number of degrees of freedom available for this purpose is 3. This
renders our model non-identifiable, meaning that in practice substantive prior inputs are required for at least two of these
parameters in order to derive reasonable estimates [6, 15]. While considerable care needs to be exercised in selecting
prior distributions, and one will usually want to check the robustness of the final estimates across a range of prior
choices, this approach seems preferable to falsely assuming T2 to be a perfect gold standard, which will almost always
lead to biased estimates.

While substantive prior information can be input on any two or more parameters, usually S2 and C2 are chosen, as
the properties of the reference standard should be at least approximately known. In addition, there might sometimes be
some knowledge about the prevalence. For example, if the main objective of the study is to estimate the properties of
T1, the design might aim for approximately 50 per cent prevalence, providing equal sample sizes towards estimating
sensitivity and specificity. Typically, one would want to run analyses with low information prior distributions on S1
and C1, to let the data drive inferences about the main parameters of interest. Two degrees of freedom are available to
estimate the verification stage parameters (pV 1, pV 0), so that non-informative prior distributions can be used for these
parameters.

In principle, any joint prior distribution can be used over the set of seven unknown parameters. The Beta (�,�) density
is a convenient choice, as it covers the 0,1 range of each parameter, and has a reasonably flexible shape. To determine the
values of � and � for a parameter about which some substantive prior knowledge is available, we need information on
any two features of the distribution, for example the mean and standard deviation, or the 2.5 and 97.5 per cent quantiles
[6]. If a low information prior distribution is needed one can use a Beta (�=1,�=1), which corresponds to a uniform
prior distribution. For example, we used Beta(1,1) prior distributions for the verification probabilities, pV 1 and pV 0.

Having stated our likelihood function and the form of our prior distributions, posterior densities are derived through
Bayes theorem. In this case, there are no simple closed-form formulae, but samples from the marginal posterior
distributions for each parameter can be obtained using a Gibbs Sampler as implemented in WinBUGS. Our programs are
available from the software section at http://www.medicine.mcgill.ca/epidemiology/dendukuri. For each of the models
presented in this paper, we ran 5 Gibbs sampler chains with different initial values. Convergence was determined using
the Gelman–Rubin statistic provided by WinBUGS. Once the chains had converged, we used 100 000 iterations of the
Gibbs sampler to estimate posterior medians and equal tailed 95 per cent credible intervals for all parameters of interest.

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 2532--2543
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Our model can be extended to accommodate conditional dependence between T1 and T2. Using a fixed effects model
[13] adds two parameters, representing the covariances between T1 and T2 among those who have positive (covp) or
negative (covn) latent disease status. Equations (2) and (3) become, respectively,

p21 = P(T2 =1|T1 =1)= P(T2 =1,T1 =1)

P(T1 =1)

= �(S1S2 +covp)+(1−�)((1−C1)(1−C2)+covn)

�S1 +(1−�)(1−C1)
and (5)

p20 = P(T2 =1|T1 =0)= P(T2 =1,T1 =0)

P(T1 =0)

= �((1−S1)S2 −covp)+(1−�)(C1(1−C2)−covn)

�(1−S1)+(1−�)C1
. (6)

As in [13] these parameters take on values between 0 (no dependence) and upper limits that are functions of the
sensitivity and specificity of the two tests. If the degree of dependence is unknown, uniform prior distributions may be
used over these ranges, giving

covp ∼ U(0,min(S1, S2)−S1S2)

covn ∼ U(0,min(C1,C2)−C1C2).

Of course, if more information is available concerning the values of covp and covn, narrower prior distributions may be
used.

3. Modeling the probability of verification as a function of a covariate

In practice, the probability of disease may depend on one or more covariates, so that in turn, verification decisions may
also depend on these covariates. For example, if verification is an expensive or invasive process, then only subjects
thought to be at high risk for the disease or condition may be subject to further testing. This risk may in turn depend
on a subject’s medical history as well as the results of any preliminary tests, especially if the properties of the first test
are not well established. Keeping in mind our application to the diagnosis of dementia of Section 5, and for ease of
exposition, here we assume a single dichotomous covariate, X , but the methods can be easily extended to continuous
covariates, or to the situation when X is a vector of several factors that can influence the verification probabilities. We
assume that verification probabilities are related to the result of T1 and the covariate X through the logistic regression
model

P(V =1|X,T1)= exp(�0 +�1 X +�2T1)

1+exp(�0 +�1 X +�2T1)

where �0,�1 and �2 are unknown parameters. Similarly, we assume that the prevalence is related to the covariate X
so that

P(D =1|X )=�X = exp(�0 +�1 X )

1+exp(�0 +�1 X )
.

Let t1x and t0x denote the number of individuals who were positive and negative, respectively, on T1, within the
subgroup X = x , x =0,1. Let di j x denote the number of individuals with results T1 = i and T2 = j within the subgroup
X = x , x =0,1. With a dichotomous covariate, the data format remains similar to that shown in Table II, except that
such a table can now be constructed for each value of the covariate, i.e. we have observed data consisting of t1x , t0x ,
d11x , d10x , d01x and d00x , for X = x , x =0,1.

The likelihood function of the observed data now becomes

L(p111, p110, p211, p210, p201, p200,�0,�1,�2, |t1x , t0x ,u1x ,u0x ,d11x ,d10x ,d01x ,d00x , x =0,1)

∝
1∏

X=0
pt1x

11x (1− p11x )t0x × pd11x
21x (1− p21x )d10x × pd01x

20x (1− p20x )d00x
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×
{

exp(�0 +�1 X +�2)

1+exp(�0 +�1 X +�2)

}d11x+d10x
{

1

1+exp(�0 +�1 X +�2)

}u1x

,

×
{

exp(�0 +�1 X )

1+exp(�0 +�1 X )

}d01x +d00x
{

1

1+exp(�0 +�1 X )

}u0x

(7)

where p11x , p21x and p20x , x =0,1, can each be expressed in terms of S1, C1, S2, C2 and the parameters used to model
the prevalence, �0 and �1, such that

p11x = P(T1 =1|X )

= exp(�0 +�1 X )S1 +(1−C1)

1+exp(�0 +�1 X )
,

p21x = P(T2 =1|T1 =1,V =1, X )

= exp(�0 +�1 X )S1S2

exp(�0 +�1 X )S1 +(1−C1)
+ (1−C1)(1−C2)

exp(�0 +�1 X )S1 +(1−C1)
and

p20x = P(T2 =1|T1 =0,V =1, X )

= exp(�0 +�1 X )(1−S1)S2

exp(�0 +�1 X )(1−S1)+C1
+ C1(1−C2)

exp(�0 +�1 X )(1−S1)+C1
.

As in Section 2, the expressions above can be modified in a straightforward manner to model conditional dependence
between T1 and T2.

We again use Beta prior distributions for the sensitivity and specificity parameters. For the logistic regression parameters
�0, �1, �0, �1 and �2 we use Normal(�,�2) prior distributions. A suitable low information prior distribution could have
�=0 and a sufficiently large value such as �=10. Even though such priors are not nearly uniform, as they place more
weight on the extremes of the (0,1) interval, they are very weak compared with the information in the data. Other choices
of prior distributions that induce a more uniform prior on the probability scale have been described in [12].

If prior information is available about the prevalence, it can be transformed into prior information on �0 and �1. For
example, suppose the range of values of �x , X =0,1 is given by (lx ,ux ) and that �1 is believed to be greater than �0.
We can estimate the lower bound of the range of �0 by �0l = logit(l0) and the upper bound by �0u = logit(u0). Similarly,
for �1 we could estimate the lower bound by �1l = logit(l1)− logit(u0) and the upper bound by �1u = logit(u1)− logit(l0).
These ranges can be converted into estimates for the prior mean and standard deviation of �0 and �1. For example, the
prior mean can be set equal to the centre of the range, and the prior standard deviation can be set equal to one quarter
of the range.

The addition of a covariate to the model means essentially doubling the amount of data available, while only slightly
increasing the numbers of parameters to estimate, so that the model will usually be identifiable even when T2 is
not a gold standard test. The number of degrees of freedom available for estimating the six parameters of interest,
(�0,�1, S1,C1, S2,C2) now increases from 3 to 6. This is similar to the well-known two-population situation described
by Hui and Walter [16], and considered from a Bayesian viewpoint by Johnson et al. [17]. This allows the use of
non-informative prior distributions across all parameters, if desired. However, as the prevalence in the two strata becomes
similar (i.e. as �1 approaches 0), the problem approaches non-identifiability [15], essentially because there really are
not two different populations, as the covariate has no effect on the prevalence. In this case, one must ignore the
covariate information and the problem collapses to that described in Section 2, where inference requires informative
prior distributions on a minimum of two parameters. If, instead, the effect of the covariate on verification probability is
negligible, i.e. parameter �1 approaches 0, the problem remains identifiable as long as the prevalence remains a function
of X .

4. Application to simulated data sets

To illustrate the performance of the models described in Sections 2 and 3, we applied them to a series of simulated
data sets. Of course, since our models contain a large number of parameters and the study designs can be associated
with a wide range of prevalence values, sample sizes, verification rates and test properties, it is impossible to investigate
the performance of these models across all possible scenarios. We therefore selected a range of situations that would
typically arise in practice.

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 2532--2543
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In particular, we examined the results of fitting the conditional independence model in Section 2 to data sets that
were generated using relatively high and relatively low values for each of the following parameters:

(i) the prevalence: �=0.1 or 0.4,
(ii) the probability of verification among those testing negative at the first stage: P(V =1|T1 =0)=0.1 or 0.6

(iii) the sensitivity of the reference test: S2 =0.3 or 0.9
(iv) the specificity of the reference test: C2 =0.3 or 0.9
(v) the sample size at Stage I: N = t1 + t0 =200, 2000 or 20 000.

For all data sets we selected parameter values such that S2 +C2>1 to ensure a meaningful reference test. We set
S1 =C1 =0.7 and P(V =1|T1 =1)=0.9.

We also examined the consequence of correctly and incorrectly specifying prior information for the model without
a covariate. For data sets generated with S2 =C2 =0.9, �=0.4 and P(V =1|T1 =0)=0.6, we considered the following
situations: (i) treating T2 as a gold standard, (ii) using prior distributions over S2 and C2 whose 95 per cent credible
interval covered the true value but was not centred on the correct values, (iii) using prior distributions for S2 and C2
that were indeed centred on the true values.

To study the result of fitting the model in the presence of a covariate, we generated data sets assuming that both
sensitivity and specificity of the reference test were high (0.9). We let the covariate have a population distribution
P(X =1)=0.3, and the parameters relating the prevalence to the covariate to have values �0 =−0.2 and �1 =2. This
implies a prevalence in the groups X =0 and X =1 of 0.45 and 0.86, respectively. We let the probability of verification
be dependent on the covariate and the test result, with logit(P(V =1|T1, X ))=−0.7−0.69 X +2.78 T1. This implies
probabilities of verification in the groups (X =1,T1 =0), (X =0,T1 =0), (X =1,T1 =1) and (X =0,T1 =1) of 0.20,
0.33, 0.80 and 0.89, respectively. We used N(�=0, �=10) priors for the parameters �0,�1,�2,�0 and �1. We also ran
models where �1 and �1 were set equal to 0 to study the impact of ignoring adjustment for a covariate that influences
the verification probability.

Throughout, uniform Beta(1,1) prior distributions were used for �, S1 and C1. We chose different prior densities for
the properties of T2, depending on whether the true sensitivity and specificity values were high (0.9) or low (0.3), and
on whether we wanted to centre the prior density at these true values or not. When the true value was 0.3 we used a
Beta(24.9,58.1) prior density implying a 95 per cent prior range of (0.2, 0.4). When the true value was 0.9 we used
Beta(31.5,3.5) or Beta(42.5,7.5) densities for centred and non-centred cases, respectively, implying 95 per cent prior
ranges of (0.8, 1.0) and (0.75, 0.95), respectively.

In non-identifiable problems, increasing the sample size will often not decrease the width of the posterior credible
interval below a certain limiting value [18]. To study the impact of sample size on precision of the posterior estimates in
our models, we simulated data sets of size 20 000 for the scenario where the sensitivity and specificity of the reference
were high (0.9), verification among T1 =0 was high (0.6) and the prevalence was high (0.4).

The results of applying our models to the simulated data sets are given in Tables III and IV. Posterior distributions
for the verification probabilities (i.e. pV 1 and pV 0 or �0, �1 and �2) were centred over the true values and had high
precision for all models (data not shown). We make the following general observations:

1. Parameter C1 was always estimated with greater precision compared with S1. This was because the prevalence was
less than 0.5 in all scenarios, so that more truly negative subjects were available to provide data on the specificity
compared with fewer truly positive subjects providing data for the sensitivity. With higher prevalences, the precision
of the estimates of S1 increased, and estimates for C1 were less accurate.

2. A higher verification probability among those testing negative on T1 resulted in a higher precision of the estimates
of � and S1 only in a few scenarios where the sample size was 2000 and both sensitivity and specificity of the
reference test were high (Table III).

3. Incorrectly assuming that the reference test was a gold standard resulted in overestimation of the prevalence and
underestimation of S1 (Table IV), compared with the situation where the prior distribution was centred over the
correct values, S2 =0.9 and C2 =0.9 (Table III). The credible intervals were artificially narrow, excluding the true
value of the parameter (Table IV).

4. An increase in sample size from N =200 to N =2000 was associated with a narrowing of the credible intervals for
�, S1 and C1, particularly when �=0.4 (Table III). The median values of �, S1 and C1 were also more likely to be
closer to the true values. The very wide credible intervals for all parameters when N =200 or P(V =1|T1 =0)=0.1
suggest that a large Stage I sample size and a moderate probability of verification among subjects testing negative
on T1 may be required to obtain reasonable precision.

5. Even when the prior credible intervals over S2 and C2 were not centred on the true values, the true values of �, S1
and C1 were captured within their respective posterior credible intervals (Table IV). This would suggest that in
the situations considered the models we propose are robust to a slight mis-specification of the prior distribution.
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Table III. Posterior medians and 95 per cent posterior credible intervals when applying the model to simulated data, with
prior credible intervals over S2 and C2 centred on true values. The true values for S1 and C1 are both 0.7.

True values Posterior median (95 per cent Credible Interval)

N p(V =1|T1 =0) � S2 C2 � S1 C1 S2 C2

200 0.1 0.1 0.3 0.9 0.27 (0.02, 0.84) 0.40 (0.04, 0.96) 0.70 (0.18, 0.91) 0.27 (0.19, 0.39) 0.91 (0.82, 0.98)
200 0.1 0.1 0.9 0.3 0.18 (0.01, 0.79) 0.22 (0.01, 0.92) 0.73 (0.24, 0.86) 0.89 (0.74, 0.97) 0.33 (0.25, 0.42)
200 0.1 0.1 0.9 0.9 0.10 (0.01, 0.28) 0.55 (0.12, 0.97) 0.67 (0.58, 0.75) 0.90 (0.78, 0.97) 0.91 (0.81, 0.97)
200 0.1 0.4 0.3 0.9 0.63 (0.12, 0.97) 0.48 (0.17, 0.92) 0.58 (0.05, 0.95) 0.29 (0.22, 0.39) 0.89 (0.77, 0.97)
200 0.1 0.4 0.9 0.3 0.34 (0.03, 0.87) 0.50 (0.06, 0.96) 0.55 (0.13, 0.88) 0.89 (0.77, 0.97) 0.30 (0.22, 0.39)
200 0.1 0.4 0.9 0.9 0.37 (0.24, 0.56) 0.76 (0.51, 0.98) 0.70 (0.57, 0.81) 0.90 (0.77, 0.97) 0.91 (0.79, 0.97)
200 0.6 0.1 0.3 0.9 0.27 (0.05, 0.57) 0.70 (0.27, 0.98) 0.78 (0.62, 0.97) 0.29 (0.20, 0.39) 0.93 (0.86, 0.98)
200 0.6 0.1 0.9 0.3 0.27 (0.02, 0.84) 0.38 (0.04, 0.94) 0.73 (0.37, 0.94) 0.89 (0.76, 0.97) 0.30 (0.22, 0.39)
200 0.6 0.1 0.9 0.9 0.08 (0.02, 0.18) 0.69 (0.30, 0.98) 0.68 (0.60, 0.75) 0.90 (0.78, 0.97) 0.92 (0.85, 0.97)
200 0.6 0.4 0.3 0.9 0.53 (0.19, 0.92) 0.63 (0.35, 0.96) 0.80 (0.39, 0.99) 0.30 (0.23, 0.40) 0.90 (0.79, 0.97)
200 0.6 0.4 0.9 0.3 0.44 (0.05, 0.92) 0.52 (0.11, 0.94) 0.58 (0.17, 0.93) 0.89 (0.79, 0.97) 0.28 (0.21, 0.38)
200 0.6 0.4 0.9 0.9 0.36 (0.22, 0.50) 0.72 (0.55, 0.94) 0.66 (0.56, 0.77) 0.90 (0.77, 0.97) 0.90 (0.78, 0.97)
2000 0.1 0.1 0.3 0.9 0.20 (0.03, 0.53) 0.60 (0.25, 0.97) 0.72 (0.64, 0.86) 0.28 (0.19, 0.39) 0.92 (0.86, 0.97)
2000 0.1 0.1 0.9 0.3 0.23 (0.01, 0.83) 0.36 (0.04, 0.92) 0.66 (0.30, 0.84) 0.88 (0.74, 0.97) 0.29 (0.24, 0.38)
2000 0.1 0.1 0.9 0.9 0.11 (0.04, 0.20) 0.59 (0.37, 0.96) 0.70 (0.67, 0.73) 0.90 (0.77, 0.97) 0.90 (0.82, 0.97)
2000 0.1 0.4 0.3 0.9 0.47 (0.20, 0.83) 0.69 (0.46, 0.97) 0.74 (0.54, 0.97) 0.28 (0.22, 0.39) 0.90 (0.82, 0.97)
2000 0.1 0.4 0.9 0.3 0.39 (0.24, 0.64) 0.86 (0.63, 0.99) 0.74 (0.61, 0.96) 0.90 (0.80, 0.97) 0.34 (0.26, 0.42)
2000 0.1 0.4 0.9 0.9 0.39 (0.27, 0.51) 0.71 (0.60, 0.91) 0.68 (0.63, 0.75) 0.90 (0.77, 0.97) 0.90 (0.78, 0.97)
2000 0.6 0.1 0.3 0.9 0.20 (0.03, 0.50) 0.54 (0.33, 0.96) 0.72 (0.67, 0.85) 0.28 (0.19, 0.39) 0.91 (0.87, 0.97)
2000 0.6 0.1 0.9 0.3 0.15 (0.01, 0.73) 0.41 (0.05, 0.94) 0.68 (0.48, 0.82) 0.88 (0.73, 0.97) 0.30 (0.26, 0.38)
2000 0.6 0.1 0.9 0.9 0.09 (0.03, 0.18) 0.57 (0.42, 0.95) 0.70 (0.67, 0.72) 0.90 (0.77, 0.97) 0.90 (0.84, 0.97)
2000 0.6 0.4 0.3 0.9 0.44 (0.22, 0.68) 0.74 (0.60, 0.98) 0.73 (0.61, 0.96) 0.29 (0.22, 0.39) 0.91 (0.86, 0.97)
2000 0.6 0.4 0.9 0.3 0.39 (0.18, 0.67) 0.74 (0.56, 0.98) 0.72 (0.62, 0.96) 0.90 (0.82, 0.97) 0.30 (0.25, 0.39)
2000 0.6 0.4 0.9 0.9 0.42 (0.31, 0.52) 0.71 (0.65, 0.85) 0.69 (0.65, 0.76) 0.90 (0.77, 0.97) 0.90 (0.77, 0.97)
20 000 0.6 0.4 0.9 0.9 0.40 (0.30, 0.49) 0.71 (0.66, 0.83) 0.70 (0.68, 0.76) 0.90 (0.78, 0.97) 0.90 (0.79, 0.97)

Of course, this also depends on the precision of the estimates. Our posterior credible intervals tended to be relatively
wide, so that it is not surprising that the true values were often inside of these intervals, even with imperfect choice
of prior distributions.

6. In the presence of a covariate when N =2000, posterior densities were concentrated around the true parameter
values even when using low information prior distributions over all parameters (Table IV).

7. The bias due to ignoring the covariate was apparent—informative prior distributions were required to bring the
posterior median estimates close to their true values. Even with informative prior distributions the posterior credible
intervals remained wider compared with fitting the correct model adjusting for the covariate.

8. When the sample size was 20 000, the posterior credible intervals for �, S1 and C1 decreased in width by 30–50 per
cent for an identifiable model, that is, those where the gold standard was assumed to be perfect (Table IV). There
was a smaller improvement in precision for the non-identifiable models (Table III), demonstrating that increasing
the sample size will not necessarily improve the precision of the estimates under these circumstances.

5. Evaluating a screening test for dementia

We now return to the problem of evaluating a screening test for dementia, as discussed in the introduction. The initial
analysis [2] assumed that clinical diagnosis is a perfect gold standard test, but as discussed in Section 1, this assumption
is unrealistic, with estimates of the sensitivity of clinical diagnosis ranging from 39 to 98 per cent, and specificity
estimates ranging from 33 to 100 per cent [19]. There was a strong negative correlation between the sensitivity and the
specificity of −0.79 [19] among these studies, showing that raising sensitivity was only at the expense of decreased
specificity. We assumed uniform prior distributions over the ranges given above for the sensitivity and specificity of
clinical diagnosis, giving S2 ∼U(0.39,0.98) and C2 ∼U(0.33,1). We also considered an alternative bivariate normal
prior distribution that allowed for a correlation between sensitivity and specificity, with(

logit(S2)

logit(C2)

)
∼N

(
�=

(
1.72

1.94

)
,�=

(
1.18 −1.14

−1.14 1.76

))
,
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thereby accounting for the correlation between these parameters. Marginally, the ranges given by this bivariate prior
density closely match the ranges of the two independent uniform distributions over S2 and C2 given above. Since the
problem is identifiable, we could theoretically use low-information U(0,1) priors for all parameters. This was also done
as a robustness check.

The screening test is based on a short questionnaire, and while the reference test also employs a more in-depth
questionnaire, it is largely based on a clinical examination of the patient. Nevertheless, one cannot be absolutely certain
of the assumption of conditional independence between tests. We therefore also fit a model that allows for conditional
dependence. In further analyses we studied the relative impact of ignoring verification bias and reference standard bias,
by fitting various models where combinations of these biases are ignored. We also considered situations where adjustment
for the covariate was ignored.

Table V. Summary of the posterior distributions for all unknown parameters in screening for dementia.

Prior on S2 and C2

S2 ∼U(0.39, 0.98), Bivariate normal
S2 = C2 =1 S2, C2 ∼ Beta(1,1) C2 ∼U(0.33, 0.99) prior∗

S1 0.91 (0.75, 0.99) 0.91 (0.69, 1.00) 0.91 (0.70, 1.00) 0.91 (0.70, 1.00)
C1 0.85 (0.83,0.86) 0.88 (0.86, 0.91) 0.88 (0.86, 0.91) 0.88 (0.86, 0.91)
S2 — 0.50 (0.37, 0.66) 0.50 (0.40, 0.66) 0.51 (0.38, 0.66)
C2 — 0.99 (0.93, 1.00) 0.98 (0.94, 0.99) 0.98 (0.95, 0.99)
�1 2.32 (1.70, 3.02) 2.38 (1.68, 6.41) 2.45 (1.68, 4.01) 2.40 (1.65, 3.98)
� when age <75 0.01(0.007, 0.02) 0.02 (0.0004,0.06) 0.02 (0.004, 0.05) 0.02 (0.004, 0.06)
� when age � 75 0.12 (0.09,0.15) 0.21 (0.15, 0.30) 0.21 (0.15, 0.29) 0.21 (0.15, 0.29)
∗See Section 5.

Figure 1. Posterior density functions obtained with different prior distributions over sensitivity and
specificity of reference test for dementia.

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 2532--2543
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Table VI. Impact of ignoring various biases on sensitivity and specificity estimates.

Adjustment for

Verification Imperfect Conditional
bias reference dependence Covariate S1 C1 S2 C2

No No — Yes 0.98 (0.92, 1.00) 0.34 (0.29, 0.40) — —
No Yes No Yes 0.98 (0.92, 1.00) 0.35 (0.29, 0.42) 0.87 (0.59, 0.98) 0.98 (0.93, 0.99)
No Yes Yes Yes 0.61 (0.45, 0.87) 0.23 (0.15, 0.32) 0.47 (0.39, 0.78) 0.92 (0.86, 0.98)
Yes No — Yes 0.91 (0.75, 0.99) 0.85 (0.83,0.86) — —
Yes Yes No Yes 0.92 (0.70, 1.00) 0.88 (0.86, 0.91) 0.50 (0.40, 0.66) 0.98 (0.94, 0.99)
Yes Yes Yes Yes 0.88 (0.65, 0.99) 0.87 (0.85, 0.89) 0.47 (0.39, 0.63) 0.98 (0.95, 0.99)
Yes No — No 0.81 (0.56, 0.97) 0.85 (0.83, 0.86) — —
Yes Yes Yes No 0.57 (0.02, 0.98) 0.81 (0.79, 0.86) 0.66 (0.40, 0.96) 0.94 (0.91, 0.99)

The impact of adjusting for reference standard bias can be seen in Table V. When treating clinical diagnosis as a perfect
reference standard, the sensitivity of the screening test was estimated to be 0.91 (95 per cent credible interval (CrI) 0.75,
0.99) and its specificity was 0.85 (95 per cent CrI 0.83, 0.86). When using an informative prior density the specificity of
the screening test somewhat increased, while the credible interval for the sensitivity widened. But the greatest impact was
seen in the estimated prevalence, which roughly doubled in both age groups when the reference test was considered as
imperfect. This largely occurs because the sensitivity of clinical diagnosis dropped to 50 per cent, whereas its specificity
stayed close to 100 per cent. Similar estimates were obtained when using the bivariate normal prior distribution for
(S2,C2), and the results were also similar whether using non-informative or informative prior distributions. This suggests
that the observed data are in agreement with the prior information on sensitivity and specificity of clinical diagnosis
reported in earlier studies, and that the sample size was large enough to outweigh the prior information in this identifiable
problem. Plots of the posterior density functions of the sensitivity and specificity parameters of the two tests, obtained
with the different prior distributions are given in Figure 1.

Table VI summarizes the results of our sensitivity analysis of the impact of ignoring various biases on our estimates.
As others have also found, ignoring verification bias causes the estimate of the sensitivity of the screening test to increase,
while the specificity decreases. When adjusting for verification bias, further adjustment for conditional dependence
appears to only slightly affect the estimates of test properties in this data set, lowering the two sensitivity estimates and
increasing the width of their posterior credible intervals, while the two specificity estimates remained virtually unchanged.
The posterior median and 95 per cent credible interval of the conditional covariance parameters were: covp=0.02 (0,
0.10) and covn=0.01 (0, 0.02). Ignoring the covariate decreased the sensitivity and specificity of the screening test
while raising the sensitivity of the reference test.

6. Discussion

We have presented methods that simultaneously adjust for reference standard bias and verification bias when evaluating
the properties of a new diagnostic test. By applying them to simulated data sets we have shown our methods to work well,
although the nature of the problem is such that credible intervals will tend to be wide with smaller sample sizes [18].
These analyses also show that incorrectly assuming the reference test to be a perfect gold standard can result in biased
estimates of the sensitivity and specificity of the test under evaluation, as well as inaccurate prevalence estimates, even
when the properties of the reference test are very good. It is therefore important to adjust for even small imperfections
in the reference test.

Gustafson [20] discusses how to express non-identified models in two parts, one component with parameters for
which the data can be informative, the other component having parameters upon which data have little effect, regardless
of the sample size. For the latter set of parameters, no amount of data will lessen the impact of prior information on
final inferences. One must then derive a range of plausible prior densities for these parameters, and check robustness
of posterior inferences across the different prior choices. Our results emphasize this point by displaying the effect of
different choices of prior distributions while retaining the same model and data. We also considered joint prior modeling
of sensitivity and specificity along with the usual independent prior choices. Alternatively, one can address identifiability
by increasing the amount of data, as occurs in our example when the covariate age is included. Here, the covariate
sufficiently increased the amount of data to render our model identifiable, which will happen in practice if the covariate
has a large enough effect.

While our study design focuses on the case where P(T1) and P(T2|T1) are estimated from the same study, our methods
also apply when these probabilities are unbiasedly estimated from separate studies [21, 22]. While we assumed that the
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sensitivities and specificities of the diagnostic tests are not functions of one or more covariates, this restriction can be
removed by creating a further hierarchy on these parameters, as we did for the prevalence parameter here. For example,
we could model the sensitivity or specificity of T1 as a logistic function of one or more covariates. In a context where
the verification bias is not ignorable, the problem can be handled by expressing the probabilities pV 1 and pV 0 in terms
of the prevalence, sensitivity and specificity of Test 1. For example, pV 1 = P(V =1|T1 =1, D =1)ppv+(P(V =1|T1 =
1, D =0)(1− ppv), where ppv is the positive predictive value of T1 as given by equation (4). Of course, this would
require more informative prior distributions as we are now adding two more unknown parameters to the model.
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