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SUMMARY

Sample size estimation is a major component of the design of virtually every experiment in medicine.
Prudent use of the available prior information is a crucial element of experimental planning. Most sample
size formulae in current use employ this information only in the form of point estimates, even though it is
usually more accurately expressed as a distribution over a range of values. In this paper, we review several
Bayesian and mixed Bayesian/likelihood approaches to sample size calculations based on lengths and
coverages of posterior credible intervals. We apply these approaches to the design of an experiment to
estimate the difference between two binomial proportions, and we compare results to those derived from
standard formulae. Consideration of several criteria can contribute to selection of a final sample size.
( 1997 by John Wiley & Sons, Ltd.

1. INTRODUCTION

Consideration of the optimal number of experimental units is well recognized as an essential step
in the design of biomedical investigations. Sample sizes are usually determined either from power
calculations or from formulae based on confidence interval widths. While the forms of standard
sample size equations that arise from power and interval width considerations are similar, the
objectives differ, and often lead to substantially different sample size requirements.1—3 Since in the
recent past there have been many articles in medical journals that encourage the use of interval
estimation rather than hypothesis testing and p-values,4—6 this paper focuses on sample sizes
based on interval widths, although we provide references to related work based on power
considerations.

Currently, the most frequently used sample size formulae arise from the relationship between
the standard error of the estimator of the parameter of interest and the sample size.7—10 In almost
all cases of practical importance, the resulting formulae require as input, along with the desired
confidence coefficient and interval length, a point estimate of one or more unknown parameters
of the model. Since the formulae can be highly sensitive to the choice of inputs, careful selection of
the parameter estimates and target criteria are essential steps in determining a final sample size.
Consider the following prototypic example.
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1.1. Example 1

Deep-vein thrombosis (DVT) is a common complication of major knee surgery. Without any
prophylaxis, more than half of all patients will develop DVT. Consider the design of a random-
ized clinical trial to compare two different prophylactic drugs, warfarin and low-molecular weight
heparin. What sample size is needed to provide sufficient information to specify the true difference
in DVT rates to within a total interval width of 5 percentage points? The most common solution,
as given in all four standard references above, is to find a sample size such that the 100(1!a) per
cent confidence interval (CI) would have total width w"0·05, that is, to calculate
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where n
1

is the rate of DVT under warfarin, n
2

is the rate of DVT under low molecular weight
heparin, Z

1~a@2 is the standard normal (1!a/2) upper quantile, and n is the sample size for each
treatment group. The parameters n

1
and n

2
are of course unknown. The sample size is maximized

when n
1
"n

2
"0·5, giving n"3074 if a"0·05. This conservative estimate, however, can be

much larger than that truly required. Suppose that there are two previous studies available at the
time of planning. One study of warfarin found 3 out of 14 (n̂

1
"0·21, 95 per cent CI"(0·06, 0·51))

patients developed DVT11 while another study found that 11 out of 65 (n̂
2
"0·17, 95 per cent

CI"(0·09, 0·29)) patients given low molecular weight heparin developed DVT.12 Using these
point estimates in (1) gives n"1899. This sample size, however, can differ substantially from that
calculated using other reasonable values, such as the upper or lower 95 per cent CI limits, which
suggest n"2801 and n"850, respectively. Choosing n"2801 appears conservative, but may be
wasteful of resources if the true rates are closer to the point estimates. Selecting n"1899 appears
risky, however, since the confidence intervals around the point estimates are wide. A compromise
may be desirable, but the criterion for the choice of the final n remains unclear.

One reason for this uncertainty is that formulae such as (1) require point estimates of n
1
and n

2
,

while a better summary of the available information is a distribution over a range of values.
Furthermore, regardless of the choice of n or the true values of n

1
and n

2
, the lengths of intervals

reported at the end of a trial depend on the data collected, which is of course unknown at the
planning stage. This paper reviews a Bayesian approach to sample size determination,
which makes full use of the available prior information. The prior distribution leads to a
predictive (marginal) distribution for the data that includes the dependence of the final inferences
on both the unknown parameter values and sampling variation. One can then define various
sample size criteria in terms of the average coverage probability or the average length of intervals
of posterior credible sets over all possible data sets, weighted by the predictive distribution.
These criteria clearly expose the compromises and risks related to choice of particular sample
sizes.

Several authors have recognized the utility of using prior distributions rather than point
estimates in sample size calculations. Early work included that of Dudewicz,13 who calculated
confidence intervals for power for the Normal density. Goldstein14 considered estimating the
mean of an arbitrary distribution, suggesting a Bayesian criterion based on the expected change
in the point estimate for the mean over future sample values. Gould15 considered both frequentist
confidence densities based on previous data as well as Bayesian prior densities in examining the
relationship between power and sample size. In the presence of uncertain parameter values,
sample sizes having specified power with high probability as well as expected power for a given
sample size were calculated. Berger16 discussed a decision theoretic approach to finding the
optimal sample size for both fixed and sequential sampling. Although this approach may be
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theoretically attractive, it adds another layer of complexity and it is often the case that different
interested parties (patients, physicians, pharmaceutical companies) have very different loss func-
tions, impeding its use in practice. Here we consider loss functions only implicitly, in balancing
the precision of the estimate versus the costs implied by a larger sample. Spiegelhalter and
Freedman17 proposed a predictive approach based on power considerations, while Yateman and
Skene18 suggest simulating a large number of possible data sets to determine sample sizes for
complex survival studies.

Adcock19,20 and Pham-Gia and Turkkan21 considered Bayesian sample size determination for
multinomial, normal and single binomial experiments, respectively. Adcock22 reviewed these and
suggested criteria based on the average coverage of tolerance intervals from normal approxima-
tions to the true posterior densities19,20 or average posterior variances.21 Joseph et al.23
proposed the use of highest posterior density (HPD) intervals from the exact posterior distribu-
tions in the context of estimating sample sizes for a single binomial parameter. HPD intervals are
optimal in the sense that they lead to the smallest sample sizes for any given coverage. Gould24

has investigated sample sizes for differences in binomial proportions from a Bayesian viewpoint
for equivalence trials.

In the next section we review several Bayesian criteria for sample size selection and apply
them to the case of the difference between two binomial proportions in Section 3. The
methods discussed here apply to any medical experiment where it is desirable to report results
in terms of credible intervals for the difference between two binomial proportions. This
includes both equivalence and comparative clinical trials as well as many other types
of experiments, although we do not consider specific issues for any one type in detail here.
We also discuss mixed Bayesian/likelihood approaches that use the prior distribution to
derive the predictive distribution of the data but assume that one uses only the likelihood
for inference. These are intended to satisfy investigators who recognize that prior information
is important for planning purposes, but prefer to base final inferences only on the data.
For example, confidence intervals that do not utilize prior information are most often reported
in the medical literature, so that one could use the methods to derive sample sizes that
ensure sufficiently narrow CI widths. Section 4 provides examples, and the final section
contains further discussion. We defer the practical implementation of the criteria to the
Appendix.

Throughout this paper, we use f ( · ) to denote generically a probability density or probability
function, and f ( · D · ) to denote a conditional density or probability function. The random variables
to which these distributions refer are clear from their arguments and the context in which they
appear.

2. BAYESIAN CRITERIA FOR SAMPLE SIZE DETERMINATION

Let h denote the parameter under study, # the parameter space for h, and f (h) the prior
distribution of h. We assume that the experiment under consideration provides data
x"(x

1
, x

2
,2 ,x

n
), where n is the sample size, and the components of x are exchangeable and

belong to the data space X.
The predictive distribution of x, also known as the pre-posterior marginal distribution of the

data, is

f (x)"P# f (x D h) f (h) dh (2)
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and the posterior distribution of h given x is

f (h Dx)"
f (x D h) f (h)

P# f (x D h) f (h) dh
(3)

where f (x D h) is the likelihood of the data x. If f (h) is a (possibly improper) uniform density over #,
then (3) is the normalized likelihood. In the criteria that follow, one can either let f (h) represent
the true prior information in both (2) and (3), that is, a fully Bayesian (FB) approach, or let f (h) be
the true prior information in (2) but substitute a uniform density for f (h) in (3), which we call the
mixed Bayesian/likelihood (MBL) approach.

Typically, we wish a highest posterior density (HPD) or other posterior credible interval of
length l that covers h with probability (1!a). The posterior distribution of h, however, depends
on the data x, which is of course unknown at the planning stages of the experiment. We can
eliminate this uncertainty by several different methods, leading to the criteria listed in the
following sections.

2.1. Average Coverage Criterion (ACC)

We can allow the coverage probability 1!a to vary with x, while holding the HPD interval
length, l, fixed. This leads to sample size defined by the minimum n satisfying

PXGP
a (x,n)#l

a(x , n)

f (h Dx) dhH f (x) dx*1!a (4)

where f (x) is given by (2), f (h Dx) is given by (3), and a (x, n) is the lower limit of the HPD interval of
length l for the posterior density f (h Dx), which in general depends on both x and n. We can regard
the left hand side of equation (4) as an average of posterior coverage probabilities of fixed length l,
weighted by the predictive distribution f (x).

2.2. Average Length Criterion (ALC)

Conversely, we can fix the coverage probability, and allow the HPD interval length to vary
depending on the data. In this case, for each x inX we must first find the HPD length l @(x, n) such
that

P
a (x, n)#l@(x, n)

a(x , n )

f (h Dx) dh"1!a (5)

and the sample size is the minimum integer n that satisfies

PX l @ (x, n) f (x) dx)l (6)

where l is the prespecified average length. The left hand side of equation (6) averages the lengths of
fixed coverage HPD intervals, weighted by the predictive distribution f (x). The ACC and the
ALC often lead to substantially different sample sizes.

2.3. Worst Outcome Criterion (WOC)

The ACC and ALC are based on averages over all samples, but since inferences are conditional
on the observed sample, they lead to larger than desirable coverages and lengths for some
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samples. A conservative approach is to ensure a maximum length of l and a minimum coverage
probability of (1!a), regardless of the data x that occur. Hence, l and (1!a) are both fixed in
advance, and we choose the minimum n such that

inf
x3XGP

a(x, n)#l

a(x , n)

f (hDx) dhH*1!a. (7)

A slight modification of the WOC, which we refer to as the MWOC, is to take the infimum in (7)
over a subset,S, ofX. For example, we might choose the setS to be the 99 per cent HPD region
according to the predictive distribution (2). Here we ensure a maximum length l with a minimum
coverage (1!a) for 99 per cent of all data sets x most likely to occur according to the prior
information. Thus we can avoid the situation of having to select an unnecessarily large sample
size to guard against highly improbable data. See example 2 of Section 4 for an illustration of this
phenomenon.

3. BAYESIAN SAMPLE SIZES FOR THE DIFFERENCE BETWEEN TWO BINOMIAL
PROPORTIONS

As an application of the criteria given in Section 2, let n
1
and n

2
denote two independent binomial

parameters. Suppose that f (n
1
, n

2
) is the prior distribution that summarizes the pre-experimental

information about n
1

and n
2
. This can be derived from past data, expert knowledge, or

a combination of both. Proposed techniques have included directly matching percentiles25 or
means and standard deviations26,27 to a member of a predetermined family of distributions,
methods based on mean deviations,28 as well as methods that directly use the predictive
distribution of the data.29 Prior specifications in clinical trials have been discussed by Spiegelhal-
ter et al.30 and Hughes.31 Below, we consider both independent and dependent prior distribu-
tions for n

1
and n

2
. The former arise naturally if there are data from past studies or pilot data for

each arm of the study, although even in that situation, it is reasonable to consider that knowledge
of n

1
may influence opinions about likely values of n

2
. Therefore, it is often desirable to allow

dependence between n
1
and n

2
. For example, if n

1
represents a baseline rate for the control group,

it may be more natural to specify a joint prior distribution for n
1
and the difference n

2
—n

1
, that is,

to specify f (n
1
, n

2
!n

1
)"f (n

1
) f (n

2
!n

1
D n

1
). When the sample size is large relative to the prior

information, the posterior distribution will be predominantly determined by the likelihood
function. In this case, the phenomenon of ‘stable estimation’16 or robustness32,33 of the posterior
distribution to the specification of the prior distribution may mean that the sample sizes are also
robust to such changes, so whether one utilizes independent or dependent prior distributions may
be less important.

Let x
1

and x
2

be the total number of ‘successes’ out of n
1

and n
2

trials from independent
binomial experiments with parameters n

1
and n

2
, respectively. The posterior distribution of

(n
1
, n

2
) is then

f (n
1
, n

2
Dx

1
, x

2
, n

1
, n

2
)"k f (n

1
, n

2
)

2
<
i/1

nx
i

i
(1!n

i
)n

i
!x

i (8)

where k is a normalizing constant. In general, the specific form of the posterior distribution (8) will
depend on the prior distribution. If we can represent the prior information on n

1
and n

2
by

independent beta distributions with parameters (c
1
, d

1
) and (c

2
, d

2
), respectively, then we can
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write (8) as
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For notational simplicity, we suppress the dependence of p (x
1
, x

2
) on n

1
, n

2
and the prior

parameters. While we cannot represent all prior distributions by a beta distribution, it is a very
flexible family34 for distributions with support on the interval [0, 1], and has the advantage of
being the conjugate family for binomial likelihoods. Here interest focuses on the difference
between n

1
and n

2
which we can introduce through the change of variable transformation

h"n
1
!n

2
, and n

1
"n

1
and which has unit Jacobean. The joint posterior distribution for

(n
1
, h) is
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which is non-zero over the region in the plane bounded by the lines n
1
"0, n

1
"1, n

1
"h and

n
1
"h#1. It follows that the marginal posterior distribution of h is

f (h Dx
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, x
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We can solve this integral analytically, the integrand (11) being a polynomial in n
1
. In practice

this can be cumbersome, since the polynomial can be of very high degree. Here we approximated
the posterior distribution (12) by the closest fitting beta density on the interval [!1, 1]. One
could also use other more numerical techniques such as Gaussian quadrature.

We now apply the criteria of Section 2 to find sample sizes for h. The sample spaceX is discrete,
taking values in the set (0, 1,2 , n

1
)](0, 1,2 , n

2
). Henceforth we set n

1
"n

2
"n, that is, we

assume equal sample sizes from each distribution. Extension to unequal sample sizes, such as
allowing n

1
to be a fixed multiple of n

2
, is straightforward. One could also consider finding the

minimum sum n
1
#n

2
that satisfies one of the criteria, which may be worthwhile, for example,

when there is substantially more prior information on n
1

than on n
2
.

3.1. ACC

When h is the difference between two binomial parameters, we can specify ACC as the minimum
n satisfying

n
+

x
1
"0

n
+

x
2
"0

PrMh3(a(x
1
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2
), a(x

1
,x

2
)#l)Np(x

1
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1
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1
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, n) dh
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f (hDx
1
,x

2
, n) being given by (12), a (x

1
, x

2
) is the lower limit of the HPD interval given x

1
, x

2
, and

n, l is the HPD interval length provided by the investigator, and p (x
1
, x

2
) is given by (10). We

suppress the dependence of a(x
1
, x

2
) on n to ease the notation.

3.2. ALC

According to (6), we seek the minimum n satisfying

n
+

x
1
"0

n
+

x
2
"0

l@ (x
1
, x

2
) p(x

1
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))l (14)

where p (x
1
, x

2
) is given by (10). We find the lengths l@(x

1
, x

2
) that correspond to the HPD

intervals for each (x
1
, x

2
) pair by solving
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where f (h Dx
1
, x

2
, n) is given by (12), and a (x

1
, x

2
) and a (x

1
,x

2
)#l @ (x

1
,x

2
) are the lower and

upper HPD limits of this distribution, respectively. Again, for notational purposes, we have
suppressed the dependence of l @ on n.

3.3. WOC

For a given interval length l and coverage probability 1!a, we define criterion WOC by the
minimum n satisfying

P
a (x*

1
,x*

2
)#l

a(x*
1
,x*

2
)

f (h Dx*
1
,x*

2
, n) dh*(1!a) (16)

where a( · , · ) is defined as above, and we define x*
1
, x*

2
as the numbers of successes that maximize

the length of the HPD interval, x*
1
, x*

2
3[0, 1,2 , n]. We conjecture that
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(17)

for i"1, 2. This conjecture states that we maximize the length of the HPD interval for h when the
posterior beta parameters for each of n

1
and n

2
are as close as the sample size will allow.

Although it appears difficult to prove analytically, this result is intuitively reasonable, since this
choice of parameters maximizes the variance of each beta distribution over the set of all possible
choices. Further, we verified x* via exhaustive simulations for all n)1000, and it is also true
asymptotically as nPR, since for a normal distribution, maximum variance implies minimum
HPD coverage probability.

4. EXAMPLES

We now illustrate the criteria of Section 3 with three examples. In each case, the value given for
the ACC or ALC is the average of 10 repetitions of the Monte Carlo procedure described in the
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Table I. Sample sizes for example 1, using fully Bayesian, mixed Bayesian/likelihood, and standard
frequentist criteria

ACC ALC MWOC(95) MWOC(99) WOC

Full Bayes 1799 1763 2582 2687 3033
Mixed Bayes/likelihood 1840 1794 2625 2731 3070

Frequentist 1899 2825 2903 3074

Appendix. Monte Carlo methods are not needed for the WOC or MWOC. We calculated the
frequentist sample sizes using (1), where to correspond to the ACC or ALC, we substituted means
of the marginal prior densities for n

1
and n

2
, while we substituted 0·5 to correspond to the WOC.

To correspond to the MWOC sample sizes, we used the exact binomial method34 to calculate
joint 95 per cent or 99 per cent confidence sets for (n

1
, n

2
) from the prior information, and we used

the values in each set closest to 0·5.

4.1. Example 1 (Revisited)

The results cited in Section 1 suggest beta prior distributions with parameters c
1
"3 and d

1
"11

for the probability of DVT for warfarin patients, and c
2
"11 and d

2
"54 for the low molecular

weight heparin group. Table I summarizes the sample sizes for 1!a"0·95 and l"0·05 as well
as their closest corresponding frequentist estimates. The FB WOC sample size is only slightly less
than the corresponding frequentist sample size, and in general, the difference should be close to
0·5(c

1
#d

1
#c

2
#d

2
). The MBL WOC sample size is very close to the corresponding frequentist

sample size, as expected. All other comparisons reveal lower sample sizes from the FB and MBL
approaches. The frequentist estimate of 1899 is 5·5 per cent to 7·7 per cent higher than the
corresponding FB sample sizes from ACC or ALC, respectively, and is 3·2 per cent to 5·8 per cent
higher than the MBL sample sizes. The frequentist estimate using values from the 95 per cent
upper confidence limits is 8·5 per cent higher than that suggested by the FB MWOC(95), and is
even higher than the MBL MWOC(99) size. In trials with high per subject costs, even a small
percentage reduction in sample size can lead to substantial savings.

We can now base the ultimate sample size selected on the above information. When it is crucial
that the total width of the posterior interval not exceed 5 percentage points, a sample size in the
area of 2600 or 2700 should suffice. Otherwise, we may choose a sample size in the range 1750 to
1850, knowing that slightly higher or lower than the average length may result, depending on the
data.

In the above example, we considered total interval widths of 5 percentage points. In general, the
desired width depends on the prior information about treatment differences and the clinical range
of equivalence. The latter may be a function of treatment costs, side-effects, and other consider-
ations. If we anticipate a large difference or it becomes apparent in an interim analysis, it may be
unethical to continue sampling simply to obtain a narrow interval. Data monitoring committees,
therefore, should have the ability to modify the sample size requirements if necessary.

4.2. Example 2 (Rare Events)

Consider a clinical trial planned to study the rates of myocardial infraction (MI) for patients with
acute unstable angina pectoris following two different study regimens. A previous study35 showed
that both aspirin and an aspirin and heparin combination had lower MI rates compared to
placebo, with rates of 4/121, 2/122 and 14/118 events per total number of patients in each group,
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Table II. Sample sizes for example 2, using fully Bayesian, mixed Bayesian/likelihood, and stan-
dard frequentist criteria

ACC ALC MWOC(95) MWOC(99) WOC

Fully weighted prior distributions
Full Bayes 726 674 1437 1608 8414
Mixed Bayes/likelihood 884 823 1630 1807 8534

Frequentist 822 2438 2902 8537

Down-weighted prior distributions
Full Bayes 806 702 1810 2049 8475
Mixed Bayes/likelihood 896 793 1914 2154 8534

Frequentist 822 3456 4171 8537

respectively. The confidence interval for the difference in rates between the aspirin and aspirin and
heparin regimens, however, ranges from !3 to 6 percentage points. Using the above prior
information, what sample size do we need so that the 95 per cent HPD interval for the difference
in rates between aspirin and aspirin with heparin has a total length of 3 percentage points? We
can summarize the prior information as c

1
"4, d

1
"117, c

2
"2 and d

2
"120. Often, we need to

downweight these prior distributions, to reflect design, population, or other differences between
previous trials and the one planned.32 Therefore, Table II presents sample size requirements for
both fully weighted and down-weighted (each beta prior parameter set to half its former value)
prior distributions. Weights other than one-half could also be considered. The MWOC values are
less than one-quarter those given by the WOC, indicating that the worst possible outcome is
highly unlikely to occur. Here the differences between Bayesian and frequentist sample sizes are
more pronounced. For example, the 99 per cent frequentist estimate is 61 per cent higher than the
MBL MWOC(99) sample size. Notice that the ACC and ALC adjust to the changing prior
information, whereas the frequentist equivalent is fixed. We can see differences of over 90 per cent
between the two approaches in the case of down-weighted prior information. The Bayesian
approaches suggest that 2000 subjects is quite conservative, and one could consider sizes as low as
700, depending on the risk one is willing to take.

It can be observed for this example that while the FB sizes are uniformly lower, the MBL
estimates from the ACC and ALC hover around the frequentist sample size suggested by using
point estimates from the prior data. One should use caution, however, in employing the mixed
Bayesian/likelihood estimates, as ‘paradoxes’ can arise. For example, if c

1
"d

1
"c

2
"d

2
"10,

l"0·05 and a"0·05, then the FB ACC sample size equals 2910, while the MBL ACC size equals
2926. If, however, more prior information becomes available such that c

1
"d

1
"c

2
"d

2
"1000,

the FB ACC size reduces to 1072 while the MBL ACC size increases to 3068. Of course, this
‘paradox’ is explained by the convergence of the prior distributions around the ‘worst case’ values
n
1
"n

2
"0·5, but this example illustrates the inefficiencies related to one’s ignoring prior

information in final inferences. The problem is especially important when the prior information
forms a substantial part of the total available information.

4.3. Example 3 (Dependent Prior Distributions)

As discussed in Section 3, when the sample sizes are large compared to the information in the
prior distribution, or when the prior distribution covers only a narrow portion of the possible
range for both n

1
and n

2
, over which the sample size requirements may not substantially vary,
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Table III. Sample sizes for example 3 from dependent and independent prior distributions, using
fully Bayesian, mixed Bayesian/likelihood, and standard frequentist criteria

ACC ALC MWOC(95) MWOC(99) WOC

Dependent prior distributions
Full Bayes 53 24 145 171 175
Mixed Bayes/likelihood 64 39 153 179 184

Independent prior distributions
Full Bayes 59 44 164 176 187
Mixed Bayes/likelihood 67 55 168 180 189

Frequentist 70 193 193 193

the form of the prior distribution should not greatly affect the sample sizes. For small or moderate
sample sizes, however, there may be some differences. The following example examines this issue
by calculating sample sizes from a dependent prior distribution, and compares these to sample
sizes obtained from an independent prior distribution whose marginal means and variances for
n
1

and n
2

match those of the dependent prior distribution.
Consider the situation where we expect a control group rate to be about 10 per cent, but it

could perhaps be lower or it could be as high as 30 per cent. We expect the rate in the treatment
group to be similar to the control group rate, although this is not known with great certainty.
Reasonable prior distributions may then be n

1
&beta(0·6, 5·4) and n

2
D n

1
&beta(6n

1
, 6(1!n

1
)).

The correlation between n
1

and n
2

is 0·74. The sample sizes that correspond to this prior
information and that satisfy the various criteria with 1!a"0·95 and l"0·2 appear in Table III.
For comparison purposes, the sample sizes starting from the matching independent prior
distribution with n

1
&beta(0·6, 5·4) and n

2
&beta(0·2769, 2·492) also appear in Table III. Chang-

ing from dependent to independent prior distributions can lead to different sample size require-
ments, as seen here for the ACC and especially the ALC values. These differences are due in part
to changes in the predictive distribution for (x

1
,x

2
), but also since there is additional prior

information about n
2

when it is correlated to n
1
. The MWOC sizes show less variation, since the

prior information in both cases cover wide ranges, so that outcomes leading to large HPD
intervals can occur. One can use other functions of n

1
for the beta coefficients of the conditional

density of n
2
D n

1
when it is likely that n

1
'n

2
or n

1
(n

2
.

5. DISCUSSION

A common problem encountered in the use of standard sample size formulae is their sensitivity to
the values selected for unknown parameters. There is almost always at least some amount of prior
information about the unknown parameters, but rarely to the degree that one can give a reliable
point estimate. Therefore, in specifying a probability distribution over a range of values, the FB
and MBL approaches allow for a more satisfactory formulation of the problem. As is evident
from the examples provided in Section 4, the Bayesian estimates often suggest smaller sample
sizes than the corresponding frequentist estimates. This is largely due to the efficient use of prior
information provided by the Bayesian approach. The sample sizes discussed here may also be
adequate if one will ultimately employ a multivariate analysis (for example, logistic regression) for
inference.36

The choice between the ACC and the ALC appears somewhat arbitrary, even though the
sample sizes differ substantially. One may consider the ALC more conventional, since fixed
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coverage (usually 95 per cent) intervals are most often reported, regardless of length. Whether to
use criteria that average over the predictive distribution of the data or to consider the worst
possible outcome depends in part on the degree of risk one is willing to take. In enumerating this
risk, it is useful to calculate the MWOC sample sizes for a range of subsets of the sample space. It
is also important to realize that criteria based on averages will only attain their target values
approximately half of the time. Consideration of all of the criteria can lead to a more informed
choice.

The MWOC considers the set of most likely experimental outcomes, regardless of the asso-
ciated interval coverages or lengths. It is also possible to base cut-offs directly on these coverages
or lengths. For example, one can select a sample size such that the coverage will be greater or
equal to that desired (for a specified fixed length) with sufficiently high probability. Conversely,
one can consider fixed coverages, and ensure a maximum length with high probability. Such
criteria differ from the MWOC when, for example, a given coverage can occur in both common
and less common outcomes in the sample space X. A sufficient condition for such criteria to
coincide with the MWOC is that the relationship between the probability of the outcomes is
monotone with respect to the lengths, for example, when more common outcomes are associated
with longer lengths. Otherwise, the MWOC is more conservative than the above criteria.

The general Bayesian sample size criteria presented in Section 2 applies to virtually any sample
size problem. While this paper focused on treatment differences, one could use other outcome
summaries such as relative risks or odds ratios. One must, however, exercise caution in
the interpretation of average ratios. This is especially true for rare events, which can lead to very
large ratios for some elements in the sample space. The Monte Carlo approach described in the
Appendix should make calculations feasible in cases where posterior distributions are difficult to
calculate exactly. Further work is required to investigate whether the criteria are useful and
worthwhile for more complex (for example, multivariate) problems.

APPENDIX

The sample size criteria given in Section 2 in general do not have closed form solutions, as is the
case for the standard formula (1). Therefore, one must carry out a numerical search for the correct
sample size. One way to formalize the process is to employ a bisectional search strategy, which
stops when the relevant criterion is satisfied for n but not for n!1. For each possible value of n,
one evaluates the relevant criteria, and chooses the next candidate depending on the result of the
previous candidate. Below we briefly outline a generally applicable Monte Carlo algorithm for
implementing the criteria described in Section 2.

Denote the parameter of interest (for example, treatment difference or risk ratio) by h, and let
x3X be the data vector of length n. We can write the ACC as

PXGPR (x)

f (h Dx) dhH f (x) dx*1!a (18)

where R(x) represents a region of length l, and f (x) is the predictive distribution. The algorithm
proceeds by drawing a random sample of size M from f (x), and calculating the inner integral for
each of the M sampled data points. The average of these M integrals then approximates the left
hand side of the ACC for the chosen value of n.

Similarly, we could use the minimum or relevant quantile of the set of integral values in
determining whether we satisfy the WOC or MWOC. We can devise analogous Monte Carlo
algorithms for the ALC. To ensure sufficiently small Monte Carlo error, we can run the
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simulations several times, and calculate the variance of the computed sample sizes. For the
examples in Section 4, we averaged ten repetitions with M"1000 to form the final sample size
estimate. This number of repetitions usually brought the Monte Carlo error to below 0·5 percent
of the final sample size, and often much below. For the application to differences between
binomial parameters, exact use of equation (17) and the predictive distribution (10) precludes
Monte Carlo methods for the WOC and MWOC.

One might use several methods, including exact analytic computation, Gaussian quadrature,37
normal or other approximations, sampling importance resampling (SIR),38 or even the Gibbs
sampler39 to calculate the required integral for each sampled point. To obtain the results in
Section 4, we used a beta approximation to the distribution of the difference of two proportions
suggested by Springer.40 For the ALC, we approximated the interval lengths using the method of
Tanner.41 To calculate the sample sizes when the prior information is such that n

1
and n

2
are

correlated, we obtained a random sample from the posterior density using the SIR algorithm, and
we obtained approximate HPD lengths and coverage probabilities from the sorted sample. We
used values of x

1
and x

2
that provided the maximum marginal variances to calculate the WOC

sample sizes.
Programs written in S-plus for all criteria (including the case of unequal n

1
and n

2
) discussed in

this paper are available from the authors, or send the e-mail message ‘send samplesize-prop’ to
statlib@lib.stat.cmu.edu to receive the software by e-mail.
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( 1997 by John Wiley & Sons, Ltd. STAT. MED., VOL. 16, 769—781 (1997)



double-blind trial comparing a low molecular weight heparin fragment (enoxaparin) to placebo’,
¹hrombosis and Haemostasis, 67, 417—423 (1991).

13. Dudewicz, E. J. ‘Confidence intervals for power with special reference to medical trials’, Australian
Journal of Statistics, 14, 211—216 (1972).

14. Goldstein, M. ‘A Bayesian criterion for sample size’, Annals of Statistics, 9, 670—672 (1981).
15. Gould, A. L. ‘Sample sizes required for binomial trials when the true response rates are estimated’,

Journal of Statistical Planning and Inference, 8, 51—58 (1983).
16. Berger, J. O. Statistical Decision ¹heory and Bayesian Analysis, Springer-Verlag, New York, 1985.
17. Spiegelhalter, D. J. and Freedman, L. S. ‘A predictive approach to selecting the size of a clinical trial,

based on subjective clinical opinion’, Statistics in Medicine, 5, 1—13 (1986).
18. Yateman, N. A. and Skene A. M. ‘The use of simulation in the design of two cardiovascular survival

studies’, Statistics in Medicine, 12, 1365—1372 (1993).
19. Adcock, C. J. ‘A Bayesian approach to calculating sample sizes for multinomial sampling’, Statistician,

36, 155—159 (1987).
20. Adcock, C. J. ‘A Bayesian approach to calculating sample sizes’, Statistician, 37, 433—439 (1988).
21. Pham-Gia, T. G. and Turkkan, N. ‘Sample size determination in Bayesian analysis’, Statistician, 41,

389—397 (1992).
22. Adcock, C. J. ‘Bayesian approaches to the determination of sample sizes for binomial and multinomial

sampling — some comments on the paper by Pham-Gia and Turkkan’, Statistician, 41, 399—401 (1992).
23. Joseph, L., Wolfson, D., and Du Berger, R. ‘Sample size calculations for binomial proportions via

highest posterior density intervals’, Statistician, 44, 143—154 (1995).
24. Gould, A. L. ‘Sample sizes for event rate equivalence trials using prior information’, Statistics in

Medicine, 12, 2009—2023 (1993).
25. Press, S. J. Bayesian Statistics: Principles, Models and Applications, Wiley, New York, 1989.
26. Bunn, D. W. ‘The estimation of a Dirichlet prior density’, Omega, 6, (4), 371—373 (1978).
27. Lee, P. M. Bayesian Statistics: an Introduction, 3rd edn, Halsted Press, New York, 1992.
28. Pham-Gia, T. G., Turkkan, N., and Duong, Q. P. ‘Using the mean deviation in the elicitation of the prior

distribution’, Statistics and Probability ¸etters, 13, 373—381 (1992).
29. Chaloner, K. M. and Duncan, G. T. ‘Assessment of a beta prior distribution: PM elicitation’, Statistician,

32, 174—180 (1989).
30. Spiegelhalter, D. J., Freedman, L. S. and Parmer, M. K. B. ‘Bayesian approaches to randomized trials’,

Journal of the Royal Statistical Society, Series A, 157, 357—416 (1994).
31. Hughes, M. D. ‘Reporting Bayesian analyses of clinical trials’, Statistics in Medicine, 12, 1561—1563

(1993).
32. Greenhouse, J. B. and Wasserman, L. ‘Robust Bayesian methods for monitoring clinical trials’, Statistics

in Medicine, 14, 1379—1391 (1995).
33. Kass, R. E. and Greenhouse, J. B. ‘Comment: A Bayesian perspective’, Statistical Science, 4, 310—317

(1989).
34. Johnson, N. and Kotz, S. Continuous ºnivariate Distributions-2, chapter 24, Wiley, New York, 1970.
35. Theroux, P., Ouimet, H., McCans, J., Latour, J-G., Joly, P., Lévy, G., Pelletier, E., Juneau, M., Stasiak, J.,
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