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Abstract 

In experiments designed to estimate a binomial parameter, sample sizes are often calculated 
to ensure that the point estimate will be within a desired distance from the true value with 
sufficiently high probability. Since exact calculations resulting from the standard formulation of 
this problem can be difficult, "conservative" and/or normal approximations are frequently used. 
In this paper, some problems with the current formulation are given, and a modified criterion 
that leads to some improvement is provided. A simple algorithm that calculates the cxact 
sample sizes under the modified criterion is provided, and these sample sizes are comparcd to 
those given by the standard approximate criterion, as well as to an exact conservative Bayesian 
criterion, i~". 1998 Elsevier Science B.V. 
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1. Introduction 

Let X be a b inomia l  r a n d o m  var iable  with unknow n  p robab i l i t y  of success 0. W h a t  

should  the sample  size n be so that  the po in t  es t imate  will be sufficiently close to 0 with 

high p robab i l i t y?  

M a n y  recent t ex tbooks  on sample  size de t e rmina t ion  (for example ,  Desu  and 

Raghava rao ,  1990; and  Lemeshow,  et al., 1990) suggest  bas ing sample  size ca lcula t ions  

for b inomia l  exper iments  on cr i ter ia  such as 

P(IX/n -- 01 <~ d) >~ 1 - a. Ill) 

This  fo rmula t ion  ensures tha t  the sample  size will be sufficient to es t imate  the true 

b inomia l  p a r a m e t e r  0 by  the usual  unb iased  po in t  e s t ima tor  0 = X/n, in the sense tha t  
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1 0 - 0 [  ~< d with probability at least 1 -  c~. For  suitably chosen xl and x2, the 
left-hand side of (1) is equal to 

x = x l  x = x 1  

where n is the sample size. However, both the summand as well as xl and x2 depend 
on the unknown value of 0, making direct use of (2) and therefore (1) almost 
impossible in practice. One "conservative" solution (which we will show to not always 
be conservative), suggested by Desu and Raghavarao (1990) and others, is to assume 
that (2) is minimized when 0 = 0.5. More generally, if it is known that 0 ~< m < 0.5 or 
0 ~> m > 0.5, for some m, then an alternative solution would be to substitute 0 = m in 
(2). This would still be conservative, but guard against the possibility of using an 
unnecessarily large sample size if 0 = 0.5 is used when in fact 0 ~ 0.5 or 0 >> 0.5. The 
intuition behind labelling these substitutions "conservative" is that the variance 
function of a binomial random variable, nO(1 - 0), is maximized over the interval 
(a ,b)  c [0, 1] by the value in (a ,b)  closest to 0.5. However, this reasoning is only 
partially correct, since the effects of 0 on x~ and x2 are ignored in focussing only on the 
binomial variance. 

It is also often suggested that the exact calculation in (2) can be replaced by that 
given by the normal approximation to the binomial distribution. Letting 

x i - -  nO 
yl 

then 

x2 1"/ s2 _ y 2  

The limits Yl and Y2 are unknown, since 0 is unknown. However, conservative sample 
sizes are available by substituting 0 = 0.5 or 0 = m as above, and using quantiles of 
the normal distribution to approximate yl and Yz. This leads to the sample size 
formula 

? Z ~ _ ~ m O ( 1  - O) 
n = de , (4) 

where Z1-=/2 is the usual standard normal upper 100(1 - ~/2)% quantile, and [-a 7 
denotes the smallest integer larger than a. In the case where 0 -- 0.5, (4) reduces to 
n = ~Z~_=/2 /4d2] .  These conservative solutions are correct only to the extent that the 
normal distribution approximates the exact underlying binomial probabilities. How- 
ever, the degree to which this approximation affects the sample sizes is usually 
unknown. 

In summary, criterion (1) is exact, but difficult or impossible to implement. Criterion 
(4) is trivial to implement, but provides only an approximate solution. This raises the 
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question of how much the sample size given by (4) may differ from an exact solution. It 
would therefore be useful to find an exact method that is easy to implement. 

The plan of this paper is as follows. In Section 2, several anomalies associated with 
the criterion given by (1) are illustrated via examples. The examples also demonstrate 
that "conservative" approximations are sometimes not truly conservative. A modified 
exact criterion is presented in Section 3 along with an algorithm that illustrates ils 
feasibility in practice. Sections 4 and 5 provide examples comparing the sample sizes 
given by the modified criterion to those provided by the most commonly used formula 
(4), and a conservative Bayesian criterion, respectively. A discussion is found in 
Section 6. Mathematical details are deferred to an appendix. 

2. Anomalies 

The main problem with using the standard formulation (1) is that 0 is unknown, and 
it is difficult or impossible to ascertain which value of 0 is the most conservative. 
Consider the following example. 

Example l. Let d = 0 . 1 ,  1 - c ~ = 0 . 6 ,  n = 5 ,  and 0 = 0 . 4 .  Then (2) becomes 

p(x = 2) = 0.3456 while for 0 = 0.5, (2) reduces to p(x = 2) + p(x = 3) = 0.625. There- 
fore, the minimum probability is not always attained by substituting 0 = 0.5, that is, 
the value that provides the maximum variance is not always the most conservative in 
the sense of minimizing (2). There are also other problems associated with the use of 
criterion (1). 

Example 2. Suppose d = 0.1, 1 - :~ = 0.6 and n = 5. As above, for 0 -- 0.5, (2) gives 
0.625. There are several anomalies associated with this situation. First, consider the 
same calculation, but replace 0 = 0.5 by 0 = 0.50000001. In this case, (1) becomes 
p(x = 3) : 0.3125. Thus, the discrete nature of the binomial distribution is such that 
a little disturbance in 0 reduces the probability by half. Since we will rarely know 
0 a priori with a high degree of accuracy, this may be a serious concern. Second, 

restore 0 = 0.5, but let d = 0.0999999999. Then (2) becomes 0! Hence, a small decrease 
in d costs all of the probability. If strict inequality is considered in Eq. (l), that is, 

p(IX/n - Ol < d) >~ 1 -  ~, 

the probability is again 0. Furthermore,  if 0 = 0.5, the smallest n that gives 

p([X/n - 0.5[ < 0.1) >~ 0.6 

is n = 5, but if we take n = 6 then (2) becomes p(x = 3) = 0.3125, that is, half of the 
probabili ty is lost when considering a larger sample. 

While for ease of exposition the above examples featured only small values of n, 
Table 1 of Section 4 indicates that similar problems persist for much larger n. In the 
next section a modified criterion is suggested to replace (1) that improves upon some 
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of the undesirable features illustrated above. In particular, sample sizes from the 
modified criterion can be calculated exactly via an easy program algorithm, and the 
problems due to the anomalies illustrated by the above examples are diminished. 

3. Modified criterion 

For  any given 0, ~ and d, criterion (1) ensures that 

P r { - d < ~ O - O < ~  +d}  ~> 1-c~,  

where 0 = X/n  is the usual binomial maximum likelihood estimator. However, one 
could also consider 

P r { - a < ~ O - O < ~  +b}  ~> 1-c~,  

with f a + b] ~< 2d. Therefore, instead of the interval of length 2d centered at 0, the 
highest density interval of length ~< 2d containing 0 is considered. This is similar to 
switching to exact binomial confidence intervals rather than those based on the 
normal approximation (3), commonly used when n is small or 0 is near 0 or 1. Let 

Do = {all intervals I such that 0 E I and l(I) <~ 2d}, 

where l(I) denotes the length of the interval I. Then the sample size can be defined as 
the minimum n satisfying 

i n f t su  p ~ p ( k / n ; O ) } > ~ l - ~ ,  (5) 
0 LI~Do (k/n)~l 

where k is an integer, and the infimum is over the range of possible values for 0. 
An algorithm to calculate exact sample sizes using this modified criterion is given 

below. The algorithm is motivated by Theorem 1, which is proved in the appendix. 

Theorem 1. Let  d, ~ and n be given. Let  i = L2ndJ, that is, i is the largest integer smaller 
than 2nd. For j ~ { 1 . . . .  , n -- i}, define 

n ) r 1/(i+l) 
j -  1 and O~ = -J 

n (1 + r)/(i+ 1)) 

i + j  

Denote by H(O) the probability content o f  a highest-density interval corresponding to O. 
Then 

inf{H(0): 0 ~< 0 ~< 1} = min({H(0j): 1 ~<j ~< n -  i}). 

Theorem 1 states that in order to calculate the minimum highest-density region 
over 0 e [0, 1], it suffices to consider only the n - i values of 0j. Similarly, if 0 ~< m, 
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only H(0j), 0i < m need to be computed,  and the sample size is the smallest n such 

that 

min({H(0j):  Oj < m}, H(m)) >~ 1 - ~. 

This suggests the following algorithm: 

1. Given d, m ~ 0.5 and c~, select an initial guess for the sample size n. (If m > 0.5, use 
with m' = 1 - m in place of m. The s tandard formula (4) with 0 = m could be used 
to obtain the initial guess.) 

2. Calculate i = [_2ndJ, 

n ) rJ,,.+l) 
j - I  and 0 r -  J j = l , 2  . . . .  , n - - i .  

n (1 + I') '(i+ 1)) 

i + j  

3. Calculate H(O~) = ~,j+i (~,) 0~(1 - 0j) "-k. ~,k=j 
4. Letting s = max {j: 0 r ~< m}, calculate H(m) = 52~,2~(~)mk(l - m) "--k 

5. (a) If there is no bound  for 0, calculate Pmin = min({H(0j): 1 ~<j ~ n -- i}t. 

(b) If 0 < m < 0.5, calculate P m i ~  = min({H(0j): 0 r ~< m}, H(m)). 
6. Repeat steps 2 5 with a new values for n, until Pmin >/ l - -  ~ for n but not for n -- 1. 

For  example, subsequent values for n can be selected via a bisectional search 
algorithm. 

The above algori thm is s traightforward to program in most  p rogramming  

languages. 

4. Examples 

Consider  again Example l from Section 2. This example illustrated that sub- 

stituting 0 = 0.5 for the unknown 0 does not  guarantee a conservative probabil i ty 
calculation. It is also true that  0 = 0.5 is not  necessarily conservative when using 
the modified criterion. However,  Theorem 1 states that the min imum highest-density 

probabil i ty interval occurs when 0-= 0j for some .i ~< n - i ~  so that  the exact 
min imum probabil i ty can easily be found, which is not, in general, the case when using 
(1). 

Under  the modified criterion, small disturbances in 0 do not greatly affect the 
probabilities, as was the case for the s tandard  formulat ion in Example 2. For  example, 

using 0 = 0.50000001, the highest-density interval remains at 0.625. Small decreases in 
d also do not affect the highest-density interval probabilities when k/n < d < (k + l)/n 
for some integer k. However,  when d = k/n, a small decrease in d produces a loss of 

one of the end points of the interval. In contrast,  under  Eq. (1) both end points are lost. 
When the sample size increases to 6, the probabil i ty under the modified criterion is 
0.5469 while under  Eq. (1) it is 0.3125. 
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Table 1 
Sample sizes (SS) for various values of 0r, d, and m, using the normal  approximation (4) and 
the modified criterion (5) 

Example # (1 - ct) d m SS using (4) SS using (5) % difference 

3 0.625 0.1 0.5 20 10 50 
4 0.8 0.1 0.5 42 35 17 
5 0.9 0.025 0.1 390 360 8 
6 0.9 0.05 0.1 98 80 18 
7 0.95 0.005 0.02 3012 2800 7 
8 0.95 0.03 0.1 385 350 9 
9 0.95 0.05 0.01 1825 1750 4 

10 0.95 0.05 0.1 139 120 14 
11 0.95 0.05 0.5 385 370 4 
12 0.95 0.1 0.5 97 90 7 

Table 1 provides ten additional examples, for a selection of values for 1 - ~, d, and 
m. The examples illustrate that in experiments requiring small samples, such as when 

and d are relatively large, the difference between the sample size computed exactly 
and the one computed using the normal approximation can be as much as 50%. More 
interestingly, the differences can still approach 20% even when 1 - ~ takes on the 
usual 0.9 or 0.95 values, and the sample sizes near 100. Furthermore, discrepancies of 
4-102/o can be found for sample sizes near 400, and persist up to sample sizes of 3000. 
In many cases, these differences may be of practical importance. 

It is important to recognize that there are two distinct contributing factors to the 
differences in sample sizes observed in Table 1. The first is that in using a normal 
approximation to the exact binomial probabilities, one introduces some error. The 
second is that there has been a subtle but non-negligible change in the sample size 
criterion, in that the standard criterion is based on a symmetric interval, while the 
modified criterion employs highest-density intervals. Therefore, even if the normal 
distribution provided exactly correct probabilities, one would expect the modified 
criterion to provide lower sample sizes, owing to the efficiency of highest-density 
intervals. 

5. An exact conservative Bayesian approach 

Problems such as those described in Section 2 arise from the discrete nature of the 
binomial distribution. From a Bayesian point of view, if a continuous prior distribu- 
tion such as the one from the standard conjugate Beta family is used to estimate 
a binomial parameter, then the posterior density is also continuous, and similar 
problems do not arise. 

An exact Bayesian approach to sample size determination for a binomial parameter 
is given by Joseph et al. (1995). Let the prior distribution of 0 follow a Beta density 
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with parameters a and b, so that 

1 
f(O) = B(a,b)O(a-x)(1 - O) (~-l~, 0 < 0 < 1, 

where B(a,b) is the Beta function with parameters (a,b). The posterior density for 
0 given observed data x out of n binomial trials is 

1 
f (Olx ,  n , a , b ) =  t U + ~ - I ~ ( 1 - 0 )  I"-x~b-l) 0 < 0 <  1. 

B(x  + a,n  - x + b) 

The experimenter typically would specify that 0 should fall in a highest posterior 
density interval of length 2d with probability (1 - ~). However, the posterior distribu- 
tion depends on x, which is unknown at the planning stage of the experiment. 
A conservative sample size would be to ensure that the highest posterior density 
intervals have length at most 2d and converge probability at least (1 - ~) over all 
possible data x that may arise. This criterion has been termed the "Worst Outcome 
Criterion" (WOC) by Joseph et al. (1995). 

Since the WOC is also based on highest-density intervals, one would expect it to 
provide similar sample sizes to those given by the modified criterion of Section 3 when 
a uniform (a = b = 1) prior density is used. Indeed, applying the WOC to example 
4 gives a sample size of 39, while a size of 93 results in example 12. These values lie 
roughly midway between those given by the modified criterion and Eq. (4). This 
suggests that approximately half of the differences observed in Table 1 may result 
from using highest posterior densities, with the rest arising from using exact discrete 
binomial probabilities. While the WOC is exact in the sense that exact Beta quantiles 
are used to calculate highest posterior density intervals, it of course does not directly 
use binomial probabilities. 

See Joseph et al. (1995) or Joseph et al. 0997) for more details on Bayesian sample 
size determination. 

6. Discuss ion  

The purpose of this article was to shed some light on widely used criteria [or 
binomial sample size determination. In particular, calculating conservative sample 
sizes from the standard exact formulation is problematic, since the conservative value 
of 0 is difficult to determine. Assuming that the conservative value 0 = 0.5 is often not 
correct, while conservative sample sizes from the normal approximation often differ 
substantially from exact solutions. An algorithm to compute exact sample sizes from 
a modified criterion is provided. 

As might have been expected, for small sample sizes, or when m is near 0 or 1, the 
resulting sample sizes can differ substantially from approximate solutions. The exam- 
ples in Table 1 provide some idea of the potential gains in efficiency that result from 
switching to the new criterion. In some applications these gains may be worthwhile, 
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while in others, the normal  approx ima t ion  will suffice. In any case, it at  least appears  
that  the conservat ive normal  approx ima te  sample  sizes are truly conservative,  in the 
sense that  the sample  sizes provided are greater  than  those provided by the exact 
criterion (5). See K u p p e r  and  Hafner  (1989) for a similar critique of the mos t  widely 
used sample size criteria for the normal  distribution. 

Appendix 

Two pre l iminary  remarks  and three l emmas  will be useful in proving  Theo rem 1. 

R e m a r k  A.1. F o r  given n and 0 ~< 0.5, p(k; 0) = (~,)0k(1 - 0) "-k  takes its highest value 
on the point  r, where r/(n + 1) ~< 0 < (r + 1)/(n + 1). Fo r  0 = r/(n + 1), p ( r -  1; 
O) = p(r; 0). Also p(k; O) > p(k - 1; 0) if and only if k/(n + 1) < 0. A similar a rgument  
can be made  when 0 > 0.5. See Rohatgi  (1984) for the proofs  of  these statements.  

R e m a r k  A.2. Fix an integer k such that  1 <~ k <~ n/2. Then p(k/n; O) is difl'erentiable 
with respect to 0, and it is easy to see that  it increases if and only if 0 ~< kin. 

Definition A.3. For  given d and n, define i to be the integer such that  

i/n <~ 2d < (i + 1)In. 

In what  follows, it is assumed that  i ~> 1. Fo r  i = 0 all of  the results proven  below 
will be trivially true. 

L e m m a  A.4. Given d, c~, and n, a point 0 can have at most two highest-density intervals of  
length i, namely Is/n, (s + i)/n] and [(s + 1)/n, (s + i + 1)/n],for some integer s. 

Proof.  Suppose  [s/n, (s + i)/n] and [u/n, (u + i)/n] are two highest-density intervals of  
length i cor responding to 0, and suppose,  wi thout  loss of  generality, that  s < u. It  
suffÉces to prove  that  u = s + 1. Since p(s; O) >>. p(s + i + 1; 0), p(s - 1; 0) ~< p(s + i; 0), 
p(u;O) >~ p(u + i + 1;0), and p(u - 1;0) ~< p(u + i;O), by Remark  1, s ~ r < s + i + 1 
and  u ~< r < u + i + 1, where r is the point  of m a x i m u m  probabil i ty.  Hence, s v a u - 1 
implies s < u - 1  and s + i < u + i - 1 ,  which implies that  p ( u - 1 ; O ) > p ( s ; O )  
>! p(s + i + 1;0) > p(u + i; 0), which is a contradict ion.  [ ]  

L e m m a  A.5. Given d, c~, n and 01 < 02, let Is~n, (s + i)/n] and [u/n, (u + i)/n] be 
highest-density intervals correspondin9 to 01 and 02, respectively. Then u >1 s. 

Proof.  01 < 02 implies that  rl <~ r2, where rl  and r 2 are the points  of m a x i m u m  
probabi l i ty  corresponding to 01 and 02 respectively, defined in R e m a r k  1. Suppose 
that  u < s, then by Remarks  1 and 2, p(u + i + 1; 02) > p(u + i + 1; 01) > p(s - 1; 01) 
>>- p(u; 01) > p(u; 02), which is a contradict ion.  [ ]  
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Lemma A.6. Given d, ct, and n, an interval I is a highest -densi ty  interval q/" length 

i corresponding to some 0 ~ [0, 1] i f  and only i f  it is an interval f r o m  the set {[0, i/n], [1/n, 

(i + 1 ) /n ] , . . . , [ (n  - i)/n, 1]}. 

Proof. Let Ik denote the interval [k/n,  (k + i)/n]. To prove the necessary condition, 

just note that if j /n  < a < ( j  + 1)In <~ (n - i)/n, then the probabil i ty of the interval 
Ij  :is larger than the probabil i ty of the interval [a, a + i/n]. The proof  of sufficiency will 
proceed by induction. It is clear that  Io is the highest-density interval corresponding 

to 0 = 0. Suppose I v_ 1 is a highest-density interval, then it suffices to prove that I i is 
also a highest-density interval. Let 

0j = max {0: I v_ x is a highest-density interval for 0}. 

We will prove that both  I v_ ~ and I v are highest-density intervals for 0 r. Suppose 
I~-1 is not  a highest-density interval for 0 r and let I be such an interval. 

Set ~ = p(I; Or) - p(I j_ 1; 0j). For  every k, there exists 3k > 0 such that 10 i - 01 < 6k 
implies 

( ~ ) 0 , ( 1 - 0 r ) "  k -- ( ~ ) o k ( 1 - -  0) " -k  < c / 3 ( n +  1). 

Let 6 = min 6k, and take 0 such that 0 < 0 r - 0 < 6/2 and such that I v i is a highest- 
density interval for 0. Then 

Ip(I i 1 ; 0 ) - p ( I j - 1 ; 0 j ) l  < g,/3 

and 

Ip(I; 0) - p(l; 0~)1 < El3. 

Therefore, p(Ij  1; O) < p(I; 0), which is a contradiction.  To prove that Ij is a highest 
density interval for 0r, let 

S = {s: Is is a highest-density interval corresponding to some 0 > Oi}. 

S is not  empty since n - i ~ S. Letting 

v = rain S, Iv~n, (v + i)/n] is a highest-density interval for 0 r. To prove this, let 0 be 

such that  0 < 0 - 0 r < 6/2, let I v be a highest-density interval for 0, and proceed as 
above. Hence, by Lemmas  1 and 2, v = j and I j is a highest-density interval for 0 r. 

Proof of Theorem 1. F r o m  Lemmas  1 and 2, and the definition of Oj,.j ~ [1 ... n - i}, 
the highest-density interval of a point  0 ~ (0j, 0r+ 1) is unique and equal to lj. At O i, 

p ( l  j_ 1) = p( l  j) which reduces to 

j -  1 i + j  O)+J(1--OJ)~-~-~ 
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Thus, 

Oj )i+ 1 _ _ _  

(1 - -  Oj ) /  

(j:l) 
n (i+j) and 

1/(i+ 1) (rj ) 
Oj -- (l -}- r)/(i+ l))" 

Let 0 e [Oj, Oj+ 1], then H(O) = •p {x: x /n  e Ij; 0}, and therefore, H(O) = Zx:j" p {x;0} 

- Z"~=~+i+xp{x;O}. On the other  hand  (see Rohatgi,  1984), 

o _ n - - 1  
H ( O ) = f o n ( f f  ; ) t J - l ( 1 - - t ) " - J - - n ( i + . j ) t ~ + ~ ( 1 - - t ) " - '  J - a d t .  

Hence 

(:)  (.+;) H'(O) = n J n OJ-l(1 -- O) n-j  -- t'l i oi+J(1 -- o)n-t--3--1 

( ~ _ _ ~ )  ( n--l ( o )i+1) 
= /I 0J-1(1 -- O) n- j  1 -- ( i+j)  

- ( Y ~ b  T 5 - O  " 

Let g(O) 1 , -  1 n -  1 n -  1 n -  1 = ( i + j ) / ( j -  1) ( 0 / ( 1  - 0)) '+ 1, t h e n  g'(O) - = ( , + j ) / ( j - 1 )  ( 0 / ( 1  0))', (i + 1) 

(1 / (1  - 0))  2 > 0 ,  s o  t h a t  g(O) i s  i n c r e a s i n g .  F u r t h e r m o r e ,  

g'j'~v) = 1 + j - - -  1 = 1 n -- i - - j  0 
n n q- 

( ~ - - ~ )  ( i + j )  - j  1 

and 

(j) 
g(Oj+l) 1 + J  = 1  i + j + l  --- - -  > 0 ,  

j - -  i + j + l  

so that  g(O) has only one zero in Ij. Hence, H(O) has a max imum in l j, therefore, in this 
interval p(O) is min imum at one of the end points 0j or  0j+ 1. [ ]  
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