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Hospital, Montréal, Québec H3T IE2

Key words and phrases: Bayesian optimal design; changepoint problems; design measure; estimation;
testing.

MSC 2000: Primary 62K05; secondary 62C10.

Abstract: We investigateBayesian optimal designs for changepoint problems.Wefind robust optimal designs
which allow for arbitrary distributions before and after the change, arbitrary prior densities on the parameters
before and after the change, and any log-concave prior density on the changepoint. We define a new design
measure for Bayesian optimal design problems as a means of finding the optimal design. Our results apply to
any design criterion function concave in the design measure. We illustrate our results by finding the optimal
design in a problem motivated by a previous clinical trial. The Canadian Journal of Statistics 37: 495–
513; 2009 © 2009 Statistical Society of Canada

Résumé: Nous considérons les plans d’expérience bayésiens optimauxpour les problèmes depoint de rupture.
Nous obtenons un plan d’expérience robuste sous des lois arbitraires avant et aprés le point de rupture ainsi
que pour toute loi a priori du point de rupture dont la densité est log-concave. Nous définissons une nouvelle
mesure sur l’espace des plans d’expérience bayésiens nous permettant d’y déterminer le plan d’expérience
optimal. Nos résultats s’appliquent à toute fonction critère qui soit concave sur le domaine de la mesure
des plans d’expérience. Nous illustrons nos résultats en déterminant le plan d’expérience optimal pour un
problème suggéré par une étude clinique déjà complétée. La revue canadienne de statistique 37: 495–
513; 2009 © 2009 Société statistique du Canada

1. INTRODUCTION

Suppose that a sequence of observations (possibly multivariate) is taken on some interval [0, T]
of the real axis. Let the distribution of this sequence be parametrically defined and suppose that
the distribution changes at some point, called a changepoint, to a second distribution for the
remaining observations. If the change occurs at T then by convention no change is said to occur.
There is a large literature on inference for data arising in such fixed sample size changepoint
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settings (see, e.g., Chen & Gupta, 2000). What renders changepoint problems challenging is that
the changepoint is unknown.

The literature on changepoint problems appears to be exclusively devoted to data that have
already been collected, so that to our knowledge this paper discusses optimal designs for change-
point problems for the first time. We concentrate on solving the so-called single-path design
problem, as stage 1 in a two-stage program, where main ideas are developed through a single-
path and then extended at stage 2 to a multi-path setting. Multi-path optimal designs may be used
in the planning of clinical trials, for example, in which data are to be collected on a group of
subjects, each providing their own path with their own changepoint. In the simpler scenario, in
which the paths of all subjects have roughly the same changepoint, the optimal designs presented
here may be used with no modification.

Most often, fixed sample size changepoint inference has been done retrospectively on data
collected at regular spacings throughout an interval (of time or space). Further, an assumption is
usually made that the point of change, τ, can only occur at one of the observations where data
have been collected. These assumptions deserve some discussion.

In considering optimal designs, where data are still to be collected, in principle there may be
no reason to restrict observations to be at regular intervals. Nevertheless, there are two reasons
for imposing certain restrictions on the sampling scheme. With no restriction, for the problems
that we discuss, the optimal designs will place multiple observations on the same subject at the
same instant; such designs are clearly impossible to implement. Indeed practical considerations
will almost always demand that observations be taken at least d > 0 units apart. Further, if
d is sufficiently large, then it may be justifiable to assume that within-path observations are
conditionally independent, thus leading to much simpler models. We comment further on this in
Section 2.1 and in our concluding remarks. We therefore constrain our sampling points to be least
d units apart.

The common changepoint assumption that a change can occur only at one of the observation
points, is clearly restrictive and does not make sense from an optimal design point of view since
the possible changepoint locations of the model would change as one optimized over the design
space. In deriving our optimal designs we allow the change to occur anywhere in the sampling
interval. Our purpose in this paper is to present optimal sampling schemes for a single-path of
observations that could undergo a change in some interval [0, T]. Without loss of generality we
may regard [0, T] as representing a time interval.

Formally,

(i) We shall assume that a covariance stationary stochastic process {y(t), t ∈ [0,T]}, undergoes
a change in its parameter at some unknown time point τ ∈ [0,T]. This assumption includes
the scenario in which there is no change in the process on the interval; by convention this
occurs when the changepoint, τ = T .

(ii) We shall assume that for all observation points, t1 and t2, conditional on the process param-
eters, and τ, the observations y(t1) and y(t2) are independent.

(iii) We shall assume that for all observation points, ti < tj , tj − ti ≥ d, for some pre-specified d.

Bischoff (1989) and Bischoff &Miller (2000), find asymptotic optimal designs in a frequentist
regression setting when testing for a change at a known location. The complexity in the biphasic
regression problem that results from an unknown changepoint is considerable and optimal design
in such a setting remains an open problem. In this paper we trade the greater generality of the
biphasic regression model with a known changepoint for a simpler model with an unknown
changepoint. We take a Bayesian approach which, conveniently, allows us to introduce a design
measure (see Section 2) as both a natural consequence of this paradigm and as a mathematical
device.
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Often Bayesian design criterion functions are described in terms of their analogous frequentist
criterion functions, as reviewed by Chaloner & Verdinelli (1995). DasGupta (1996) and Clyde
(2001) also provide comprehensive reviews of Bayesian optimal design.

Our design criterion functions are based on Bayesian decision theory. Specifically, we use a
Bayes risk based on a generalized 0–1 loss (see Felsenstein, 1990; Blackmore &Williams, 2005)
as well as the Spezzaferri criterion (see Spezzaferri, 1988) to find designs optimal for testing for
a change, and a Bayes risk based on squared error loss, to find designs optimal for estimating
the parameters before and after τ. As discussed in Clyde & Chaloner (1996), these criterion
functions can be combined. Both Chaloner & Verdinelli (1995) and DasGupta (1996) discuss
optimal designs that are robust. Here, our designs are robust in the sense that: (i) they apply to
any distribution of the data, (ii) they apply to any prior distribution for the parameters before and
after the change, and (iii) they apply to all log-concave prior densities for the changepoint.

We introduce a novel design measure, π, constructed by combining a prior density with the
design. Our design measure is the lynchpin of our discussion.

In Section 2, we present a motivating example, which will thread its way through the rest of
the paper. In Section 3, we present the single-path changepoint problem formally. In Section 4,
we define the design space Xn, the design measure π, and the mapping G from the design space
to the space of design measuresG(Xn). We discuss the shape of the design measure spaceG(Xn)
in Section 5.

In Section 6, we find optimal designs for design criterion functions concave in the design
measure π. In Section 7, we prove that certain standard design criterion functions for testing and
estimation are concave in π, thus enabling us to invoke the results of Section 6 to derive optimal
designs. Section 8 contains some concluding remarks. Many of the technical details appear in the
Appendix and the listed technical reports Atherton &Wolfson (2009), Atherton, Charbonneau &
Wolfson (2009), and Atherton (2009b).

2. BLOOD PRESSURE STUDY

In this section we present an illustrative example which we shall refer to repeatedly throughout
the remainder of the paper.

Example 1. Lyle et al. (1987) present the results of a study to investigate the potential of a dietary
supplement of calcium to lower blood pressure. Four weekly baseline blood pressure readings
were recorded for each of the 75 subjects in the trial. Thirty-sevenwere then given a diet containing
the calcium supplement and 38 a placebo. All were followed for a further 12 weeks. After the
4th week of the trial blood pressure readings were bi-weekly. Each blood pressure observation
resulted in four readings: supine systolic, seated systolic, supine diastolic, and seated diastolic.
Joseph et al. (1996) re-analyzed the data from Lyle et al. (1987), using a multi-path changepoint

model. The main motivations for doing so were (1) to account for the unknown delay in the
dietary effect and (2) this delay would be likely be different for each subject on the diet. In fact, a
fraction of people might not respond at all. For example, for supine systolic blood pressure it was
estimated that approximately 30% of subjects receiving calcium experienced a change at the 12th
week (i.e., 8 weeks after starting supplement) and 40% had no change during the study period.

The above example suggests that sharper inferencemight have beenmade had optimal designs
been used to collect the data. Specific goals would be, to estimate (i) the changes in blood pressures
for each patient as well as the overall change, (ii) the proportion of subjects whose blood pressure
would change right after administration of the calcium supplement, and (iii) the proportion of
subjects who would not benefit from the calcium supplement.
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The optimal designs required to address this multi-path problem are the topic of a later paper.
Here we focus on a single subject and consider the equivalent of an “n-of-one” trial where the
goals would be to (i) estimate the magnitude of the treatment effect (equivalently, estimate the
means before and after the change), (ii) test if a change occurs in the 2 weeks after administration
of the drug, and (iii) test if a change occurs at all. It is important to note that the single-path optimal
design methods and solutions are critical to solving the multi-path case. They pave the way for
the multi-path case, which introduces additional complexities, by providing a methodological
framework.

In Lyle et al. (1987), both practical considerations and those relating to the absorbtion of
calcium, dictated that the blood pressure observations be taken 1 week apart prior to the treatment
and 2 weeks apart after the start of treatment. Under this sampling scheme it was reasonable to
assume the readings were, for each subject, conditionally independent given the changepoint and
the other model parameters. In constructing our optimal design we make the assumption that
observations taken at least d = 1 week apart, are conditionally independent. Unlike Joseph et al.
(1996), we do not assume that any change, if it occurs, could only occur at one of the design
points.

3. THE MODEL

The Bayesian single-path changepoint model consists of a likelihood function for n observations
y = (y1, . . . , yn), design points x = (x1, . . . , xn) at which the observations are taken, prior distri-
butions for the parameters θ1 and θ2 before and after the change, and for the changepoint τ. For a
changepoint, (xk ≤ τ < xk+1), let the k observations taken before the change bey1 = (y1, . . . , yk)
and the n − k observations taken after the change be y2 = (yk+1, . . . , yn). We further assume
that the single-path joint conditional density f (y|θ1, θ2, τ), has marginal densities f (y1|θ1) and
f (y2|θ2) for observations before and after the change, respectively. We allow the distributions
of the data y and the parameters θ1 and θ2 to be either continuous, discrete, or mixed.

Conditional dependence between observations is allowed as long as this dependence is not
a function of the distance between observations. One tractable situation, however, where such a
dependency arises is in the multi-path problem mentioned in the introduction in which all paths
have a common changepoint (see Atherton & Wolfson, 2009).

The likelihood when the observations are conditionally independent given θ1, θ2, and τ, has
the form

f (y|θ1, θ2, τ) =
∏
xi≤τ

f (yi|θ1)
∏
xi>τ

f (yi|θ2).

This is the usual changepoint model except we allow the change to occur anywhere in the
observation interval [0, T]. To complete the model, we incorporate the prior f (θ1, θ2, τ), by
assuming that τ is independent of θ1 and θ2. Letting 0 ≤ pT < 1 be the probability of a change at
T, we represent the prior density for the changepoint as (1 − pT )g(τ) + pT I(τ=T ), where g(τ) is
a continuous density in [0, T] and I is the indicator function. To simplify our notation we denote
(1 − pT )g by ḡ. In the case of no mass at T, pT is zero and the prior density reduces to g. Thus
f (θ1, θ2, τ) = f (θ1, θ2)(ḡ(τ) + pT I(τ=T )).

4. THE DESIGN SPACE Xn, THE DESIGN MEASURE π, AND THE MAPPING G

The set of allowable designs consists of all the design vectors x = (x1, . . . , xn) such that x ∈
[0, T ]n with x1 ≥ 0, xi−1 + d ≤ xi for 2 ≤ i ≤ n and xn ≤ T . For each experiment d is selected
based on practical considerations and/or so that observations a distance d or more apart can be
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assumed to be roughly conditionally independent given θ1, θ2, and τ. We denote the set of all
allowable designs by Xn, where n is the number of observations that are taken. We refer to the
set of all the allowable designs Xn as the design space.

It is easily seen that the design space, Xn forms a simplex. Let V be the vertex set of Xn. The
designs in V are listed as (0, d, . . . , (n − 1)d), (0, d, . . . , (n − 2)d, T ), . . . , (T − (n − 1)d, T −
(n − 2)d, . . . , T ). There are n + 1 such designs in V and we label them v0 to vn, respectively.
Thus,

V = {v0, . . . , vn}. (1)

For all experimentswe assume that T > (n − 1)d, so that the n observations fit into the observation
interval [0, T] while maintaining at least a distance d apart.

A direct approach to the optimal design problem is to attempt to minimize the design criterion
function over the design space itself. However, this approach is difficult since the shape of the
design criterion function depends on the prior distribution of the changepoint. Furthermore, unless
this prior is uniform with support [0, T] the design criterion function will be multimodal. We
overcome this difficulty by introducing a new type of Bayesian design measure. The design
criterion function, rewritten in terms of the design measure, is always a concave function of the
design measure regardless of the shape of the prior distribution for the changepoint.

Formally, let τx be a random variable representing the number of observations taken before or
at the change. Hence, the event {τx = k} is the event that the change occurs at xk or between the
design points xk and xk+1. If the change occurs at T this is equivalent to no change and τx = n.
Since there are n design points in the observation interval [0, T] there are n + 1 intervals in which
the changepoint can fall. For notational convenience, ignoring the dummy variable of integration,
for prior density ḡ + pT on the changepoint, τx has mass function with probabilities

πk = P(τx = k) = P(xk ≤ τ < xk+1) =
xk+1∫
xk

ḡ,

for (0 ≤ k ≤ n − 1). For k = n,

πn = P(τx = n) = P(xn ≤ τ) =
T∫

xn

ḡ + pT .

We shall refer to the vector π = (π0, . . . , πn), as the design measure. Once the prior distri-
bution for the changepoint has been selected, we consider it to be fixed and the design measure π
is then a function of only the design x.

Since the design measure π is discrete with n + 1 support points, its components are the
barycentric coordinates of any n-dimensional simplex. We define the specific simplex Sn, to be
the convex hull of the standard basis {e1, . . . , en} and the zero vector e0. We may therefore let
the components of π be the barycentric coordinates of Sn so that π1, . . . , πn are the Cartesian
coordinates in n-dimensional space. For x ∈ Xn, define

G(x) = (π1(x), . . . , πn(x)) =

 x2∫
x1

ḡ,

x3∫
x2

ḡ, . . . ,

xn∫
xn−1

ḡ,

T∫
xn

ḡ + pT


 .

Then G is a mapping from Xn to the Cartesian coordinates of Sn ⊂ Rn. Obviously, if ḡ is greater
than zero everywhere on [0, T] then the mapping G is one-to-one. In cases where ḡ is equal zero
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on a sub-interval G is not one-to-one. In Example 1, the changepoint prior with support restricted
to the post-treatment sub-interval of [0, T], induces such a case.

4.1. Main Steps in the Sequel
Our strategy is first to establish a general theory of optimal design for changepoint problems.
This theory applies to any setting where the design criterion function is a concave function of the
design measure.

The main steps are as follows:

(i) The design criterion function is, by definition, a function of the design x. We first re-express it
as a function of the designmeasure π, which leads to a simpler convex optimization problem.

(ii) We then minimize the design measure criterion function over the set of allowable design
measures, G(Xn).

(iii) We next return to the problem of original interest, that is, of ascertaining the optimal design
itself. This is carried out by associating the optimal design measure with an optimal design,
or at worst, in some cases whenG is not one-to-one, with a small class of equivalent optimal
designs.

(iv) Finally, we focus on the two main classes of changepoint problems: testing for a change and
estimation of the parameters before and after the change. We show that the most common
design criterion functions (Bayes risk based, on squared error loss for estimation, and Bayes
risk based on a generalized 0–1 loss and the Spezzaferri design criterion function, for testing)
are convex functions of the design measure. We may therefore apply the general theory of
steps (i), (ii), and (iii).

5. THE SHAPE OF G(Xn)

It is important to investigate the shape ofG(Xn), since althoughG(Xn) is not a simplex, the hope
is that it lies entirely within a simplex, and contains the vertices of the simplex. For such sets the
concavity of the design criterion function guarantees that the optimal design measure is at one
of these vertices. Figure 1a–c illustrates how G depends on the prior density for the changepoint
τ when there are two design points. Only in Figure 1a which corresponds to a truncated normal
prior, does G(X2) remain inside the simplex. In Figure 1b and c, which correspond to a bimodal
mixture of normal densities and a mixture of a uniform and gamma density, respectively, G(X2)
leaves the simplex.

Figure 1: (a)–(c) representG(X2) for (a) a truncated normal prior density (b) a bimodal mixture of normal
densities, and (c) a mixture of a uniform density and a gamma density. The observation interval is taken
to be T = 10 and the minimum distance between observations is d = 2. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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As we shall see in Theorem 1, it is log-concavity that is fundamental, not unimodality; For
Figure 1c the prior density is unimodal but not log-concave. Since, the class of log-concave
distributions is rich (Bagnoli & Bergström, 1989), the restriction is not great.

We prove Theorem 1 for the case where G is one-to-one. Additions to the proofs for when G
is not one-to-one are given in Atherton, Charbonneau & Wolfson (2009).

Theorem 1. Let � = Conv(G(V )) be the convex hull of G(V ). If in the density ḡ + pT , the
density ḡ is log-concave and everywhere greater than zero then G(Xn) ⊂ �.
Proof of Theorem 1. The proof of Theorem 1 is given in Appendix A.1 along with a basic

lemma.
The converse of Theorem 1 does not hold. It is not true that G(Xn) ⊂ � implies that ḡ is

log-concave, since there are non-log-concave ḡ, such that G(Xn) ⊂ �. �

6. OPTIMAL DESIGNS FOR GENERAL DESIGN CRITERION FUNCTIONS
CONCAVE IN π

The discussion in this section applies tominimizing concave design criterion functions. Of course,
the same results hold when the goal is to maximize a convex design criterion function. Theorem 1
and its analogues for cases where G is not one-to-one underpin Theorems 2 and 3, which show
that the optimal designs are located in the vertex set, V, defined by (1). This means that the
optimal design problem is, at worst, reduced to a numerical search over a set of possible designs.
Theorems 2 and 3 differ in that the former theorem places no constraint (apart from the d-apart
restriction) on the location of the design points while the latter theorem places an additional
constraint. As we shall see in Sections 7.2 and 7.3 the designs in Theorem 2 are appropriate for
estimation and the designs in Theorem 3 are appropriate for testing.

Theorem 2. Suppose the density ḡ + pT , is constructed from a density g that is log-concave
with support [0, T ]. Suppose the observations may be taken anywhere on [0, T ] provided they are
at least a distance d apart. Then the optimal design for any changepoint problem with a design
criterion function, concave in π, is one of the designs in the set V.

Proof of Theorem 2. For priors everywhere greater than zero on [0, T], Theorem 1 shows
that the image of Xn under G is a subset of the simplex � = Conv(Gf (Xn)). Clearly, it is the
designs in V that map to the vertices of the simplex �. Hence by Jensen’s inequality, one of the
designs in V is the design that minimizes the concave design criterion function. �

A similar theorem and proof for cases when G is not one-to-one is given in Atherton, Char-
bonneau &Wolfson (2009). See Example 1 (Continued—estimation) at the end of Section 7.3 for
an illustration of how Theorem 2 is used.

When testing for a change in a sub-interval [t1, t2], it is necessary to fix two consecutive
design points at t1 and t2, respectively. This is to ensure that an event expressed in terms of τx will
correspond to a statement about the changepoint in [t1, t2]. In general, by fixing two design points
at t1 and t2, we are left with the outer intervals [0, t1 − d] and [t2 + d, T ] in which to place the
remaining n − 2 design points (Figure 2). The optimal number of points in these two intervals,

Figure 2: The outer intervals [0, t1 − d] and [t2 + d, T ] formed by fixing two design points at
t1 and t2, respectively. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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respectively, will ultimately be determined by straight enumeration. Given a fixed number of
points in each interval, it remains to determine the optimal placement of these points within
[0, t1 − d] and [t2 + d, T ].

Fixing the number of points in one of these two intervals, it is essentially clear fromTheorems 1
and 2 that the optimal design for log-concave ḡ places the points at either end of the selected
interval. It is then easily seen that the global optimal design with two points fixed at t1 and t2
places points towards the four ends of the outer intervals.

Formally, fix xq = t1 and xq+1 = t2. The points x1, . . . , xq−1 fall in the interval [0, t1 − d]
and the points xq+2, . . . , xn fall in the interval [t2 + d, T ]. We must have q in the set

Q = {q | t1 − d > (q − 2)d and T − (t2 − d) > (n − q − 2)d}.

For q ∈ Q, let

c0 = (0, d, . . . , (q − 2)d), d0 = (t2 + d, . . . , t2 + (n − q − 1)d),
c1 = (0, d, . . . , (q − 3)d, t1 − d), d1 = (t2 + d, . . . , t2 + (n − q − 2)d, T ),

...
...

cq−1 = (t1 − (q − 1)d, . . . , t1 − d), dn−q−1 = (T − (n − q − 2)d, . . . , T − d, T ),

and set

Cq = {c0, c1, . . . , cq−1},
Dq = {d0, d1, . . . , dn−q−1}.

Theorem 3. Suppose the density ḡ + pT is constructed from a density g that is log-concave
with support [0, T ]. Suppose the design criterion function is concave in π. The optimal design
amongst all those designs with two observations fixed at t1 and t2, is in the Cartesian products
{(t1, t2)} × D1, Cn−1 × {(t1, t2)}, or Cq × {(t1, t2)} × Dq for some 2 ≤ q ≤ n − 2.

Proof of Theorem 3. Take any fixed q with 2 ≤ q ≤ n. Noting the analogy of Cq and Dq to
V, it is easily seen, by extending Theorem 1, that we must minimize the concave design criterion
function over a Cartesian product of two regions, each a subset of a simplex and containing the
vertices. It is also easily seen that the designs in Cq map to the vertices of the first simplex and
the designs inDq map to the vertices of the second simplex. The result follows from an extension
of Jensen’s inequality. For q = 1 or q = n − 1 the result is obvious. �

See Example 1 (Continued—testing) at the end of Section 7.2 for an implementation of
Theorem 3.

7. CONCAVITY OF SPECIFIC DESIGN CRITERION FUNCTIONS

The optimal designs derived in Section 6 have required the concavity of the design criterion
functions as functions of the design measure π. We discuss optimal designs for testing and
estimation separately, and show that for the most commonly used loss functions (Bayes risk
based on squared error loss for estimation and the Bayes risk based on the generalized 0–1 loss
and the Spezzaferri design criterion function for testing), the design criterion functions are, indeed,
concave in the design measure.

The key once again is to re-express the model in terms of the design measure π.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2009 BAYESIAN OPTIMAL DESIGN FOR CHANGEPOINT PROBLEMS 503

7.1. Model and Dependence on π

In general, the model presented in Section 3 can be expressed as

Joint likelihood f (y|θ1, θ2, τx = k)
Marginal likelihoods f (y1|θ1) and f (y2|θ2)

The model also includes specification of the joint prior f (θ1, θ2, τ) = f (θ1, θ2)(ḡ + pT ),
which as a function of τx, becomes f (θ1, θ2, τx = k) = f (θ1, θ2)πk.

Letting η(·) represent an arbitrary probability measure, we have

f (y|τx = k) =
∫ ∫

f (y|θ1, θ2, τx = k)f (θ1, θ2) dη(θ1) dη(θ2), (2)

whence

f (y) =
∑
k

f (y|τx = k)πk (3)

and

f (τx = k|y) = f (y|τx = k)πk∑
l f (y|τx = l)πl

. (4)

7.2. Design Criterion Functions When Testing for a Change
Referring to Example 1, researchers may want to know if the calcium supplementation takes
effect during a sub-interval [t1, t2] after administration. To test for a change in [t1, t2] it is clearly
necessary to guarantee that there are observations at t1 and t2. Say we place xq at t1 and xq+1 at t2.
Then the events {τ ∈ [t1, t2]} and {τx = q} are equivalent. For designs having two points fixed at
t1 and t2, Theorem 3 gives optimal designs for design criterion functions that are concave in π. If
either t1 = 0 or t2 = T , that is, we intend to test for a change in [0, t2] or [t1, T ] then Theorem 3
needs to be modified slightly. For [0, t2] we need to include the case where the single design point
x1 is fixed at t2 and similarly for [t1, T ] the case where the single design point xn is fixed at T.
The important case of testing for a change in [0, T] only requires the design point xn to be fixed
at T. It is then easily seen that for a concave design criterion function the optimal design lies in
the subset {v1, . . . , vn}.

Two common design criterion functions used for testing are the Bayes risk based on a gener-
alized 0–1 loss function and the design Spezzaferri criterion function (see Spezzaferri, 1988). The
theorems below establish concavity of two functions and, therefore, render our general optimal
design results of Section 6 applicable to hypothesis testing.

The generalized 0–1 loss specifies a loss K0, incurred when the null hypothesis is chosen
although the true state is the alternative. Likewise K1 is the loss incurred when the alternative is
chosen but the true state is the null hypothesis. Letting #Ho represent the parameter space under
the null hypothesis and #H1 represent the parameter space under the alternative hypothesis, the
generalized 0–1 loss function leads to the following Bayes’s rule.

y ∈ R0 if K0
∫

θ∈#H1

f (y|θ)p(θ) dθ < K1
∫

θ∈#H0

f (y|θ)p(θ) dθ

y ∈ R1 if K1
∫

θ∈#H0

f (y|θ)p(θ) dθ < K0
∫

θ∈#H1

f (y|θ)p(θ) dθ.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



504 ATHERTON ET AL. Vol. 37, No. 4

The 0–1 Bayes risk with the decision rule above has the form

K0

∫
R0

∫
θ∈#H1

f (y|θ)p(θ) dθ dy + K1

∫
R1

∫
θ∈#H0

f (y|θ)p(θ) dθ dy. (5)

Theorem 4. Consider H0 : τ �∈ [t1, t2] vs H1 : τ ∈ [t1, t2]. The Bayes risk based on the gener-
alized 0–1 loss for the changepoint testing problem is concave in π.

Proof of Theorem 4. After re-expressing the risk (5) in terms of π for H0 : τ �∈ [t1, t2] and
H1 : τ ∈ [t1, t2], we apply the definition of concavity to show that the Bayes risk based on 0–1 is
concave in π. See Atherton (2009b) for a complete proof. �

The Spezzaferri design criterion function is based on the quadratic scoring rule of Brier (1950)
and DeFinetti (1962). This criterion posits that the usefulness of an experiment is measured by
the expected relative increase of utility after the experiment is performed (see Spezzaferri, 1988).
Atherton (2009a) places the Spezzaferri criterion function in the usual Bayesian theoretic decision
setting described as follows: Let the design space beX, the decision spaceD, the parameter space
#, and the sample spaceY. For a utility,U selected by the experimenter the optimal design is then

arg


max

x∈X

∫
Y

max
d∈D

∫
#

U(d, θ, x, y)p(θ|y, x)p(y|x) dθ dy

 ;

that is, the design x ∈ X that maximizes the data-averaged posterior expected utility at the
optimal decision, d, is the optimal design (see, e.g., Chaloner & Verdinelli, 1995). Taking the
utility U to be the quadratic scoring rule, Atherton (2009a) shows that this posterior expected
quadratic scoring rule criterion function is equivalent to the Spezzaferri criterion function. The
design criterion function based on the posterior quadratic scoring rule simplifies to the following,

1 − 2P(θ ∈ #H0 )P(θ ∈ #H1 )
∫

f (y|θ ∈ #H0 )f (y|θ ∈ #H1 )
f (y)

dy. (6)

Formula (6) has a much simpler form than the original Spezzaferri criterion function, and hence
we work in this framework.

Theorem 5. ConsiderH0 : τ �∈ [t1, t2] versusH1 : τ ∈ [t1, t2]. The posterior expected quadratic
score criterion function is convex in π.

Proof of Theorem 5. We prove that the expression∫
f (y|θ ∈ #H0 )f (y|θ ∈ #H1 )

f (y)
dy (7)

is concave. Our approach is to prove the integrand is concave for any value of y using the definition
of concavity. It immediately follows that the integral is concave. See Atherton (2009b) for the
complete proof. �

Example 1 (Continued—testing). We derive the optimal design for testing for a change in blood
pressure, basing our design choice on the posterior expected score design criterion function in
expression (6). Later, we also derive the optimal design for estimating the treatment effect if there
is a change. We consider two relevant testing problems—testing for a change in blood pressure
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Table 1: Values of the posterior expected quadratic score criterion function for
the various design measures when testing for a change in [0, T].

v1 0.6668

v2 0.6939

v3 0.7061

v4 0.7112

v5 0.7113

v6 0.7059

v7 0.6977

v8 0.6850

v9 0.6660

v10 0.6152

vActual 0.6920

vTimes 0.6914

The vi’s are defined at the beginning of Section 4.

within the entire study and testing for a change within 2 weeks of the start of the calcium diet. By
Theorem5 the design criterion function is concave inπ. The optimal design for testing for a change
in [0, T] is one of the designs in {v1, . . . , vn}. We used the results of Joseph et al. (1996) to suggest
prior distributions for our model. We assumed that 10 blood pressure readings would be taken.
We assumed the data to be normally distributed about the before-and after-change means with
variance 25mmHg2. Assuming that the calcium supplementation would start at week 4 we took
(1/2)U(4 weeks, 16 weeks) + (1/2)I(16 weeks) to be the prior distribution for the changepoint
where U(a, b) denotes uniform distribution on (a, b). Normal conjugate priors were used for the
before- and after-change means. Based on hyper-parameter values used in Joseph et al. (1996)
we took the hyper-parameter means before and after the change each to be 115mmHg and the
before-and after-change hyper-parameter variances to be 100mmHg2. We evaluated integral (7)
using Monte Carlo integration by taking 100,000 draws from f (y|θ ∈ #H1 ) and averaging the
remaining terms in the integrand. Table 1 lists the values of the posterior expected quadratic design
criterion function at the designs v1, v2, . . . , v10, the only possible candidates for the optimal design
measure. Table 1 also includes the corresponding value of the criterion function at the design vActual
that was used in the original study by Lyle et al. (1987), and the value at the design vTimes when
observationswere taken at equally spaced times.We see that the optimal design is v5, which places
points at weeks (0–4, 12–16). We note that the optimal design gives a small improvement over
the other designs: this is in itself informative, since it could be used to justify the simple design
protocol used originally by Lyle et al. (1987). Of course, were the times between observations
allowed to be smaller, the improvement would be greater.
Naturally, the sooner that a dietary supplement takes effect the better. Hence it might be of

interest to test whether this supplement lowers blood pressure within the first 2 weeks. Using
Theorem 3 we find that the optimal design places observations at weeks (0–4, 6–9, 16). For
simulated criterion function values, see Atherton (2009b).

7.3. Concavity of the Design Criterion Function for Estimating the Parameters Before
and After the Change
Suppose that we wish to find an optimal design for estimating the parameters before and after
the change. For instance, referring to Example 1, one might wish to estimate the magnitude of
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the blood pressure treatment effect, anticipating from past studies, say, that there would be some
treatment effect.

Since the goal is to estimate θ1 and θ2, the Bayes risk based on squared error loss is,

R =
∫ ∫

(θ1 − E(θ1|y))2f (y) dη(θ1) dη(y) +
∫ ∫

(θ2 − E(θ2|y))2f (y) dη(θ2) dη(y)

=
∫

Var(θ1|y)f (y) dη(y) +
∫

Var(θ2|y)f (y) dη(y)

=
∫

Eτx=k|y(Var(θ1|y, τx = k))f (y) dη(y) +
∫

Varτx=k|y(E(θ1|y, τx = k))f (y) dη(y)

+
∫

Eτx=k|y(Var(θ2|y, τx = k))f (y) dη(y) +
∫

Varτx=k|y(E(θ2|y, τx = k))f (y) dη(y).

Denote the latter four integrals by R1, R2, R3, and R4, respectively. We first re-express the four
integrals on the right hand side as functions of π. Note that R1 and R3 describe the within-model
variability, while the terms R2 and R4 describe the between-model variability. The within-model
variability refers to the variability around the parameters θ1 and θ2 given a fixed changepoint,
and the between-model variability refers to the extra variability induced by the uncertainty of the
location of the changepoint.

We show R1 and R3 are linear in π and then that R2 and R4 are concave in π. Without loss of
generality, we establish these properties for R1 and R2 only. It then follows that R being a linear
combination of concave functions, is concave in π. Once concavity of R is established, Theorem
2 may be used to find the optimal design in this estimation setting. The proof of the concavity of R
is preceded by three lemmas. Many of the proofs are provided in the technical report by Atherton
(2009b).

Lemma 2. The terms R1 and R3 are linear functions of π.

Proof of Lemma 2. Without loss of generality, consider only R1. By Fubini’s theorem, R1
can be re-expressed as

R1 =
∑
k

Ey|τx=k(Var(θ1|y, τx = k))πk.

Since the density f (θ1|y, τx = k) is independent of π, the expectation,E(θ1|y, τx = k) and hence
the variance Var(θ1|y, τx = k), are both independent of π. Observing that the density, f (y|τx =
k), in Equation (2), does not depend on π, we conclude that Ey|τx=k(Var(θ1|y, τx = k)) does not
depend on π.

Next,

R2 =
∫ ∑

k

(
E(θ1|y, τx = k) −

∑
l

E(θ1|y, τx = l)f (τx = l|y)
)2

· f (τx = k|y)f (y) dη(y).

From (3) and (4) we see that f (τx = k|y) and f (y) are functions of π, so that R2 is also a
function of π. It suffices to prove that the integrand defining R2 is concave in π for any value of
y, for then the integral R2 is also concave in π. �
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Lemma 3. The integral for R2 equals

∑
k>l

(E(θ1|y, τx = k) − E(θ1|y, τx = l))2
f (y|τx = l)πlf (y|τx = k)πk∑

r f (y|τx = r)πr
. (8)

Proof of Lemma 3. The proof of Lemma 3 is given in Atherton (2009b). �

Lemma 4. For k = 0, . . . , n, and for dk ∈ R and xk, yk ∈ R+, we have∑
k>l

(dk − dl)2(xk + yk)(xl + yl)∑
r

(xr + yr)
≥
∑
k>l

(dk − dl)2xkxl∑
r

xr
+
∑
k>l

(dk − dl)2ykyl∑
r

yr
. (9)

Proof of Lemma 4. The proof of Lemma 4 is given in Atherton (2009b). �

Theorem 6. The terms R2 and R4 are concave functions of π.

Proof of Theorem 6. Consider the integrand of R2 in the form of (8). Let π(a) and π(b) be any
two values of the design measure and let π(a),k and π(b),k be the kth components of π(a) and π(b)
respectively. We show that for λa, λb ≥ 0 (λa + λb) = 1,

∑
k>l

(hk − hl)2
f (y|τx = l)(λaπ(a),l + λbπ(b),l)f (y|τx = k)(λaπ(a),k + λbπ(b),k)∑

r λaf (y|τx = r)π(a),r +∑s λbf (y|τx = s)π(b),s

≥ λa
∑
k>l

(hk − hl)2
f (y|τx = l)π(a),lf (y|τx = k)π(a),k∑

r f (y|τx = r)π(a),r

+ λb
∑
k>l

(hk − hl)2
f (y|τx = l)π(b),lf (y|τx = k)π(b),k∑

s f (y|τx = s)π(b),s
.

The above inequality is equivalent to∑
k>l

(hk − hl)2

× (λaf (y|τx = l)π(a),l + λbf (y|τx = l)π(b),l)(λaf (y|τx = k)π(a),k + λbf (y|τx = k)π(b),k)∑
r λaf (y|τx = r)π(a),r +∑s λbf (y|τx = s)π(b),s

≥
∑
k>l

(hk − hl)2
λaf (y|τx = l)π(a),lλaf (y|τx = k)π(a),k∑

r λaf (y|τx = r)π(a),r

+
∑
k>l

(hk − hl)2
λbf (y|τx = l)π(b),lλbf (y|τx = k)π(b),k∑

s λbf (y|τx = s)π(b),s
.

This inequality is guaranteed by Lemma 4 by setting

dk = hk,

dl = hl,

Xk = λaf (y|τx = k)π(a),k,

Xl = λaf (y|τx = l)π(a),l,
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Table 2: Values of the Bayes risk based on squared error loss,
for the designs in set the V.

v0 89.7711

v1 71.2716

v2 67.8714

v3 66.6232

v4 66.1647

v5 66.2339

v6 66.4680

v7 67.2907

v8 68.8239

v9 72.1571

v10 96.0371

vActual 67.7416

vTimes 67.7946

Yk = λbf (y|τx = k)π(b),k, and

Yl = λbf (y|τx = l)π(b),l.

Since the integrand is concave for all y it follows that the integrals, R2 and, hence, R4, are
concave. �

Example 1 (Continued—estimation). With the goal of estimating the calcium supplementation
effect on blood pressure, we found the optimal design by invoking Theorem 2, Lemma 2, and
Theorem 6. The various designs and their risks (based on a Monte Carlo simulation with 100,000
iterations) are given in Table 2. We see that the optimal design is v4 with observations at weeks
(0, 1, 2, 3, 4, 5, 13, 14, 15, 16). For simulated values of R1, R2, R3, and R4, see Atherton (2009b).

8. CONCLUDING REMARKS

We stress that the single-path results in Section 6 of this paper apply for all design criterion
functions that are concave in the designmeasure.Our results also apply to datawith anydistribution
and for any prior distributions on the before- and after-change parameters. The only constraint
we have imposed is that the prior distribution for the changepoint is log-concave.

Simulations in Zhou (1997) demonstrate the difficulties of finding an optimal design for
estimating the changepoint itself since no easily described pattern emerges. Unfortunately, re-
expressing the design criterion function in terms of π does not simplify the problem of finding
the optimal design.

When the parameters of interest are the means µ1 and µ2, researchers sometimes prefer to
make inference about µ1 − µ2. In this setting the obvious parameters would be µ and µ + δ. The
inference is then about δ. The Bayes risk based on a squared error loss for δ, remains concave in
π, and the optimal design follows from Theorem 2.

When estimating parameters θ1 and θ2, the term R1 + R3 is equivalent to the generalized
Läuter’s criterion function introduced by Zhou et al. (2003), when a Bayes risk based on squared
error loss is used. Suppose that the parameters are the means and their prior distributions are
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normal. Suppose further the difference between the hyper-parameter means is large compared to
the hyper-parameter- and model-variances. It is a conjecture that the generalized Läuter criterion
function gives a good approximation to the Bayes risk based on squared error loss. That is,
R2 + R4 is small, and R1 + R3 is a good approximation to R.

Although the discussion in this paper has focused on scalar valued parameters,with appropriate
modification of the loss functions, these results could be extended to vector valued parameters.

With testing and estimation both as the goals, design criterion functions can be combined.
We have suggested three criterion functions (two for testing and one for estimating) which are
all concave in π. For example, by taking a weighted convex combination of one of the testing
criterion functions and the estimation criterion function, we obtain a criterion function that is
again concave in π; the weights would be selected to reflect the perceived relative importance
of the two problems. Theorem 3 may then be used to find the optimal design. Of course such an
approach would need to be taken with care since the loss functions for estimating and testing are
not really comparable.

APPENDIX

A.1. Proof of Theorem 1
The proof is in two parts. First, in Lemma 1, we show that the set G(V ) is affinely independent.
It follows that the convex hull Conv(G(V )), which we denote as �, is a simplex. Second, in the
proof of Theorem 1 we consider each (n − 1)-dimensional boundary of G(Xn) and show that
G(Xn) ⊂ � if g has support on [0, T].

Lemma 1. Let g (piecewise continuous) have support [0, T ]. Then the set G(V ) is affinely
independent.

Proof of Lemma 1. Let

αi =
id∫

(i−1)d

ḡ, βi =
T−(i−1)d∫

(n−i−1)d

ḡ, γi =
T−(i−1)d∫
T−id

ḡ,

for i = 1, . . . , n − 1, and let

β̄ =
T∫

(n−1)d

ḡ + pT .

To prove that G(V ) is an affinely independent set, we show that the vectors G(v0) −
G(vn),G(v1) − G(vn), . . . ,G(vn−1) − G(vn) are linearly independent by showing that the deter-
minant

∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 − γn−1 α2 − γn−2 · · · αn−1 − γ1 β̄ − pT

α1 − γn−1 α2 − γn−2 · · · β1 − γ1 0
...

... · · · ...
...

α1 − γn−1 βn−2 − γn−2 · · · 0 0
βn−1 − γn−1 0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
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is non-zero. It is indeed the case as all the diagonal elements βj − γj = ∫ T−jd

(n−j−1)d ḡ and β̄ − pT =∫ T
(n−1)d ḡ are greater than zero.
To prove Theorem 1 the following preliminaries are needed. For 1 ≤ i ≤ n − 1 define Ei to

be the facets xi+1 = xi + d of Xn. Define E0 to be the facet x1 = 0, and En the facet xn = T .
Each facet Ei is thus the convex hull of every vertex except the vertex vn−i (which has the
largest distance possible between the points xi and xi+1). The facet Ei is then parametrized
by the (n − 1)-dimensional vector (x1, . . . , xi, xi+2, . . . , xn), without xi+1. Hence G(Ei) is an
(n − 1)-dimensional surface lying in Rn.

To simplify notation, let Gi denote the restriction G|Ei of G to the subset Ei of Xn. Then

Gi(x1, . . . , xi, xi+2, . . . , xn) = G(x1, . . . , xi, xi + d, xi+2, . . . , xn).

We denote partial derivatives by subscripts. If p ∈ Ei is such that q = Gi(p) and TqGi is the
space tangent toGi at the point q, then for j �= i + 1 the partial derivativesGi

j|p, lie in the tangent
space TqGi.

It is easy to show that, since the density function g is always greater than zero, the partial
derivatives {Gi

1, . . . ,G
i
i,G

i
i+2, . . . ,G

i
n} are linearly independent in any tangent space TqGi.

Let e1, . . . , en denote the usual basis of Rn, using a determinantal formula similar to the one
for the cross product (when n = 3), we compute the normal vector to the surface Gi

Ni = (−1)n−iḡ(x1) · · · ḡ(xi−1)ḡ(xi + d)ḡ(xi+2) · · · ḡ(xn)ei

+
n∑

j=i+1

(−1)n−iḡ(x1) · · · ḡ(xi−1) (ḡ(xi + d) − ḡ(xi)) ḡ(xi+2) · · · ḡ(xn)ej.

To ascertain if Ni points inwards or outwards we take the dot product of Ni and a vector known
to point inwards. In the facet Ei, the coordinate xi+1 is fixed. As we vary it, we penetrate inside
X
n and therefore Gi+1 points inside G(Xn). With ḡ(xi+1) as the ith component and −ḡ(xi+1) as

the (i + 1)st component we have

Gi+1 = (0, . . . , 0, ḡ(xi+1),−ḡ(xi+1), 0, . . . , 0).

Hence,

Ni · Gi+1 = (−1)n−iḡ(x1) · · · ḡ(xi−1)ḡ(xi)ḡ(xi+1) · · · ḡ(xn).

For simplicity, we set

N̄i = (−1)n−iNi,

so that N̄i always points inwards. Let M̄i = N̄i/‖N̄i‖.
We can study the shape of a surface, be itG(Ei) or other surfaces, by studying how the normal

vector changes as it moves in various directions. The object that accomplishes this task is the
shape operator L. It is a map from the tangent plane at one point to itself. The eigenvalues of this
operator are called “principal curvatures.”

Details can be found in Chapter 5 of O’Neill (1997), but for our purposes, the shape operator
is determined by the relation

L(Gi
j) · Gi

k = M̄i · Gi
jk. (10)
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If the principal curvatures calculated are all non-positive at every point p ∈ Ei, then the shape of
G(Ei) is such that G(Ei) is “pulled” inside �. �

For the sake of completeness we restate Theorem 1 below.

Theorem 1. Let � = Conv(G(V )) be the convex hull of G(V ). If in the density ḡ + pT , the
density g is log-concave and everywhere greater than zero then G(Xn) ⊂ �.
Proof of Theorem 1. The set G(V ) ⊂ G(Xn) lies in �. We examine the n + 1 boundaries of

G(Xn) and show that for any log-concave g, each lies inside �. Since g is everywhere greater
than zero, G is injective and, thus, maps boundaries of Xn to boundaries of G(Xn). We can then
pair boundaries ofG(Xn) and�, noting that each pair is parametrized by the same facetEi ofXn.

SinceG0 parametrizes π0 = 0 andGn parametrizes πn = pT , the boundaries parametrized by
G0 and Gn are coincident with their corresponding boundaries in �. Consequently, we focus on
the boundaries parametrized by Gi for 1 ≤ i ≤ n − 1.

Referring to (10) since all mixed partial derivatives are zero, L(Gi
j) · Gi

k is zero for all j �= k.
Furthermore, L(Gi

j) · Gi
j = 0 for j �= i. We are left with

N̄i · Gi
ii = (−1)n−iḡ(x1) · · · ḡ(xi−1)ḡ(xi+2) · · · ḡ(xn)

· ((ḡ′(xi + d) − ḡ′(xi)
)
ḡ(xi + d) − ḡ′(xi + d) (ḡ(xi + d) − ḡ(xi))

)
to determine the sign of L(Gi

i) · Gi
i. It is obviously determined by the sign of the expression(

ḡ′(xi + d) − ḡ′(xi)
)
ḡ(xi + d) − ḡ′(xi + d) (ḡ(xi + d) − ḡ(xi)) .

To summarize, for some constant Ai, we have

L(Gi
j) · Gi

k =
{
Ai, when j = k = i,

0, otherwise.

Since the basis Gi
j is not necessarily orthonormal, Ai is not necessarily an eigenvalue of L, and

hence perhaps not a principal curvature. However, since the shape operator L is self adjoint,
there exists an orthonormal basis consisting of eigenvectors w1, . . . , wn−1 for L with respective
eigenvalues k1, . . . , kn−1. Denoting the Kronecker delta function by δjk, we have

L(wj) · wk = δjkkj.

Since {Gi
i, . . . ,G

i
i,G

i
i+2, . . . ,G

i
n} and {w1, . . . , wn−1} are two bases of the same space, there is

a matrix [hlk] such that, wj =∑k hjkG
i
k. The principal curvatures, or eigenvalues, of the shape

operator L, are

kj = L(wj) · wj

=
∑
k,l

hjkhjlL(Gi
k) · Gi

l

= Ai(hji)2. (11)

If g is log-concave then g′
g
is monotone decreasing and consequently

ḡ(xi)ḡ′(xi + d) − ḡ′(xi)ḡ(xi + d) ≤ 0.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



512 ATHERTON ET AL. Vol. 37, No. 4

ThereforeL(Gi
i) · Gi

i, and hence the principal curvatures given by Equation (11), are non-positive.
The result follows. �
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