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Bayesian sample size for diagnostic test studies
in the absence of a gold standard: Comparing
identifiable with non-identifiable models
Nandini Dendukuri,a∗† Patrick Bélisleb and Lawrence Josephc

Diagnostic tests rarely provide perfect results. The misclassification induced by imperfect sensitivities and specificities of diagnostic
tests must be accounted for when planning prevalence studies or investigations into properties of new tests. The previous work
has shown that applying a single imperfect test to estimate prevalence can often result in very large sample size requirements,
and that sometimes even an infinite sample size is insufficient for precise estimation because the problem is non-identifiable.
Adding a second test can sometimes reduce the sample size substantially, but infinite sample sizes can still occur as the problem
remains non-identifiable. We investigate the further improvement possible when three diagnostic tests are to be applied. We first
develop methods required for studies when three conditionally independent tests are available, using different Bayesian criteria.
We then apply these criteria to prototypic scenarios, showing that large sample size reductions can occur compared to when
only one or two tests are used. As the problem is now identifiable, infinite sample sizes cannot occur except in pathological
situations. Finally, we relax the conditional independence assumption, demonstrating in this once again non-identifiable situation
that sample sizes may substantially grow and possibly be infinite. We apply our methods to the planning of two infectious
disease studies, the first designed to estimate the prevalence of Strongyloides infection, and the second relating to estimating the
sensitivity of a new test for tuberculosis transmission. The much smaller sample sizes that are typically required when three as
compared to one or two tests are used should encourage researchers to plan their studies using more than two diagnostic tests
whenever possible. User-friendly software is available for both design and analysis stages greatly facilitating the use of these
methods. Copyright © 2010 John Wiley & Sons, Ltd.
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1. Introduction

Virtually no diagnostic test is error free, which complicates both the analysis and design of research studies involving
diagnostic testing data. A large statistical literature has addressed these problems from an analytic viewpoint. Models
include latent class analysis assuming both independent [1--5] and possibly correlated tests [6--10]. This is a particularly
important issue, because it can be difficult to determine whether two tests are conditionally independent, although the
final inferences can depend on the choice of the model. If tests are based on biologically very different mechanisms,
then at least approximate conditional independence may hold. For example, three conditionally independent tests might
be based on serology, microscopy, and genetics. Conversely, if the mechanisms of action of two tests are similar, one
can expect some correlation from substantive reasons alone. Biologically, one can look for common elements of tests
and consider these to be additional latent class factors [11]. Analytically, one way to address this problem is to run both
independent and correlated models and check the robustness of important parameter inferences to model choice [12, 13]
or to use model selection criteria such as Bayes factors [14] to statistically evaluate the model that may provide the best
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Table I. Prior distributions for prevalence of Strongyloides and sensitivity and specificity of the serology
and microscopy tests.

Prior median
Test Parameter (95 per cent credible interval) Beta(�,�) priors

Prevalence (�) 0.76 (0.52, 0.91) Beta(13.11,4.59)
Serology Sensitivity (S1) 0.89 (0.80, 0.95) Beta(58.97,7.59)

Specificity (C1) 0.67 (0.36, 0.95) Beta(5.23,2.17)

Microscopy Sensitivity (S2) 0.31 (0.22, 0.44) Beta(22.15,45.97)
Specificity (C2) 0.96 (0.91, 0.99) Beta(84.09,3.53)

fit [8, 10]. Some authors [7, 8, 13] have suggested that if dependence is not strong, then inferences obtained from models
that assume conditional independence may not be very different from inferences from models that account for small
correlations between tests.

Latent class models have been extended to include hierarchical [15] and regression components [16], and have been
applied to data from clinical epidemiology [15--18], public health [3--5, 19--21], and veterinary medicine [22--27]. Other
methods for analysis of diagnostic test results have been proposed that do not rely on latent class models, such as using
a composite gold standard derived from combinations of test results [28]. There are now several books reviewing all
these methods [29--31].

The design of diagnostic studies in the absence of a gold standard test is a more complex problem that has received
little attention [32, 33]. Nevertheless, the work to date has shown that there can be orders of magnitude of difference
between sample size requirements suggested by methods that account for imperfect tests compared with those that
naively assume perfect properties [34, 35]. Therefore, it is important to consider the properties of the tests being used to
avoid studies that are much too small after all inherent uncertainties are accounted for. Furthermore, correlation among
tests may further increase sample size requirements, because a second test may add less information to a first test if the
tests are not conditionally independent.

Consider Dendukuri et al. [33], who described the sample size requirements for estimating the prevalence of Strongy-
loides infection in a refugee population. There is no gold-standard test available for Strongyloides infection, but two
routine tests are typically applied, serology and microscopy. Information about the sensitivity, specificity, and disease
prevalence was available from an earlier study [3], reproduced here in Table I for convenience. Note the considerable
uncertainty in the prevalence estimate, with a 95 per cent credible interval width of approximately 0.4. Dendukuri et al.
[33] sought to design a study that would reduce this uncertainty to a more acceptable width of 0.1, but found that this
level of precision could not be attained even with an infinite sample size. Rather, only a lower precision corresponding
to a credible interval width of 0.3 could be achieved with a finite sample, the size being lower when microscopy and
serology were used together compared with either test used alone.

While several methods have been proposed when no gold standard is available [28--31], latent class models are the
most common choice at the analysis stage, so that it makes sense to use these same models when planning a study
and calculating sample size requirements. These models allow for simultaneous estimation of disease prevalence and
test properties such as the sensitivity and specificity without naively assuming that one of the tests is a gold standard,
resulting in more realistic estimates of all parameters. Under conditional independence, data from three or more binary
tests result in an identifiable model, but at least four tests are required if tests are possibly dependent.

When only one or two tests are available, parameters from the resulting non-identifiable problem can be estimated by
a Bayesian approach [3]. Here, the data are augmented by the external information in the form of a prior distribution.
Unless sufficient prior information is available on a subset of parameters (at least two parameters must have substantive
prior distributions for both the one and two test situations), marginal posterior densities can remain wide. Gustafson [36]
reviews issues surrounding the identifiability of models for diagnostic tests, concluding that non-identifiable models with
small amounts of substantive prior information often outperform simpler identifiable models. This is because it is still
possible to learn from data in non-identifiable models.

When the problem is non-identifiable, the joint posterior distribution of the parameters does not converge asymptotically
to a single point as the sample size increases. This implies that there is a limiting value to the maximum coverage of fixed
width credible intervals and minimum length of fixed coverage credible intervals. Therefore, whether a finite sample size
is possible depends on whether the desired coverage and interval widths are equal to or less than the maximum coverage
and/or equal to or greater than the minimum widths. From a design perspective, this lack of identifiability implies that
very large sample sizes are often required to achieve even moderate accuracy in the parameter estimation [32]. The
sample sizes are largely driven by the degree to which test properties are a priori known, and in some cases, even an
infinite sample size will not lead to the desired accuracy in estimation. The use of a second test helps to reduce the

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 2688--2697

2689



N. DENDUKURI, P. BÉLISLE AND L. JOSEPH

required sample size in some cases, and sometimes it is possible to achieve the desired precision with a finite sample
size using two tests, when the sample size is infinite for any single test (see examples in [33]). The addition of a third
conditionally independent test renders the problem identifiable, so that infinite sample sizes should not generally occur,
and the number of subjects required for any given accuracy should decrease, at the expense of an additional test per
subject. This raises the question: Would the addition of a third test, such as eosinophil counts, to the Strongyloides
infection study described above have allowed us to achieve a 95 per cent credible interval of length 0.1 with a finite and
feasible sample size?

The issues described in the above prevalence study also apply when estimating the properties of a new diagnostic test.
Consider sample size determination for a study of the molecular epidemiology of tuberculosis [18]. Select mycobacterial
DNA sequences provide clues about which cases of active tuberculosis are likely clustered, implying recent transmission
between these cases, versus reactivation of previously acquired infection. The proportion of the recently transmitted
cases is important for public health, as different control methods are implemented as transmission rates increase. The
standard typing method is IS6110 Restriction Fragment Length Polymorphism (IS6110 RFLP), but the recently developed
polymerase chain reaction (PCR)-based genotyping modalities, including MIRU-VNTR (mycobacterial interspersed
repetitive units-variable number of tandem repeats) and spoligotyping provide quicker results. Investigating the properties
of these new tests, however, is rendered difficult by the lack of a gold standard method for classifying cases as clustered
or not. As many of these tests are relatively new, their properties have not been extensively investigated. What sample
size would be necessary, for example, to learn about the properties of MIRU, if all three tests were to be used in a study?

In this paper, we investigate the impact of the addition of a third test on the sample size of studies designed to
estimate either disease prevalence or properties of a diagnostic test. In Section 2, we describe the application of three
Bayesian sample size criteria to the problem of designing a study using three diagnostic tests. Section 3 presents a series
of prototypic examples, designed to illustrate the degree to which sample size requirements may be decreased when a
third test is added compared with a study using only two tests, and also investigates the effect of varying the amount of
prior information available. We return to the two applications described above in Section 4, and end with a summary
and discussion in Section 5.

2. Bayesian sample size criteria applied to diagnostic studies involving three tests

Bayesian interval-based criteria are ideally suited for design of diagnostic studies in the absence of a gold-standard test,
since these methods allow for the specification of prior distributions that account for all inherent uncertainties in the
parameters at the planning stage. See [37, 38] for general reviews of Bayesian sample size methods. Below we specify
our model in terms of a likelihood function and joint prior distribution over all unknown parameters. These in turn lead
to the marginal distribution of the data that will eventually be collected, which will be used for calculating the required
sample size.

2.1. Likelihood function and prior and marginal distributions

When three conditionally independent, binary diagnostic tests are available, the likelihood function L of the observed data
x = (x1, x2, . . . , xN ) of sample size N can be written in terms of the prevalence, sensitivity, and specificity parameters. Let
� denote the prevalence of the condition under study, and S j and C j , j =1,2,3, denote the sensitivities and specificities
of three tests, then we have (as in [3]):

L = L(x |�, S1, S2, S3,C1,C2,C3)∝
N∏

i=1

(
�

3∏
j=1

S
xij
j (1−S j )

1−xij +(1−�)
3∏

j=1
C

1−xij
j (1−C j )

xij

)
, (1)

where xi = (xi1, xi2, xi3) is the vector of results on the three tests for the i th subject, such that xij =1 or 0 depending on
whether the i th subject had a positive or negative result on the j th test.

Let � be the vector of unknown parameters (�, S1, S2, S3,C1,C2,C3), and let � belong to the parameter space �.
Although in theory any joint prior density over � can be used, it is convenient to use independent marginal beta densities
for each parameter. Indeed, this has been the almost universal choice for models using dichotomous tests in the past
[3--5]. Assuming all parameters follow independent beta(�,�) prior distributions, the prior marginal distribution of the
data is given by

f (x)∝
∫
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L ×���−1(1−�)��−1
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where L is as defined in (1).
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Applying Bayes theorem, the marginal posterior distribution of the prevalence is given by

f (�|x)∝
∫

�−�

L ×���−1(1−�)��−1
3∏

j=1
S

�S j −1

j (1−S j )
�S j

−1
C

�C j −1

j (1−C j )
�C j

−1
d�−�, (3)

where �−� denotes the vector of unknown parameters excluding �, which belongs to the parameter space �−�. The
remaining marginal posterior distributions can be expressed in a similar fashion.

When tests are not conditionally independent, a wide variety of models have been proposed [7--11], using both
fixed and random effects to accommodate correlations between tests. For simplicity, we will investigate the effects of
conditional dependence on sample size using the fixed-effects model [7]. All the methods described above carry over
to this case, except for a change to the likelihood function (1). For example, if tests 1 and 2 are correlated, then two
covariance parameters need to be added to the model, say covs12 for the sensitivity and covc12 for the specificity, and
the probabilities of test results that comprise the likelihood function change accordingly. For example, the probability
of tests 1 and 2 both being positive given that true disease status is positive changes from S1S2 in the independent case
to S1S2 +covs12 in the conditionally dependent case, and the probability of tests 1 and 2 both being negative given
a true negative status changes from C1C2 to C1C2 +covc12. Similar changes are needed for each term in (1), see [7]
for details.

2.2. Bayesian sample size criteria

Typically, we summarize the marginal posterior density of primary interest with a highest posterior density (HPD) or
other posterior credible intervals. At the planning stage, we may wish for an interval of length l that covers a particular
parameter, say �, with probability 1−�. The marginal posterior distribution of � depends on the data vector x ∈X,
which is of course unknown at the planning stages of the experiment. We can eliminate this uncertainty in different
ways, leading to the following three criteria [39].

Average Coverage Criterion (ACC): Allowing the coverage probability to vary with x while holding the credible
interval length l fixed, leads to a sample size defined by the minimum N satisfying∫

X

{∫ a(x,N )+l

a(x,N )
f (�|x)d�

}
f (x)dx�1−�, (4)

where 1−� is the required average coverage, f (x) is given by (2), f (�|x) is given by (3), and a(x, N ) is the lower limit
of the HPD interval of length l for the marginal posterior density f (�|x).

Average Length Criterion (ALC): Conversely, we can allow the HPD interval length to vary while fixing the
coverage probability. In this case, for each x in X we must first find the HPD interval of length l ′(x, N ) such that∫ a(x,N )+l ′(x,N )

a(x,N ) f (�|x)d�=1−�, and the sample size is the minimum N that satisfies∫
X

l ′(x, N ) f (x)dx�l, (5)

where l is the required average length. The left-hand side of (5) averages the lengths of fixed coverage HPD intervals,
weighted by the marginal distribution f (x).

Worst Outcome Criterion (WOC): A conservative approach is to ensure a maximum length of l and a minimum
coverage probability of 1−�, regardless of the data x that occur. Thus, we choose the minimum N such that

inf
x∈X

{∫ a(x,N )+l

a(x,N )
f (�|x)d�

}
�1−�. (6)

In practice, there is often at least one data set that leads to very poor accuracy, so that the WOC sample size is infinite.
For example, this is always the case when sampling from a Normal distribution [39], and non-identifiable models are
also often problematic in this sense. Therefore, in this paper we use the following modified WOC (MWOC) criterion.
Rather than taking the infimum across all possible data sets, we guarantee the desired length and coverage over a subset
S∈X such that S has a given probability. For example, we might choose the sample size N such that l and 1−� are
guaranteed over 95 per cent of the set X, according to the marginal distribution (2). We denote this by MWOC(0.95) or
more generally, MWOC(1−�). Thus, we can avoid the situation of having to select an unnecessarily large sample size
to guard against improbable data. Other criteria have also been defined, see [38, 40] for recent summaries.

Some authors [38, 41] have distinguished between sampling priors, used for creating the marginal distribution for the
data (see equation (2)) and analysis priors, used to derive the posterior distributions once data are available. The usual
motivation for this is to use the best available prior information for the marginal distribution of the data in planning the
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study, but assume that low information priors will be used at the analysis stage, to ‘let the data speak for themselves’.
When models may be non-identifiable, however, one must use substantive prior information at the analysis stage to derive
reasonable posterior inferences, so that there is less reason to use different prior distributions at the design and analysis
phases. Therefore, throughout this paper, we assume that the sampling prior is equal to the analysis prior, although it is
straightforward to extend these methods to accommodate different sampling and analysis prior distributions if desired.

The integration required to find the final sample size is non-trivial, since one needs to integrate not only over the
parameter space, as in standard problems in Bayesian inference, but also over the sample space X of the three test
results. The numerical techniques and algorithms we used are described in the Appendix.

A user-friendly program that implements the sample size methods discussed in this paper is available from
http://www.medicine.mcgill.ca/epidemiology/Joseph/. Similar software for analysis of data from diagnostic tests in the
absence of a gold standard test is also available from this source.

3. Variations of sample size requirements across prototypic scenarios

We now illustrate our methods via two sets of sample size calculations, discussed in Sections 3.1 and 3.2, respectively.
In Section 3.1, we investigate the sample size reductions that can occur when estimating the prevalence of a condition if
three rather than two conditionally independent tests are used. We investigate two opposing situations, where the third
test has either better or poorer sensitivity and specificity compared with the first two tests. As a robustness check to the
assumption of conditional independence, we investigate how the sample sizes may change when the second and third
tests are weakly (correlation �=0.1), moderately (�=0.25) or strongly (�=0.5) correlated. Throughout, we assumed
that the correlations apply equally to positive and negative cases, or, in the notation of Section 2, covs23 =covc23.
Note that the degree of possible correlation depends on the test properties [7], and 0.5 is close to the highest possible
correlation in our scenarios.

Section 3.2 investigates sample size requirements for diagnostic test studies, where the properties of a new test rather
than the prevalence are of primary interest. Using a uniform prior over the sensitivity and specificity of the new test, we
again compare sample sizes from three tests with those from just two tests across differing amounts of prior information,
and we again check the robustness to the assumption of conditional independence using the same choice of correlation
parameters as described above.

Throughout, regardless of the parameter of primary interest, we set the desired precision and coverage for the different
sample size criteria to commonly used values 1−�=0.95 and l =0.1, respectively. There are too many parameters and
choices of prior distributions to cover all possibilities that may arise in practice, but our results are representative of
situations that commonly occur.

3.1. Prevalence studies: comparing sample size estimates when three rather than two diagnostic tests are used

We denote the three diagnostic tests by X1, X2, and X3, and our main interest here is to compare sample sizes when
X1 and X2 are used alone with the case when X3 is added.

Table II contains the results from 18 different scenarios, distinguished by the prior distributions used for the prevalence
and sensitivities and specificities of X1, X2, and X3, and the sample size criterion used. Note that the Low (L), Moderate
(M), and High (H) labels refer to the location of the mean for each prior distribution for the prevalence, sensitivity or
specificity, and not to the degree of uncertainty in these prior distributions. As discussed in [33], both the location and
the degree of uncertainty in the prior distributions can impact the sample size requirements. In low prevalence situations
across all criteria (first nine lines of Table II), the reductions in sample size requirements when a third test is added
are variable. When the third test has better properties compared with the first two tests, sample size reductions can be
very large, over 95 per cent in some cases, and at least 66 per cent across all scenarios investigated. Adding a third test
that is not as well performing compared with the two already in use results in only very modest or no reductions in the
sample size.

Under higher prevalence conditions, when the test properties remain better for the third test, infinite sizes for two
tests are reduced to non-infinite sizes in all the cases we simulated, with sample sizes for three tests falling well below
1000 in many cases. Adding a third test that is not as well performing decreases the sample sizes by smaller but still
meaningful amounts. Theoretically, a main factor driving the sample size is how close the prevalence is to 50 per cent,
where binomial variance is maximized and each subject contributes the minimum amount of information.

Assuming conditional independence among all tests, it is clear that the addition of a third well performing test is highly
desirable in diagnostic testing studies where the prevalence is to be estimated. This addition results in very large decrease
in sample size requirements, in many cases avoiding the infinite sample sizes that arise when using just two tests. When
the third test has poorer properties compared with the two tests already in use, much smaller but still often substantial
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Table II. Comparing sample size requirements when two or three conditionally independent diagnostic tests are available for
estimating the prevalence of a disease or condition.

Prior distributions Sample size

Sample size criterion � S1 C1 S2 C2 S3 C3 Two tests Three tests

ALC L M M M M H H 3368 222
ALC L M M M M H M 3368 502
ALC L H H H H M M 132 133
ACC L M M M M H H 5302 264
ACC L M M M M H M 5302 583
ACC L H H H H M M 160 156
MWOC(0.95) L M M M M H H ∞ 627
MWOC(0.95) L M M M M H M ∞ 1732
MWOC(0.95) L H H H H M M 338 316
ALC M M M M M H H ∞ 654
ALC M M M M M H M ∞ 2305
ALC M H H H H M M 463 397
ACC M M M M M H H ∞ 666
ACC M M M M M H M ∞ 2455
ACC M H H H H M M 466 402
MWOC(0.95) M M M M M H H ∞ 1177
MWOC(0.95) M M M M M H M ∞ 7700
MWOC(0.95) M H H H H M M 682 505

Prior distribution for the prevalence (�) is either Low (L = beta(2.5, 22.5), with 95 per cent prior credible interval (CrI) = (0.02, 0.24))
or Moderate (M = beta(36.05, 54.53), with 95 per cent CrI = (0.3, 0.5)). Prior distribution for the sensitivities (Si ) and specificities
(Ci ) of each test i =1,2,3 are either Moderate (M = beta(55.21, 22.11), with 95 per cent CrI = (0.6, 0.8)) or High (H = beta(116.06,
12.05), with 95 per cent CrI = (0.85, 0.95)).

reductions in sample size requirements can generally be expected, particularly as the prevalence approaches 0.5. Using
three tests will result in finite sample sizes, except if one or more of the tests perform no better than chance. For example,
if a test has sensitivity = specificity = 50 per cent, then it will provide no information about the prevalence regardless
of the sample size, since a positive test can be a true or a false positive result with equal probability.

When two of the three tests are correlated the required ALC and ACC sample sizes rise, but remain reasonable
throughout the cases we investigated. For example, the ALC sample size from the first line of Table II is 222 with three
independent tests, but rises to 242, 280, and 249, respectively, for small, moderate, and large correlations between tests
2 and 3. Similarly, the ACC sample size for the same choice of prior distributions and independent tests is 264 (line 4
from Table II), and this rises to 304, 338, and 318, respectively, for small, moderate, and large correlations between
tests 2 and 3. The MWOC(0.95) sample sizes however, were much larger when correlations were added, approaching
infinity. This occurs because a small minority of cases with poor results has a much larger effect on the MWOC sample
sizes compared with sizes from criteria that do not search for the worst possible outcomes.

3.2. New diagnostic test studies: comparing sample size estimates when three rather than two diagnostic tests are used

Table III contains the results from nine different scenarios for comparing the sample sizes that result from three compared
to two tests when estimating the sensitivity of a test to detect a given condition or disease. Throughout, we used uniform
prior distributions for X1, which we assumed as the new test under study, whose sensitivity is to be estimated by the
study being designed. We assumed a uniform prevalence, in other words, we assumed the researchers would not know
the prevalence of the condition in their test subjects, which may occur, for example, if they were volunteers with an
unclear history. Tests X2 and X3 were assumed to be routinely used but imperfect diagnostic tests whose properties are
known to within a certain accuracy. For X2 and X3, we used various different prior distributions, with properties of X2
sometimes poorer than those of X3, and vice versa.

Under conditional independence, we found that when using two tests it was not possible to satisfy the criteria with
a finite sample size in all but one case. With the addition of a third test all criteria were satisfied with a finite size, but
large sample sizes occurred particularly for the MWOC criteria. When the third test had high sensitivity and specificity
the sample size required was at least 50 per cent less compared with when the specificity alone or both sensitivity and
specificity were moderate. Of course, from the symmetry of the problem similar results would be expected for estimating
the specificity.

When tests two and three are correlated, sample sizes rise very substantially. For example, when the second test has
moderate and the third test has high properties, sample sizes were 2120, 4777, and 30 000 for the ALC, ACC, and
MWOC(0.95), respectively, as seen in Table III. However, regardless of the degree of correlation between tests, the sample
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Table III. Comparing sample size requirements when two or three conditionally independent diagnostic tests are
available for estimating the sensitivity of a diagnostic test for a given disease or condition.

Prior distributions Sample size

Sample size criterion � S1 C1 S2 C2 S3 C3 Two tests Three tests

ALC U U U M M H H ∞ 2120
ALC U U U M M H M ∞ 4233
ALC U U U H H M M 31 002 2120
ACC U U U M M H H ∞ 4777
ACC U U U M M H M ∞ 11236
ACC U U U H H M M ∞ 4777
MWOC(0.95) U U U M M H H ∞ 30000
MWOC(0.95) U U U M M H M ∞ 67500
MWOC(0.95) U U U H H M M ∞ 30000

Prior distribution for the sensitivities (Si ) and specificities (Ci ) of each test i =2,3 can be Moderate (M = beta(55.21, 22.11),
with 95 per cent CrI = (0.6, 0.8)) or High (H = beta(116.06, 12.05), with 95 per cent CrI = (0.85, 0.95)). U indicates
a uniform prior density over the interval [0, 1], which was used for the test of interest i =1 and the prevalence of the
condition, assumed unknown within the testing population.

sizes rose close to 10 000 for the ALC and approached infinity for both the ACC and MWOC. Therefore, when tests are
correlated, one needs extremely large sizes to obtain 95 per cent posterior intervals of width 0.1 or less for the sensitivity.

Overall, we found higher sample sizes for estimating test properties compared with the lower sizes required for
similar accuracy in estimating the prevalence. This is in part explained by the fact that every subject contributes toward
estimating prevalence, but only positive subjects contribute toward estimating the sensitivity (and only negative subjects
contribute toward estimating the specificity). Therefore, when prevalence is high, one should need smaller sample sizes
for estimating the sensitivity. To check this, we used the same prior choices as in line 1 of Table III, but changed the
prior distribution of the prevalence to center at 70 per cent, using a beta(70,30) distribution. Assuming three independent
tests, we find an ALC sample size of 416, which rises only slightly to 427, 433, and 435, respectively, for small, medium
and large correlations between tests 2 and 3, similar to the results found for the prevalence. In fact, even two independent
tests are sufficient in this case, giving a sample size of 440, only slightly larger than the three test sample sizes. This
is because the high prevalence ensures that most subjects are positive, so that the properties of the new test can be
efficiently evaluated. The key message here is that if test properties are the target of the investigation, it is best to choose
a group of subjects whose prevalence is well known.

In the following section, we illustrate the use of our methods in practice through the two motivating examples
introduced in Section 1.

4. Sample size for studies of Strongyloides prevalence and tuberculosis transmission tests

Section 4.1 discusses designing a study to estimate the prevalence of Strongyloides infection, and Section 4.2 concerns
planning a study to accurately estimate the sensitivities and specificities of new tests for detecting tuberculosis trans-
mission. In each case, we will compare the sample sizes from a design using two diagnostic tests to a study that adds
a third test. For example, for Strongyloides infection the third test may be based on eosinophil counts, and hence the
three tests may be assumed conditionally independent, at least approximately.

4.1. Planning a study to estimate the prevalence of Strongyloides infection

As discussed in [33], when using the prior distributions in Table I, the sample sizes for two tests are infinite regardless
of the criterion used if we desire a posterior credible interval coverage of 95 per cent to be of length l =0.1 or smaller.
We now assume that a third test is available, with sensitivity and specificity with prior 95 per cent credible interval range
of (0.6, 0.8), in other words, the ‘moderate’ test as defined in Tables II and III. Assuming that a study will use all three
tests to estimate the prevalence, to attain the desired accuracy would require sample sizes of 5660, 5818, and 24 038 for
the ALC, ACC, and MWOC(0.95), respectively.

These results show that a study that was impossible to carry out with only two tests becomes feasible if one can find
a third test, even if it has only moderate to good properties. Nevertheless, a relatively high sample size of over 5000
subjects is needed to guarantee estimation accuracy of ±0.05 on average when using a 95 per cent credible interval,
and almost five times that number is required to guarantee the desired interval width and coverage using the MWOC
criterion. These sizes are much larger than would be suggested by naive use of a binomial sample size criterion that
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ignores the inevitable errors in the test results. For example, attaining an accuracy of ±0.05 with a 95 per cent confidence
interval requires a sample size of only 384 subjects or fewer, depending on the assumed prevalence [42]. This comparison
underlines the importance of carefully assessing the test properties in any study involving diagnostic tests.

4.2. Planning a study to estimate the sensitivity of PCR-based genotyping modalities for the detection of tuberculosis
transmission

Based on the results of Scott et al. [18], we estimate that the sensitivity of RFLP is in the range (0.19, 0.39), and the
specificity ranges from (0.81, 0.95). Similarly, for spoligotyping the sensitivity is in the range (0.78, 0.99), whereas the
range for the specificity is (0.44, 0.98). We converted these ranges into beta prior inputs, by assuming the mid-point of
the range to be the mean, and taking the standard deviation to be one fourth of the range. Using uniform prior inputs
for the prevalence of clustering and the sensitivity and specificity of MIRU, we find sample sizes of infinity across all
criteria for a two-test design, which uses the standard RFLP and MIRU. However, if all the three tests are used, the
sample sizes become 17 300, 51 000, and infinity, for the ALC, ACC, and MWOC(0.95), respectively.

In this case, it is not clear that adding a third test renders the problem feasible in practice, even if the test is
conditionally independent from the first two tests. While the sample sizes are no longer infinite, they remain very large,
and it is unlikely that any study will be able to find sufficient numbers for an accurate estimation, unless a worldwide
collaborative effort is made. This is especially true since two simplifying assumptions are made here, neither of which
may hold in practice. First, it is possible that MIRU and spoligotyping may be conditionally dependent, as both rely
on PCR-based methods, albeit on different regions of the genome, rendering any correlation small or zero. Second, the
model used here is really a simplification to reality, since we assumed clustering of each case occurs independently
from other cases, which may not be true since one case may have infected another, implying that a complex infectious
disease model with many parameters may be required for accurate modeling. Overall then, one must either admit that
accurate estimation of the properties of MIRU is not possible, or, more constructively, one must first plan studies to
more accurately estimate the properties of RFLP and spoligotyping. If the prior information about these two tests could
be sufficiently sharpened, much lower sample sizes would be achieved.

5. Discussion

In this paper, we have described several methods for sample size calculations when three conditionally independent
diagnostic tests are available, which leads to an identifiable model. These methods generally provide finite sample sizes,
as compared with the often infinite sample sizes given by similar criteria for the non-identifiable models that result when
only one or two diagnostic tests are available. When tests may be conditionally dependent, however, sample sizes may
again increase substantially. As discussed by Johnson et al. [5], another route toward an identifiable model when only
two tests are available is adding a second population with a different prevalence. It would be interesting to compare
sample size requirements for this scenario with the three-test situation, although that is not done here.

In practice, most diagnostic studies currently use naive sample size calculations that ignore the imperfect sensitivity
and specificity of virtually all diagnostic tests. We have shown this to be a serious problem, as either the estimates are
likely to be biased, if the imperfections of the tests used are ignored at the analysis stage as well as the planning stage,
or the final posterior credible intervals will be very wide, if one accounts for the imperfect tests at the analysis stage
only.

Using three diagnostic tests rather than one or two adds to the cost per subject of a study, while allowing for fewer
subjects overall. Our methods and user-friendly software allow study planners to accurately assess the accuracy gained
by adding more tests, following which a final decision about the number of tests and sample size can be made. We
expect, however, that many researchers may be surprised by the generally high sample sizes required by diagnostic test
studies once all uncertainties are included in the model. We hope that our work will encourage researchers to carefully
consider all design issues, and evaluate the tests that will be used in their studies, as the best route toward smaller sample
sizes is the use of tests whose properties are more accurately known.

Appendix A

A software package which implements the methods described in Section 2 of this paper called PropMisclassSampleSize
is available from the author’s web page www.medicine.mcgill.ca/epidemiology/Joseph/. This program calculates sample
sizes for one, two or three conditionally independent diagnostic tests using the Bayesian criteria. This appendix describes
the numerical algorithms the software package uses to calculate the sample sizes. While we present algorithms for
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estimating the prevalence, very similar algorithms can be used for estimating sample sizes for the sensitivity and
specificity of any test. As detailed in Section 2 above, only small changes to the likelihood function are required to
account for possibly conditionally dependent tests.

(1) Sample M1 random values from the joint prior distribution of (�, S1,C1, S2,C2, S3,C3).
(2) For each vector (�i , S1i ,C1i , S2i ,C2i , S3i ,C3i ), i =1, . . . , M1:

(a) The three tests define a multinomial probability function with eight categories, as each test can independently
be positive or negative, given either of two true disease states.

(b) Select a value for N , the required sample size. From the multinomial distribution from the previous step, draw
M2 random values such that the total number in the eight cells equals N . This is equivalent to sampling from
the preposterior predictive distribution of the data.

(3) For each of these multinomial vectors, estimate the posterior density of �. This is done as follows:

(a) For each of the sampled vectors, obtain a sample of M3 values from the posterior distribution of � using the
Gibbs sampler [3]. Label these values �ijk, i =1, . . . , M1, j =1, . . . , M2, k =1, . . . , M3.

(b) Estimate the mean (�ij) and variance (	2
ij) of the posterior distribution of �ij using the output from this Gibbs

sampler.
(c) The posterior distribution of �ij is approximated by a single Beta distribution with parameters �ij =

−�ij(	
2
ij +�2

ij −�ij)/	
2
ij and �ij = (�ij −1)(	2

ij +�2
ij −�ij)/	

2
ij.

(4) For each posterior distribution, we used a Newton–Raphson-type algorithm to find the location of the HPD
interval. This involved choosing a lower limit for the interval, say a, calculating the height of the density curve
for � at a and a+l, and iterating until f (a)= f (a+l). Coverages were then given by the area under the curve
between a and a+l, using standard results from the beta density.

(5) To implement the ACC criterion, compare the average coverage of HPD intervals of length l to the predetermined
value of 1−�. If the average coverage is greater (smaller) than 1−� we return to Step 1 and repeat the algorithm
with a smaller (greater) value for N until the criterion is met. Similarly, to implement the ALC criterion the
average length of the HPD intervals with coverage 1−� is compared with l. To implement the MWOC(1−�)
criterion we compare the (1−�)×100 percentile of the coverages to 1−�.

For sample sizes N1, N2, . . ., NT covering a range near the correct sample size, we generated coverages (ci ) and
lengths (li ) using the above algorithms. We then fit the quadratic model log(li or ci )=�+�1 log(Ni )+�2{log(Ni )}2 to
the points (Ni , li ) or (Ni ,ci ), for the ALC and ACC, respectively. This curve allows us to quickly zero in on the required
sample size, which is defined as the smallest N for which the given criterion is satisfied.

Increasing the values of M1, M3, and M4 increases the precision of the sample size estimate, but increasing M2 while
keeping M1, M3, and M4 fixed has little effect on the precision. If the required coverage or length criterion was not met
by a size of N=100 000, we stopped our search and reported a sample size of infinity. As studies of this dimension are
very rare, for all practical purposes, the desired accuracy cannot be reached.
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