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SUMMARY

Multivariate meta-analyses are used to derive summary estimates of treatment effects for two or more
outcomes from a joint model. In addition to treatment effects, these models also quantify the correlations
between outcomes across studies. To be fully specified, the model requires an estimate of the covariance or
correlations between outcomes observed in each study. These are rarely available in published reports, so
that analysts must either approximate these or ignore correlations between effect estimates from the same
studies. We examined the impact of errors in approximating within-study covariances on the parameters of
multivariate models in a simulation study. We found that treatment effect and heterogeneity estimates were
not strongly affected by inaccurate approximations, but estimates of the correlation between outcomes
were sometimes highly biased. The potential for error is greatest when the covariance between outcomes
within- and between-studies are of comparable scale. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Meta-analyses typically examine the effect of a treatment on a set of outcomes that are relevant
in the context of the disease and treatment being studied. The standard practice is to perform
separate meta-analyses to obtain summary estimates of the effect of treatment on each outcome.
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This approach ignores a possible correlation between the outcomes and does not allow inferences
about the overall effect of the treatment based on all outcomes, or variations in effect across
outcomes. Alternatively, a joint meta-analysis is possible with multivariate (multiple-outcome)
models that account for the dependence between observed estimates and quantify the correlation
between treatment effects across studies. Thus, multivariate meta-analyses provide added insight
as the models include parameters describing how the outcomes are jointly distributed.

Several applications of these methods have appeared [1–9], illustrating the potential flexibility
and strength of the multivariate approach. These include meta-analyses of treatment effects on
two or more related endpoints [1–4], where the objective may be, for example, to estimate the
relative sizes of the effects or quantify the correlation between the outcomes. Others [5, 6] have
meta-analyzed occurrence rates of a single endpoint in treated and control groups at different
times; in this context, multivariate models can be used to measure treatment effects at different
times without making assumptions about proportionality of effects, and to examine the correlations
between the probabilities of the endpoint occurrence over time [6]. Multivariate methods have also
been used to evaluate the relationship between baseline risks and treatment effect estimates for a
given outcome across studies [7–9], sometimes called control-rate regression. Standard methods
(such as meta-regression) can produce biased results in this situation since they are affected by
correlated measurement errors between estimates from the same study; a hierarchical multivariate
model can be used to isolate the structural relationship between baseline risks and treatment
effects.

A commonly used multivariate meta-analytic model is a multivariate extension of the DerSi-
monian and Laird approach [10]. The model includes random effects for outcomes within studies,
which is thought to be more appropriate for meta-analyses [11–13]. In the multivariate case,
the joint distribution of the random-effects yields estimates of the correlations between outcomes
across studies. The joint likelihood of parameters from each study is approximated by a multivari-
ate normal distribution with covariance matrices obtained from each study and assumed known,
conditional on a vector of random effects also arising from a multivariate normal distribution. As
with the variances of estimates in univariate meta-analyses, the within-study covariance matrices
must be assumed known (i.e. without error), to ensure identifiability of the other parameters of
the model. The model can be applied to a set of continuous effect estimates (e.g. differences in
means) or log-odds-ratio estimates for dichotomous endpoints or a combination of both.

While the variances of observed estimates are typically reported or can be derived from informa-
tion in the reviewed publications, the within-study covariances or correlations are rarely available.
Indeed, estimates of these quantities would be available only if authors performed a joint analysis
of the individual patient data. This is rarely done, however, unless specific questions about the
relationship between the outcomes were of interest in the studies. This was recognized as a poten-
tial limitation in the earliest applications of multivariate models [1, 2] and recommendations were
made to change reporting practices to allow correct application of the multivariate method in the
future; however, this advice has had little impact to date. Within-study covariances were reported in
only one [3] of the nine multivariate meta-analyses mentioned above. In all other applications, the
covariances were specified by either approximating them from external information about the cor-
relation between the outcomes [1, 2], assuming independence (i.e. setting covariances to 0) [6, 8],
using approximation techniques [5] or incorporating a common within-study correlation nuisance
parameter in the model [4]. In the latter case, concern was raised about potential identifiability
problems, especially when only a small portion of the included studies report both outcomes being
examined.
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The impact of approximating or ignoring within-study correlations has raised concern about the
potential use of multivariate meta-analyses [14] but has not been examined in much detail. Berkey
et al. [2] compared results from meta-analyses where within-study covariances were specified from
an approximation of the correlation between outcomes (assumed constant across studies) to those
from analyses that assume independence in fixed-effects models. They found moderate changes
in pooled effect estimates and slight to moderate changes in the corresponding standard errors
(SEs). We sought to perform a more formal assessment for multivariate meta-analysis models
with random effects in a simulation study. We compared the accuracy and precision of point
estimates and coverage probabilities of interval estimates obtained from analyses where within-
study covariances are observed to those obtained when these are ignored (i.e. outcomes assumed
to be independent) or approximated using external information about the correlations between the
outcomes. We examined the impact of errors made in approximating the covariances on pooled
effect estimates and the between-study covariance matrix parameters, with particular attention to
estimates of the correlation between outcomes across studies, as this parameter may be of interest
in multivariate meta-analyses.

The following section presents the general multivariate meta-analysis model that is commonly
employed. We then describe the simulation design and the analyses that were performed on the
simulated data. This is followed by a discussion of the results.

2. BACKGROUND: MULTIVARIATE META-ANALYSIS

2.1. Multivariate data in meta-analyses

Consider a meta-analysis of N studies examining the effect of a treatment on two endpoints. The
treatment effects may be expressed as differences in means (for continuous endpoints) or risks (for
dichotomous endpoints), or log transformed odds, risk, or hazard ratio estimates. We represent the

estimates recorded from the i th study by the vector yi =
(
y1i
y2i

)
, for i = 1, 2, . . . , N . It is possible

that one of the components of yi may be missing, however, since not all studies will necessarily
report both outcomes. As in univariate meta-analyses, it is necessary to record the variance of
the estimates, denoted S211i and S222i . In the multivariate context, however, the models also require
the observed correlations or covariance (S12i ) between outcomes from each study. In short, the
covariance matrix of the estimates

Si =
(
S211i S12i

S12i S222i

)

is needed to fully specify the multivariate model.

2.2. Multivariate model

The random-effects multivariate model assumes that the true underlying effect of the i th study,

�i =
(

�1i
�2i

)
, arises from a bivariate normal (BVN) distribution:

�i ∼BVN

{
� =

(
�1

�2

)
, D =

(
D2
11 D12

D12 D2
22

)}
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where � is the vector of true treatment effect parameters, and D is the covariance matrix of the
random effects; its diagonal elements measure the degree of heterogeneity in the true treatment
effects across studies, while D12 represents the covariance between the effects. The correlation

between effects is derived from the components of D, as �D = D12/

√
D2
11 · D2

22.
The likelihood function of the i th vector of observed estimates is based on a BVN distribution:

yi |�i ∼BVN{�i , Si }

where Si is assumed exactly known to ensure identifiability of the model. Some studies may
report only one of the outcomes. If unobserved values are not imputed, the likelihood term reduces
to that corresponding to a univariate normal distribution. It is important to consider, however,
the possibility that outcomes may be selectively omitted from publication [1]; that is, that those
observations are not missing at random—a form of publication bias in the multivariate context
that could affect inferences about both the treatment effects and their correlations.

Study and outcome-specific covariates can easily be incorporated by setting �i = Xi�, where
Xi is a 2 × p matrix of covariates and � is a p × 1 vector of parameters. By default, Xi would
include one or more indicators to identify outcomes in �i and derive summary estimates for each
outcome or differences in estimates between outcomes. For instance, setting

Xi =
(
1 0

0 1

)

and not allowing an intercept in the model would produce a separate summary estimate of effect
for each outcome. Otherwise, setting

Xi =
(
1 1

1 0

)

would produce a summary estimate for the second endpoint (the intercept estimate) and the
difference between summary estimates of the first and second endpoints.

2.3. Estimation of parameters

Frequentist inference is typically done via maximum likelihood, restricted or residual maximum
likelihood (REML), or generalized least squares (GLS); in the latter case, distributional assumptions
about the data are only required for inference, not estimation. Analytical or closed-form solutions
exist only in the case where all outcomes are reported in each study and all Si are equal [15].
This is unlikely, however, since the Si would almost always vary due to differing sample sizes. In
general, estimation is carried out with iterative procedures like the expectation–maximization (EM),
Newton–Raphson, or Fisher scoring algorithms. These are implemented in standard software for
mixed models, like PROC MIXED in SAS/STAT software or the lme function in R (S or S-Plus);
Berkey et al. describe an EM algorithm [3] for GLS and likelihood approaches. Multivariate
meta-analysis can also be performed using Bayesian methods [4], in which case the models can
be conveniently implemented in BUGS [16].
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3. SIMULATION STUDY: IMPACT OF ERRORS IN APPROXIMATING
WITHIN-STUDY COVARIANCES (S12i )

Since within-study covariance estimates are rarely available, proxy values are often substituted to
fully specify the model—e.g. by using an observed estimate of the correlation between outcomes
reported in one of the studies in the meta-analysis, or one that is not included in the review. Since
estimation procedures used for multivariate meta-analysis models rely on iterative procedures
(rather than closed-form analytical solutions), it is difficult to estimate the impact of erroneous
approximations of within-study covariances algebraically. Thus, we undertook a series of simula-
tions to examine the accuracy and precision of estimates of model parameters from meta-analyses
when approximations of varying accuracy are employed.

3.1. Identifying key parameters for simulations

To inform the choice of the parameters to manipulate in simulations, we examined the estimation
formulae involved in commonly used algorithms. All estimation procedures involve the within-
study covariance only through the total variance matrix Vi = D + Si . More specifically, the Si
always appear as part of the inverse of the total covariance matrices (V−1

i ) where

V−1
i = 1

(D2
11 + S211i )(D

2
22 + S222i ) − (D12 + S12i )2

(
D2
22 + S222i −(D12 + S12i )

−(D12 + S12i ) D2
11 + S211i

)

Components of S are assumed known without error; variances are set to their observed values, while
the covariance term is approximated. Therefore, inaccurate approximations of the S12i will distort
estimates of all components of V−1

i , and since V−1
i appears in estimators or score equations of �

and D, both estimates of the treatment effects and the heterogeneity covariance matrix components
may be affected by errors in specifying within-study covariances.

The accuracy of the approximations of the S12i is clearly an important determinant of the
potential extent of errors in estimates from the model. It seems plausible, however, that poor
approximations may be more influential in certain situations. We hypothesize that the potential for
bias is greater when S12i is of similar or larger scale than D12, since, otherwise, the covariance
term in Vi will be dominated by D12. For instance, suppose the true within-study correlation is
0.50, but we erroneously approximate it to be 0.25; then, in a study where S211i = 10 and S222i = 5,
the covariance would be estimated to be 1.76, instead of 3.54. The impact of this error will be
more important when D12 is in the same order or smaller than S12i (e.g. D12<5) compared to a
situation where D12 is of greater magnitude (e.g. D12>20).

We must consider, however, that the scale of the within-study covariance matrix is inversely
proportional to the size of the study: small studies will likely produce less precise estimates
(i.e. large values in Si ), while variances (and so covariances) from large studies will tend to be
comparatively small. Thus, the condition S12i>D12 is more likely to be met in meta-analyses with
small studies. Alternatively, the same may happen when treatment effects are fairly homogeneous
across studies (i.e. components of D are relatively small).

In summary, the relative scale of S12i compared to D12 is a key factor of the potential impact of
errors in approximations of within-study covariances. Thus, factors that can affect this difference
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were used as the parameters of our simulations. More specifically, we manipulated the relative size
of within- and between-study correlations, the sample sizes of studies included in the meta-analysis,
and the degree of between-study heterogeneity. These are described further below.

3.2. Simulation strategy

We simulated data for meta-analyses of the effect of a treatment on two correlated continuous
outcomes from a hierarchical structure where we first created a study by assigning a set of
true parameter values and then generating the responses of each patient in the study. Simulating
patient-level data was necessary to allow calculation of within-study covariances; this would not be
possible, for instance, by simulating observed effect estimates directly as in other simulations [3].

We assume N studies are included in the meta-analysis and ni subjects are included in the
(parallel) treated and control arms of the i th study (total sample size= 2ni ). We denote the true

response of patients to treatment (e.g. reduction in blood pressure or lipid levels) by �t =
(

�1
�2

)
.

Patients in the control groups are assumed to receive placebo; for simplicity, we also assume
that the disease remains stable, so that no change would be expected in patients’ condition, i.e.

�c =
(
0
0

)
. Thus, �t also represents the true treatment effect.

Studies are likely to vary with respect to methodological design, measurement methods, study
populations, and various other factors that might affect the true values of parameters. To emulate
this, we added random effects to generate the true underlying responses of the i th study, �ti and
�ci . We assume the variability of treatment effects across studies is given by the 2× 2 covariance
matrix D = var(�ti − �ci ), so that the covariance of responses in each arm is 0.5D. Within a given
study, we expect variability in the responses of different subjects, possibly in a correlated way. We
assume the covariance matrix of the two responses for each subject is given by 0.5S.

We generate data for studies from the following steps:

(1) Define a scenario by fixing values for N , ni , �t , D, and S. The covariance matrices are
specified by setting the variances (diagonal elements) and the correlation between random
effects (�D) and within-study responses for the two outcomes (�S). We assume the same
correlation in treated and control arms; that is, treatment does not alter the association
between outcomes (although this may well happen in practice). The covariance component
of each matrix (off-diagonal element) can then be derived from the correlations and variances.

(2) Generate the underlying true responses, �ti and �ci , for studies i = 1, 2, . . . , N , by drawing
�ti ∼BVN(�t , 0.5D) and �ci ∼BVN(�c, 0.5D). This allows the possibility of a correlation
between responses from a given study, which may occur, for instance, if factors that affect
one of the outcomes affect the other in a similar (or opposite) way.

(3) Simulate the responses of subjects in each study. For the j th subject of the i th study, we
obtain dti j |�ti ∼BVN(�ti , 0.5S) and dci j |�ci ∼BVN(�ci , 0.5S). We denote by dti and dci the
ni × 2 matrices of responses for all patients in the i th study generated from the BVN draws.

(4) Calculate estimates of effect and corresponding observed covariance matrix for each study.
This is given by

yi =
⎛
⎝d

t
1i − d

c
1i

d
t
2i − d

c
2i

⎞
⎠ and Si = 1

ni
(cov(dti ) + cov(dci ))
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where the covariance matrices of the observed data, dti and dci , are calculated empirically,
using standard formulae.

Each replication of steps 2–4 creates a new set of studies for meta-analysis within the scenario
defined in step 1. The programs used to generate the data are available from the authors.

3.3. Simulation scenarios

Scenarios were created by manipulating the within- and between-study correlations, the sample
sizes of studies and degree of heterogeneity in effects. We manipulated the values of these para-
meters to create situations where within- and between-study covariances were of comparable size,
since we expected the potential impact of errors in approximations would be most apparent in
this case.

Table I summarizes the parameters of the simulations. In all scenarios we considered meta-
analyses of N = 25 studies, and assumed the true response to treatment is a reduction of 10 units
for the first outcome and a reduction of 5 units for the second, i.e. �t = (−10 −5), while no change
is expected among the controls, i.e. �c = (0 0).

We first examine a set of scenarios we consider to be reflective of most practical situations: we
assume the degree of heterogeneity between studies is not so large as to completely dominate within-
study variances, while at the same time the studies are not so small as to produce highly imprecise
estimates. We then consider more extreme cases where we reduce sample sizes and minimize
between-study heterogeneity. We start with studies including between 50 and 250 subjects per arm
to create studies of moderate size. (See Table I for actual sample sizes, chosen randomly, used
in simulations.) We set the between-study heterogeneity covariance matrix of treatment effects to
be D2

11 = 5.0, D2
22 = 2.5 and �D = 0.25, so that D12 = 0.25

√
2.5 × 1.25= 0.88. Between-patient

variances were set to S211 = 10.0 and S222 = 5.0, twice the magnitude of between-study variances,
since one would expect less variability in aggregated measures (e.g. mean group versus subject-
specific difference). We note that the variance of observed estimates from the i th study will be
S2i11 ≈ 10.0/ni and S2i22 ≈ 5.0/ni .

Table II summarizes the scenarios that we considered in this study in more detail. In a first
pair of scenarios, we varied the relative magnitude of within- and between-study correlations since
larger within-study correlation would lead to larger within-study covariances, and as a result, the
impact of errors would potentially be greater. We considered the following cases:

Scenario 1a: Assume equal correlations: �S = �D = 0.25.
Scenario 1b: Assume stronger within-study correlation: �S = 2�D = 0.5.
We adopted scenario 1b as the basis the next set of scenarios where we varied the sample size

of the studies. Smaller studies will produce more variable estimates—i.e. larger S2i11, S
2
i22—and,

consequently, larger within-study covariances that would be closer in magnitude to between-study
covariances. We considered the following cases:

Scenario 2a: Reduce sample sizes by a factor of 1/5, so that the size of each arm ranges
from 10 to 50.

Scenario 2b: Reduce sample sizes by a factor of 1/10, so that the size of each arm ranges
from 5 to 25.

Next, we examined the potential impact of the relative size of within- and between-study vari-
ances (based on scenario 1b). Here again, by reducing between-study variances (or heterogeneity),
we reduce the gap between within- and between-study covariances making the impact of errors in
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Table II. Definition of scenarios considered in simulations.

Treatment effect Between-study variance Within-study variance Correlation
Sample size

deflation factor �1 �2 D2
11 D2

22 S211 S222 �D �S

Scenario 1a 1.0 −10.0 −5.0 5.0 2.5 10.0 5.0 0.25 0.25
Scenario 1b 1.0 −10.0 −5.0 5.0 2.5 10.0 5.0 0.25 0.50

Scenario 2a 1/5 −10.0 −5.0 5.0 2.5 10.0 5.0 0.25 0.50
Scenario 2b 1/10 −10.0 −5.0 5.0 2.5 10.0 5.0 0.25 0.50

Scenario 3a 1.0 −10.0 −5.0 1.0 0.5 10.0 5.0 0.25 0.50
Scenario 3b 1.0 −10.0 −5.0 0.5 0.25 10.0 5.0 0.25 0.50

The number of studies was 25 in all the scenarios.

approximation potentially more influential. We considered the following cases:
Scenario 3a: Reduced between-study variances by a factor of 1/5, so that D2

11 = 1.0 and
D2
22 = 0.5.
Scenario 3b: Reduced variances by half (1/10 of the original value), so that D2

11 = 0.5 and
D2
22 = 0.25.

3.4. Errors in approximating within-study covariances

Within-study covariances are usually approximated from an estimate of the correlation between
outcomes, denoted �∗

S , and calculating S12i = �∗
S × S11i × S22i for each study. In practice, �∗

S may
be based on expert opinion or observed from a study that may or may not be included in the
meta-analysis, or obtained by other means. Clearly, an important determinant of the impact of
approximating unobserved covariances is the accuracy of the approximation itself. We consider
the following for our simulations:

1. Setting �∗
S = 0; that is, conducting a multivariate meta-analysis where within-study correla-

tions are ignored.
2. Setting �∗

S = 1.5× �S; that is, the correlations are overestimated by 50 per cent.
3. Setting �∗

S = 0.5× �S; that is, the correlations are underestimated by 50 per cent.
4. Setting �∗

S = − 0.25; the direction and size of the correlation are wrong.

We compared results from meta-analyses using these four approximations to those where within-
study covariance estimates were available (the reference, or best-case results).

4. ANALYSIS AND COMPARISON MEASURES

For each scenario, we simulated 5000 meta-analyses, each of which used the observed and approx-
imated within-study covariances. Parameter estimates from replications of the five meta-analyses
in each scenario were compared with respect to the bias and precision of estimates and coverage
of confidence intervals.
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The models were fitted by REML with PROC MIXED using SAS/STAT software (Version 8e),
as described by Van Houwelingen et al. [8]. Estimation was carried out by Fisher scoring instead
of the standard Newton–Raphson algorithm to avoid non-positive-definite Hessian matrices, which
may cause estimation to fail for some meta-analyses. Since within-study variances and covariances
must be specified and fixed, the procedure also requires that starting values be provided for the
components of the between-study covariance matrix. We calculated these from the observed data
in each meta-analysis.

For each of the five meta-analysis models, we recorded the estimates of summary treatment
effects on events A and B (i.e. �̂), the between-study variances (i.e. D̂2

11, D̂
2
22) and the correlation

between effects across studies (i.e. �̂D = D̂12/

√
D̂11 D̂22) with corresponding SEs and/or confi-

dence intervals. We compared the performance of the models with respect to the relative bias in
estimates (bias= (estimate − true value)/true value), precision, and coverage probabilities of the
confidence intervals of the estimates of each parameter.

We summarized the median, 5th and 95th percentiles of the distribution of estimates from the
5000 replications. We favored percentiles over means and SEs, since the latter may be affected
by extreme results and could be misleading if the distribution of results from the simulations are
skewed. We calculated the coverage probabilities of the confidence intervals of estimates of each
parameter as the proportion of runs of each scenario where the confidence interval included the
true value.

5. RESULTS

5.1. Estimation of treatment effects

Table III summarizes the biases, SEs, and coverage probabilities of confidence intervals for the
effect of the treatment on outcomes A. The table shows the median (5th–95th percentiles) of
the relative bias, the SE, and coverage probabilities of confidence intervals of estimates from
meta-analyses with observed and approximated within-study covariances across the six scenarios.

In the best-case scenario where within-study covariance estimates are available, the treatment
effect on the first outcome was estimated with little or no bias: the median bias was near 0 in all cases
and was generally within ±8.0 per cent across replications. The coverage probability of confidence
intervals was slightly below 95 per cent. Increasing the relative magnitude of within- and between-
study correlations (scenarios 1a versus 1b) and decreasing the size of studies (scenarios 2a and
2b) caused only slight (negligible) increases in the magnitude of the bias and SE of estimates and
a slight decrease in coverage probabilities. Reducing the between-study heterogeneity (scenarios
3a and 3b), on the other hand, lead to comparatively smaller bias, and more precise estimates but
the coverage of confidence intervals remained below the nominal value.

Results were essentially identical when within-study correlations were not observed and
approximated. The relative magnitude of errors in approximations had no impact on the per-
formance of meta-analyses; the bias and precision of estimates were the same even when the
direction of the correlations assumed to derive approximations was incorrect (i.e. last column of
Table III).

Findings were very similar for estimates of the treatment effect on outcome B (results not
shown), although the magnitude of the bias tended to be slightly larger (5th and 95th percentiles
were greater than ±10 per cent in scenarios 1a and b and 2a and b). While estimates were again

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. (in press)
DOI: 10.1002/sim



APPROXIMATING COVARIANCES IN META-ANALYSIS

Ta
bl
e

II
I.

Pe
rf
or
m
an
ce

of
es
tim

at
es

of
th
e

ef
fe
ct
s
of

tr
ea
tm

en
t
on

th
e

fir
st

ou
tc
om

e:
m
ed
ia
n

(5
th
,
95
th

pe
rc
en
til
es
)
re
la
tiv

e
bi
as
,

st
an
da
rd

er
ro
r
an
d
co
ve
ra
ge

of
co
nfi

de
nc
e
in
te
rv
al
s
ob
ta
in
ed

fr
om

50
00

si
m
ul
at
ed

m
et
a-
an
al
ys
es
.

W
ith

in
-s
tu
dy

co
rr
el
at
io
n

A
pp
ro
xi
m
at
io
n

U
nd
er
es
tim

at
ed

A
ss
um

e
N
eg
at
iv
e

O
bs
er
ve
d

un
de
re
st
im

at
es

ap
pr
ox

im
at
io
n

in
de
pe
nd

en
t

ap
pr
ox

im
at
io
n

es
tim

at
e

by
50

pe
r
ce
nt

by
50

pe
r
ce
nt

(�
∗ S

=
0)

(�
∗ S

=
−

0.
25

)

Sc
en
ar
io

1a
Pe

r
ce
nt

bi
as

0.
02

(−
7.
25

,
7.
25

)
0.
02

(−
7.
25

,
7.
25

)
0.
02

(−
7.
25

,
7.
25

)
0.
02

(−
7.
25

,
7.
25

)
0.
02

(−
7.
25

,
7.
25

)
SE

0.
44

(0
.3
4,
0.
56

)
0.
44

(0
.3
4,
0.
56

)
0.
44

(0
.3
4,
0.
56

)
0.
44

(0
.3
4,
0.
56

)
0.
44

(0
.3
4,
0.
56

)
C
ov
er
ag
e

94
.4

94
.4

94
.4

94
.4

94
.4

Sc
en
ar
io

1b
Pe

r
ce
nt

bi
as

−0
.1
5

(−
7.
39

,
7.
34

)
−0

.1
5

(−
7.
39

,
7.
34

)
−0

.1
6

(−
7.
39

,
7.
34

)
−0

.1
5

(−
7.
39

,
7.
35

)
−0

.1
6

(−
7.
38

,
7.
34

)
SE

0.
44

(0
.3
4,
0.
55

)
0.
44

(0
.3
4,
0.
55

)
0.
44

(0
.3
4,
0.
55

)
0.
44

(0
.3
4,
0.
55

)
0.
44

(0
.3
4,
0.
55

)
C
ov
er
ag
e

93
.7

93
.7

93
.6

93
.7

93
.7

Sc
en
ar
io

2a
Pe

r
ce
nt

bi
as

0.
05

(−
7.
54

,
7.
7)

0.
07

(−
7.
51

,
7.
68

)
0.
06

(−
7.
53

,
7.
68

)
0.
08

(−
7.
52

,
7.
69

)
0.
07

(−
7.
52

,
7.
67

)
SE

0.
46

(0
.3
5,
0.
57

)
0.
46

(0
.3
5,
0.
57

)
0.
46

(0
.3
5,
0.
57

)
0.
46

(0
.3
5,
0.
57

)
0.
46

(0
.3
5,
0.
57

)
C
ov
er
ag
e

93
.8

93
.8

93
.8

93
.8

93
.7

Sc
en
ar
io

2b
Pe

r
ce
nt

bi
as

−0
.0
9

(−
8.
04

,
7.
85

)
−0

.1
1

(−
8,
7.
87

)
−0

.1
(−

8.
03

,
7.
87

)
−0

.1
1

(−
8.
05

,
7.
88

)
−0

.1
1

(−
7.
96

,
7.
88

)
SE

0.
47

(0
.3
6,
0.
59

)
0.
47

(0
.3
6,
0.
59

)
0.
47

(0
.3
6,
0.
59

)
0.
47

(0
.3
6,
0.
59

)
0.
47

(0
.3
6,
0.
59

)
C
ov
er
ag
e

93
.3

93
.3

93
.3

93
.3

93
.4

Sc
en
ar
io

3a
Pe

r
ce
nt

bi
as

0.
01

(−
3.
5,
3.
44

)
0.
02

(−
3.
49

,
3.
43

)
0.
01

(−
3.
51

,
3.
44

)
0.
01

(−
3.
48

,
3.
44

)
0.
02

(−
3.
48

,
3.
44

)
SE

0.
2

(0
.1
6,
0.
26

)
0.
2

(0
.1
6,
0.
26

)
0.
2

(0
.1
6,
0.
26

)
0.
2

(0
.1
6,
0.
26

)
0.
2

(0
.1
6,
0.
26

)
C
ov
er
ag
e

93
.5

93
.4

93
.5

93
.4

93
.4

Sc
en
ar
io

3b
Pe

r
ce
nt

bi
as

0.
02

(−
2.
53

,
2.
52

)
0.
03

(−
2.
53

,
2.
52

)
0.
03

(−
2.
53

,
2.
51

)
0.
03

(−
2.
52

,
2.
52

)
0.
02

(−
2.
53

,
2.
52

)
SE

0.
15

(0
.1
1,
0.
19

)
0.
15

(0
.1
1,
0.
19

)
0.
15

(0
.1
2,
0.
19

)
0.
15

(0
.1
1,
0.
19

)
0.
15

(0
.1
2,
0.
19

)
C
ov
er
ag
e

93
.5

93
.5

93
.5

93
.5

93
.5

T
he

tr
ue

va
lu
e
of

th
e
pa
ra
m
et
er

is
−1

0.

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. (in press)
DOI: 10.1002/sim



K. J. ISHAK ET AL.

more accurate and precise in scenarios 3a and b, errors in approximations did not affect the
performance of meta-analyses in estimating the treatment effect on outcome B.

5.2. Estimation of between-study variances

Table IV summarizes findings related to estimates of between-study variability (i.e. heterogeneity)
of effects for outcome A. The true value of the parameter was 5.0 in scenarios 1a and b and 2a
and b, and was then reduced to 1.0 in scenario 3a, and to 0.5 in scenario 3b.

Estimates of heterogeneity were prone to relatively large biases, even when within-study co-
variances were observed; the 5th and 95th percentiles suggest biases close to or exceeding ±50
per cent in all scenarios, even when the heterogeneity was assumed to be very low (scenarios 3a
and b). Reducing the sample sizes of studies (scenarios 2a and b) lead to larger biases in some
replications and increased the width of confidence intervals, which in turn caused the coverage of
these to exceed 95 per cent.

As for treatment effects, errors in approximating within-study covariances had no impact on
the performance of meta-analyses in estimating these parameters. The distribution of the bias and
precision of estimates were unchanged in all cases.

Findings were very similar for estimates of the heterogeneity of the treatment effect on outcome
B (results not shown).

5.3. Estimation of between-study correlation between treatment effects

Table V summarizes findings about estimation of the between-study correlation parameter, which
was assumed to be 0.25 in all scenarios.

Estimates of the correlation parameter were prone to the largest biases in estimates compared
to treatment effect and heterogeneity parameters. This was the case even when within-study
covariances were observed. Although the median relative bias was close to 0 in all scenarios, the
5th and 95th percentiles reveal biases in estimates exceeding 150 per cent in some replications.
The precision of the estimates was relatively weak as well, with confidence interval widths of 0.8,
which covers almost half of the full scale of possible values of the parameter. Despite relatively
large biases in point estimates, confidence intervals had coverage probabilities around 90 per cent
when within-study covariance estimates were observed.

As before, meta-analyses of smaller studies (scenarios 2a and b) or with lower heterogeneity
tended to have estimates with slightly larger bias and weaker precision, when within-study co-
variances were observed. Unlike the other parameters, however, estimates of the correlation were
more prone to be affected by errors in approximations of within-study covariances. When these
were overestimated by 50 per cent, the median bias was increased and the coverage of confidence
intervals was slightly reduced. Underestimating within-study covariances by 50 per cent was less
influential, however, with results looking similar to those from the ‘Observed’ case. Ignoring (i.e.
assuming independence) or using a negative correlation, which represent increasingly underesti-
mated approximations, led to increasingly more positively biased estimates and confidence intervals
with lower coverage, as low as 85 per cent, for instance in scenarios 2b and 3b.

Errors in approximations were most influential in scenarios with smaller studies (2a and b) and
more homogeneous effects (3a and b), and the magnitude of the effect of errors increased as these
parameters were varied (i.e. 2a versus 2b, 3a versus 3b).
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6. DISCUSSION

This paper examined the impact of errors made in approximating unobserved within-study covari-
ances in multivariate meta-analyses on estimates of treatment effects, heterogeneity parameters
and the correlation between outcomes across studies. We compared results from meta-analyses
based on approximations of within-study covariances to those from the reference analysis where
the actual covariances are observed. These were available since the data were simulated but are
generally not available in practice. The approximations that were employed in the simulations
were intentionally made to be of poor accuracy to test the models under difficult conditions—when
little is known about the correlation between outcomes.

Our analyses revealed that treatment effects were reasonably well estimated, even when within-
study covariances were poorly approximated. Heterogeneity and between-study correlation para-
meters were subject to larger biases, however, even when within-study covariances were observed.
In fact, estimates of these parameters were relatively less precise, which, in the case of between-
study variances, lead to confidence intervals with coverage exceeding the nominal value. For the
correlation parameter, however, the large biases in estimates caused confidence intervals to miss the
true value in up to 15 per cent of replications in some scenarios. Confidence intervals of treatment
effect estimates were also slightly below the expected 95 per cent threshold. We attribute this in
part to the relatively small size of the data (25 studies), which is typical in meta-analyses. This
was confirmed in sensitivity analyses where we reduced the number of studies (results not shown)
and observed greater decline in coverage probabilities. In the case of the correlation parameters,
however, the problem may also be amplified by the fact that estimates are a function of estimates
of the covariance between outcomes as well as the two variances; thus, they are prone to larger
errors and variability. It is possible, however, that depending on the directions, errors in these
estimates cancel each other out in some cases.

We also confirmed the hypothesis that the impact of errors in estimates would be most apparent
in scenarios where within- and between-study covariances were of similar scale (scenarios 2a and
b, 3a and b). However, the impact was most apparent in the accuracy of between-study correlation
estimates; the precision of these estimates was poor in all analyses, even when covariances were
observed, but declined only slightly because of errors in approximations. Treatment effects or
heterogeneity parameters were generally similar in both meta-analyses based on observed or
approximated covariances. Thus, if only treatment effects are of interest, one can even ignore
within-study correlations and assume independence without any significant risk of bias or loss of
precision in estimates. In meta-analyses where an estimate of the correlation between outcomes is
desired, however, a comparison of the relative magnitude of within- and between-study variances
in the outcomes (e.g. from univariate random-effects models), sample sizes of the studies, and
crude estimates of the correlation from the recorded data can be used to assess the potential for
bias. Like Berkey et al. [2], we recommend performing sensitivity analyses around the external
estimates used to approximate within-study covariances.

We did not examine cases where estimates were more variable within-studies than between,
as these are likely cases where effects are fairly homogeneous across studies and random-effects
models may not be necessary or adequate. We can deduce from our findings, however, that corre-
lation estimates in such meta-analyses may be susceptible to substantial variability and possibly
large biases.

The scenarios reported in this paper were based on a fixed number of studies and assumed
that all studies reported both outcomes and that the between-patient variance of the outcome was
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constant across studies. We examined the potential impact of varying these factors (not reported
in the manuscript). As would be expected, there was a noticeable loss in precision when fewer
studies were included in the meta-analysis or when not all studies reported both outcomes. Here
again, estimates of between-study correlations were most affected, with larger biases and interval
estimates with poor coverage probabilities. Similarly, allowing between-patient variances to be
different in studies also made the correlation parameter difficult to estimate, but did not affect
summary estimates of treatment effects or heterogeneity parameters significantly.

The relative magnitude of differences in the bias of correlation estimates from meta-analyses
employing approximations were consistent with the relative accuracy of the approximations. Results
from meta-analyses that overestimated or underestimated within-study correlations by 50 per cent
(the least erroneous approximations) tended to be closest to those from the reference case. Those
assuming independence and employing a negative correlation (the most erroneous approximation)
to derive within-study covariances yielded increasingly overestimated between-study correlations,
and declining coverage of confidence intervals. The same does not appear to occur when the
within-study correlation was over-approximated by 50 per cent, since the median biases were
positive and the replications seemed to produce larger positively biased estimates. To verify this
further, we ran some simulations where the magnitude of the error in approximation was greater
(over-approximated by 75 per cent). We found that the between-study correlation tended to be
underestimated more frequently; for instance, for scenario 3b, the median (5th–95th percentiles)
were −21.5 per cent (−186.1 to 112.1). This suggests that, the model may be compensating for
errors in approximating within-study correlations, by over- or under-estimating the correlation
across studies to maintain the total correlation measured in the data. This balancing of within-
and between-study correlations may explain why summary treatment effect parameters were not
affected by the errors in approximation: their estimation relies only on the total covariance matrices
(Vi = D + Si ), which will tend to be accurate since estimates of D seem to counter errors in the
specification of the Si .

Although we simulated meta-analyses of continuous endpoints, our findings should also apply
when multivariate models are used for two or more log-odds-ratio, log-rate-ratio or other measures.
Within-study correlations are harder to specify for these measures, since by definition, they apply
to populations or groups. That is, it is difficult to interpret within-study correlations between two-
log-odds-ratios in an individualistic sense, in the same way that one can with continuous measures
(e.g. the correlation between a patient’s blood pressure and lipid levels). The relationship between
dichotomous outcomes may be more easily described with probabilistic arguments (e.g. probability
of having both outcomes versus probability of only one). Consequently, multivariate models based
on this type of structure may be more useful and provide more information about the relationship
between the outcomes in this setting.

In summary, multivariate meta-analysis models appear to be fairly robust to errors made in
approximating within-study covariances when only summary effect estimates are of interest.
In fact, assuming independence within studies and accounting for the correlations in the data
through the random effects for each outcome can do as well as when within-study covariances are
observed. Multivariate meta-analyses do not appear to be as reliable when interest lies in estimating
correlations between outcomes; even when within-study covariances were observed, estimates of
the correlations were prone to relatively large biases and lacked precision. The direction of the bias
in between-study correlation estimates depended on whether within-study correlations were under-
or over-approximated. Furthermore, the correlations measured across studies may not reflect the
underlying association between treatment effects [17].
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